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Abstract

In this paper, we propose a Bayesian approach to image
hallucination. Given a generic low resolution image, we
hallucinate a high resolution image using a set of training
images. Our work is inspired by recent progress on natu-
ral image statistics that the priors of image primitives can
be well represented by examples. Specifically, primal sketch
priors (e.g., edges, ridges and corners) are constructed and
used to enhance the quality of the hallucinated high resolu-
tion image. Moreover, a contour smoothness constraint en-
forces consistency of primitives in the hallucinated image by
a Markov-chain based inference algorithm. A reconstruc-
tion constraint is also applied to further improve the quality
of the hallucinated image. Experiments demonstrate that
our approach can hallucinate high quality super-resolution
images.

1. Introduction

Image super-resolution has become an active research
topic in computer vision lately. Super-resolution techniques
have many applications ranging from video quality en-
hancement to image compression. Most super-resolution
techniques require multiple low resolution images to be
aligned in sub-pixel accuracy. In this paper, however, we
focus on image super-resolution from a single image.

Clearly, single image super-resolution is an under-
constrained problem because many high resolution images
can produce the same low resolution image. Previous work
on single image super-resolution can be categorized into
three classes: functional interpolation, reconstruction-based
and learning-based. Functional interpolation methods often
blur the discontinuities and do not satisfy the reconstruc-
tion constraint. Under the reconstruct constraint, the down-
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Figure 1. Comparison of different super-resolution tech-
niques. Top: the original image. (a) Nearest Neighbor
(simply copying pixels), (b) Bicubic (functional interpola-
tion), (c) Backporjection (reconstruction-based) and (d) Im-
age hallucination (learning-based approach).

sampled high resolution reconstructed image should be as
close as possible to the original low resolution image. Fig-
ures 1(a) and (b) show the results of nearest neighbor inter-
polation and bicubic interpolation of a low resolution im-
age respectively. Edge-based interpolation methods [2, 15]
have also been proposed. Reconstruction-based methods
[6, 9] satisfy the reconstruction constraint but cannot guar-
antee contour smoothness. Figure 1 (c) shows the result
of a reconstruction-based approach using backprojection
[6]. Some “jaggy” and “ringing” artifacts are clearly vis-
ible along the edges. In this paper, we propose a learning-



based approach. To construct the super-resolution image,
we “steal” high frequency details that do not exist in the low
resolution image from a number of training images. A good
quality super-resolution image reconstructed using our ap-
proach is shown in Figure 1(d). This is, in spirit, similar to
face hallucination [3] and other related low-level learning
work [4, 5, 7].

This is why we call our approach “image hallucina-
tion”. Unlike “face hallucination” [3], however, our ap-
proach works for generic images. Instead of assuming
generic smoothness priors that are used in interpolation ap-
proaches, learning-based approaches choose a recognition-
based prior based on a set of recognition decisions on the
low resolution imageIL. For instance, the inputIL can be
divided into a number of partitions where each partition is
classified into a subclass and is associated with a subclass
prior. If the integration of subclass priors is more power-
ful than a generic smoothness prior, the learning-based ap-
proach can outperform the other approaches. Impressive
results have been obtained in domain-specific applications
(e.g., face, text [3, 7]). However, to do “image hallucina-
tion” for generic images, what are the basic recognition ele-
ments in the generic image? How to learn the prior for each
subclass?

In this paper, we propose primal sketches [8] as the nat-
ural basic recognition elements to get a recognition-based
prior for generic images. Firstly, the low resolution image
is interpolated as the low frequency part of a high resolution
image. This low frequency image is then decomposed into
a low frequency primitive layer and a non-primitive layer.
Each primitive in the primitive layer is recognized as part
of a subclass, e.g. an edge, a ridge or a corner at differ-
ent orientations and scales. For each subclass, its training
data (i.e., high frequency and low frequency primitive pairs)
are collected from a set of natural images. Secondly, for
the input low resolution image, a set of candidate high fre-
quency primitives are selected from the training data based
on low frequency primitives. From this set of candidates, a
consistent high frequency primitive layer is inferred using
a Markov chain model. The super-resolution image is ob-
tained by combining the high frequency primitive layer with
the low frequency image, followed by a backprojection al-
gorithm enforcing the reconstruction constraint.

The performance of the learning-based approach is de-
pendent on the priors we use. Specifically, using training
samples, the priors are represented by a set of examples in a
non-parametric way. The generalization of training data is
the key to do hallucination for the generic image. Whether
or not sample in a generic image can find a good match in
the training data determines how successful a learning based
approach can be. However, it is hard to learn a good prior
for an arbitrary image patch in natural images. It is demon-
strated by the statistical analysis on an empirical data set in

Section 3. Fortunately, the statistical analysis in Section 3
also shows primal sketch priors can be learned well from a
number of examples that we can computationally afford to-
day. Therefore, we propose to do image hallucination with
primal sketch priors.

Our work on image hallucination is also motivated by
the recent progress on natural image statistics [1, 14]. For
example, it is shown in [1] that the intrinsic dimensionality
of image primitives is very low. Low dimensionality makes
it possible to represent well all the image primitives in nat-
ural images by a small number of examples. These inspire
us to use the image primitive as the basis recognition ele-
ment to take advantage of the strong structure information
in generic images.

The rest of this paper is organized as follows. In Section
2, we give the overview of our image hallucination. The
details of algorithm are described in Sections 3 and 4. The
experimental results shown in Section 5 demonstrate that
our model is effective and efficient. We conclude the paper
in Section 6.

2. Overview

An overview of our approach is shown in Figure 2. The
approach consists of three steps. In step 1, a low frequency
imageI l

H is interpolated from the low resolution imageIL.
In step 2, a high frequency primitive layerIp

H is hallucinated
or inferred fromI l

H based on the primal sketch priors. In
step 3, we enforce the reconstruction constraint to get the
final high resolution imageIH .

In our approach, we hallucinate the lost high frequency
information of primitives (e.g., edges) in the image, but not
the non-primitive parts of the image. The key observation
in this paper is that we hallucinate only the primitive part
of the image, because we can effectively learn the priors of
primitives - “primal sketch priors”, but not the priors of non-
primitives. The MAP of primitive layerIp

H is hallucinated
from I l

H and priorp(Ip
H),

Ip∗
H = arg max p(Ip

H |I l
H)

= arg max p(I l
H |Ip

H)p(Ip
H). (1)

Section 3 shows the details about how to learn the primal
sketch priorsp(Ip

H). And how to hallucinateIp∗
H is pre-

sented in Section 4.
After getting hallucinated primitive layerIp

H , we can ob-
tain an intermediate resultIg

H that does not satisfy the re-
construction constraint in general. Backprojection [6] is an
iterative gradient-based minimization method to minimize
the reconstruction error:

It+1
H = It

H + (((It
H ∗ h) ↓ s − IL) ↑ s) ∗ p (2)

wherep is a “backprojection” filter. In our case, the final
solution is obtained simply by usingIg

H as the starting point.
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Figure 2. The overview of our approach.IL is the low resolution image.Il
H is the bicubic interpolation ofIL. The key

of our approach is that a high frequency primitive layerIp∗
H is hallucinated based on the primal sketch priorp(Ip

H) provided by
the primitives training data. The final high resolution imageIH is obtained from the intermediate resultIg

H by enforcing the
reconstruction constraint.
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Figure 3. The filter bank used for primitives extraction
(a) and typical primitives extracted (b).

The final high resolution imageIH is shown in Figure 2
(e). Noise and artifacts are significantly reduced with the
reconstruction constraint.

3 Primal Sketch Priors

In this section, we describe how to learn the primal
sketch priors. Furthermore, we study why the primitives can
be effectively represented by samples but the non-primitives
cannot. This statistical analysis sheds light on the difficulty
of generic image super-resolution using learning-based ap-
proaches and sample images.

3.1 Primal Sketch

We take an example-based approach to learn two things
from training data. One is the primal sketch priorp(Ip

H).
This prior is actually represented by a collection of exam-
ples in a non-parametric form. The other is the statistical
relationship between low frequency primitives (interpola-
tion of low resolution primitive) and high frequency prim-
itive (difference between high resolution primitive and low
frequency primitives). Each example consist of a pair of
primitives. These pairs capture the statistical relationship in
which we are interested.

We represent each image primitive by a 9x9 image patch.
The primitives are extracted by orientation energy [13],

OEσ,θ = (I ∗ fodd
σ,θ )2 + (I ∗ feven

σ,θ )2

wherefodd
σ,θ and feven

σ,θ are the first and second Gaussian
derivative filters at scaleσ and orientationθ. These filters
consist of a filter bank shown in Figure 3 (a) (2 scales and
16 orientations). We extract the patches along the contours.
The primitives such as step-edge, ridge, corners, T-junction
and terminations are extracted. Typical patches in a sub-
class are shown in Figure 3 (b).

From Pattern theory [11], the observed image primitivex
is generated by thelatent pattern z underlying some global
geometric and photometric transformations, such as transla-
tion, scaling, orientation and lighting. The generative model
of image primitiveB can be defined as,

B = c · GtGoGsz + d (3)

wherec is contrast,d is DC bias for lighting, andGt, Gs
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Figure 4. The ROC curves of primitive training data (a)
and component training data (b) at different sizes. X-axis is
match error and Y-axis is hit-rate.

andGo are translation, scaling and orientation transforma-
tion matrices respectively. The local transformations such
as subpixel location, curvature and local intensity varia-
tions, are absorbed intoz.

To reduce the dimensionality of primitives, we follow
the same assumption [4] that the statistical relationship be-
tween low frequency primitives and high frequency primi-
tives is independent of some transformations including con-
trast, DC bias and translation. LetBl be a low frequency
primitive andBh a corresponding high frequency primitive.
We normalizeBl to get a normalized low frequency primi-
tive B̂l,

B̂l =
1
cl

· G−1
t (Bl − dl) = GoGszl (4)

whereGt is approximated byI because the center of each
primitive we extract is on the contour. DC biasd is esti-
mated by the meanE[B]. The contrastc is estimated by
E[|B − E[B]|].

Each example consists of a normalized low frequency
primitive B̂l, its contrastcl and a high frequency primitive
Bh. The primal sketch priors are represented by all the ex-
amples in a non-parametric way.

3.2 Why Primal sketch?

Why do we choose only the primitive for hallucination?
The answer lies in the low dimensionality of the primitive
manifold. On the other hand, the dimensionality of the non-
primitive manifold is too high to be represented well by the
number of examples we can afford computationally. We
demonstrate this key observation by statistical analysis on
an empirical data set. Luckily, humans are more sensitive
to the high contrast intensity changes [8] because strong
stimuli are produced in the visual field by the structural el-
ements, i.e., primitives in image.

To evaluate the generalization capability of training data
for nearest neighbor matching, a Receiver Operating Char-
acteristics (ROC) curve is used to demonstrate the tradeoff
between hit rate and match error. For a given match error

e, the hit rateh is the percentage of test data whose match
errors are less thane. Each test samplex’s match errore(x)
is defined by a metric betweenx and the nearest samplex′

in the training data. We use the metrice(x) = ‖x−x′‖
‖x‖ . At

a given match error, the higher hit rate represents the better
generalization of the training data.

For convenience, each9× 9 patch extracted from an im-
age is calledcomponent. We study two ROC curves from
a primitive training data setDp (where each example is a
primitive) and a component training dataDi (where each
example is not necessarily a primitive), as shown in Fig-
ure 4. An empirical data set (1000 Hateren natural images
[14]1) are divided equally into training images and test im-
ages.Dp andDi are constructed (with uniformly sampling)
from training images. Each component is normalized as
well. The ROC characteristics ofDp andDi are evaluated
on test images. About 10,000 test samples are uniformly
sampled from the test images. To reduce the sensitivity of
sampling, each curve is the average result of 50 repeated ex-
periments (the training data and test data in each experiment
are re-sampled from images).

Two observations are found from the ROC curves in Fig-
ure 4. One is that the hit rate ofDp is higher than that ofDi

(for |Di| = |Dp|) at any match error (except for 0 and 1).
When|Dp| = 106, the match error is less than 0.2 for 85%
primitives in the test images. Furthermore, 97% od the test
data can find good matching examples inDp in error range
0.3. But the corresponding hit rates are 48% and 60% for
Di. That means about half of the components cannot find
good examples in the training data if we use components for
image hallucination. The other one is that the slope ofDp’s
ROC curve increases significantly as|Dp| increases. A bet-
ter ROC ofDp can be expected whenN = 107 (3GB byte
memory storage required for 9x9 patches!). However, the
the slope ofDi’s ROC curve is close to a constant at differ-
ent|Di|s. If we extrapolate Figure 4 (b), reaching a 80% hit
rate at match error 0.2 is hopeless with current storage and
computing capabilities. Therefore, the primitive manifold
can be represented well by a small number of examples, but
the component manifold cannot. This is why we only focus
on the primitive layer in image hallucination.

4 Image hallucination

The task now is to hallucinate the high frequency prim-
itive layer Ip∗

H given I l
H according to MAP (1). Figure 5

shows the training phase and synthesis phase of our image
hallucination.

1http://hlab.phys.rug.nl/archive.html
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Figure 5. Image Hallucination. In the training phase,
pairs of normalized low frequency primitivêBl and high
frequency primitiveBh are collected into the training data.
In the synthesis phase, the M best matched examples are
selected from the training data for each normalized low fre-
quency primitiveB̂l in the test image. The final high fre-
quency primitiveBh is obtained by a Markov chain based
inference algorithm.

4.1 Training

The training images are derived from 16 high resolution
natural images in Figure 8. The low resolution imagesIL

are simulated from the high resolution images by blurring
and down-sampling. Then, the low frequency imageIl

H

is interpolated (bicubic) fromIL and the high frequency
image is obtained fromIH by subtractingI l

H . The low
frequency primitiveBl and corresponding high frequency
primitive Bh are extracted from these training images. We
normalizeBl to getB̂l by (4). Each example in the training
data consists of̂Bl, its contrastcl andBh.

4.2 Synthesis: Markov chain based Inference

For any low resolution test imageIL, a low frequency
image I l

H is interpolated fromIL at first. We assume
that the primitive layerIp

H to be inferred is a linear sum
of a number ofN high frequency primitives{Bh

n, n =
1, . . . , N}. The underlying low frequency primitives
{Bl

n, n = 1, . . . , N} in the I l
H are shown in Figure 6 (b).

Note that the center of each image patch is on the contours
extracted inI l

H and the neighboring patches are overlapped.
A straightforward nearest neighbor algorithm can be

used for this task. For each low frequency primitiveBl
n,

we get its normalized̂Bl
n, then we find the best matched

(a) (b)

(c) (d)

Figure 6. Comparison. (a) The low-frequency image. (b)
The patches extracted along a contour. (c) Nearest neighbor
algorithm. (d) Markov chain based algorithm.

normalized low frequency primitive tôBl
n in the training

data and paste the corresponding high frequency primi-
tive. However, this simple method cannot preserve contour
smoothness because the consistency of neighboring primi-
tives is ignored, as shown in Figure 6 (c). Therefore, we
present a Markov chain based inference algorithm to en-
force the contour smoothness constraint (Figure 6 (d)).

To ensure the high frequency primitives to be consistent
along the contour, the primitives are grouped into a number
of K contoursC = {Ck, k = 1, . . . ,K} by a greedy 8-
neighbors algorithm. We approximate the joint posterior
p(Ip

H |I l
H) in (1) by the products of the posterior of each

contour,

p(Ip
H |I l

H) = p(C|I l
H) ≈

∏
k

p(Ck|I l
H). (5)

Each contourCk is a first order Markov chain model,

p(Ck|I l
H) ∝

nk−1∏
i

Ψ(Bh
i , Bh

i+1)
nk∏
i

Φ(Bl
i, B

h
i ) (6)

where Bl
i is the ith low frequency primitive on contour

Ck in I l
H , Bh

i is the corresponding high frequency prim-
itive to be inferred,nk is the number of patches onCk.
Ψ(Bh

i , Bh
i+1) is the compatibility function between two ad-

jacent patches.Φ(Bl
i, B

h
i ) is the local evidence function

betweenBl
i andBh

i .
For eachBl

i, we compute its normalized primitivêBl
i

and the contrastcl
i by equation (4). Its scaling and ori-

entation parameters are estimated during primitive extrac-
tion. Because the relationship betweenB̂l

i andBh
i is one-

to-multiple mapping,M (8 in our experiments) best match-
ing normalized low frequency primitives{B̂l(m),m =
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Figure 7. Comparison of the “Lena” image at 3X magnification.

1, · · · ,M} to B̂l
i are selected from the same subclass asBl

i

in the training data. LetBh(m) andcl
m be the correspond-

ing high frequency primitive and the contrast ofB̂l(m) in
the training data. The number ofm high frequency patches

are{Bh
i (m) = cl

i

cl
m

Bh(m),m = 1, · · · ,M}. The scale fac-

tor cl
i

cl
m

compensatesBh(m) for the different contrasts be-

tweenB̂l
i andB̂l(m).

Each candidateBh
i (m) is treated equally by set-

ting Φ(Bl
i, B

h
i ) = 1

M . The compatibility function
Ψ(Bh

i , Bh
i+1) is defined by the compatibility of neighboring

patches,Ψ(Bh
i , Bh

i+1) = exp(−(d(Bh
i , Bh

i+1)/σ2
d), where

d(Bh
i , Bh

i+1) is the Sum Squared Difference (SSD) of the
overlapping region betweenBh

i andBh
i+1 andσd is a tun-

ing variance.

The optimal MAP solution of (6) for each contourCk is
obtained by running the Belief Propagation (BP) [12] algo-
rithm. The details of the BP algorithm are not presented due
to space limitations.

5. Experimental Results

We tested our approach on a set of generic images. The
input low resolution image is produced by blurring and
downsampling the high resolution image. Our experimen-
tal results are shown in Figures 7, 9 - 12, all with a mag-
nification factor of 3. The PSF is a Gaussian function with
a standard variance of1.4. The “backprojection” filterp
is also a Gaussian kernel with a standard variance of2.2.
Note that we do hallucination on the image intensity only
because the humans are more sensitive to the brightness in-
formation. The color channels are simply interpolated by a
bicubic function.

About 1,400,000 primitive examples are extracted from
16 representative natural images (see Figure 8) on a Kodak

Figure 8. Training images. All training examples in this
paper are extracted from these images (1536x1024 pixels).

website2. All primitives are divided into 36 subclasses (2
scales x 16 orientations) by the scale and orientation infor-
mation estimated using the orientation energy. Thus, the
training data is organized hierarchically. The top level cap-
tures the primitive’s global structure. The bottom level is a
non-parametric representation that captures the local varia-
tions of the primitives. This two-level structure can speed
up the AAN tree searching algorithm [10] in the training
data. The run time of this algorithm is 20-100 seconds on a
Pentium IV 1.7G PC for all the images in our experiments.

We compare our approach with bicubic interpolation,
sharpened bicubic interploation (using the “unsharp mask”
in Adobe Photoshop with the default parameters onto the
bicubic interpolation) and backprojection algorithm in Fig-
ure 7, 9-12. Bicubic is the smoothest one. Sharpened bicu-
bic and backprojection methods introduce strong “ringing
effect”, especially along the contours in images. On the
other hand, sharper and smoother contours are hallucinated
by our approach (see the edges of the hat in Figure 7 (e),
hairs in Figure 11, etc.). Figure 12 shows more results. (We

2http://www.kodak.com/digitalImaging/samples/imageIntro.shtml



Figure 9. The “Monarch” image magnified 3X using sharpen bicubic (left), backprojection (middle) and our approach (right).

Figure 10. The “Zebra” image magnified 3X using sharpen bicubic (left), backprojection (middle) and our approach (right).

Figure 11. The “Girl” image magnified 3X using sharpen bicubic (left), backprojection (middle) and our approach (right).



Figure 12. Image Hallucination results magnified 3X. The bottom row is hallucinated from the top row.

Bicubic Backprojection Our Method

Image RMS ERMS RMS ERMS RMS ERMS
Lena 14.0 18.1 7.4 9.3 6.0 7.4
Monarch 32.1 38.4 22.2 26.6 20.4 21.6
Zebra 59.1 64.7 42.0 45.4 38.0 40.9
Girl 11.3 14.5 7.8 10.2 7.1 9.1

Table 1. RMS pixel error and Edge Squared Mean Error
(ERMS) pixel error for different approaches.

recommend the audience to see the electronic version.)
To compare the results quantitatively, we compute the

RMS pixel error on the whole image and the edge regions
respectively. Table 1 shows the results of applying on four
images. Our approach outperforms the other approaches,
especially around the edge regions where human perception
cares most.

6. Conclusions

In this paper, an image hallucination approach has been
presented based on the primal sketch priors. For single im-
age super-resolution, encouraging results are obtained for
generic images. For practical applications, the robustness
of our approach with respect to an inaccurate PSF needs to
be studied in further work.
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