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Abstract. We propose a visual recognition approach aimed at fast recog-
nition of urban landmarks on a GPS-enabled mobile device. While most
existing methods offload their computation to a server, the latency of
an image upload over a slow network can be a significant bottleneck. In
this paper, we investigate a new approach to mobile visual recognition
that would involve uploading only GPS coordinates to a server, following
which a compact location specific classifier would be downloaded to the
client and recognition would be computed completely on the client. To
achieve this goal, we have developed an approach based on supervised
learning that involves training very compact random forest classifiers
based on labeled geo-tagged images. Our approach selectively chooses
highly discriminative yet repeatable visual features in the database im-
ages during offline processing. Classification is efficient at query time as
we first rectify the image based on vanishing points and then use random
binary patterns to densely match a small set of downloaded features with
min-hashing used to speedup the search. We evaluate our method on two
public benchmarks and on two streetside datasets where we outperform
standard bag-of-words retrieval as well as direct feature matching ap-
proaches, both of which are infeasible for client-side query processing.

1 Introduction

The ubiquity of cameras on GPS-enabled mobile devices nowadays makes it
possible to visually query the identity of a specific landmark in a scene simply
by taking a picture and uploading it to a server for processing. The feasibility and
accuracy of such applications is rapidly improving as geo-tagged image databases
such as Flickr, Google and Bing Maps grow by the day. Recognizing landmarks
reliably in streetside photos however poses some challenges. First, streetside
buildings exhibit great variations in appearance due to changes in viewpoint,
illumination, weather, seasons or even due to changes in the scene structure.
Second, clutter in the scene due to the presence of people, vehicles etc can be
unavoidable when issuing a query. Finally, not all streetside buildings are easy
to recognize. In fact some can be quite difficult to distinguish from one another
due to their similar appearance and presence of ambiguous visual features.
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Fig. 1. Overview of our location-aided recognition approach. A device using our method
will upload only GPS location to the server at query time; a compact, location specific
classifier trained offline will be downloaded to the device and evaluated on the client.

Several recent approaches to location recognition [4, 12, 15, 18, 17, 19, 22, 23,
28, 29] use the query image to retrieve similar images from a geo-registered im-
age database using robust feature matching based on interest points and local
feature descriptors. The use of quantized descriptors and bag-of-words (BoW)
models are popular due to their scalability [9]. These retrieval methods however
require significant memory as they often rely on re-ranking based on a geomet-
ric verification step that requires storing all the database image features. When
recognition is performed on a server this is less of a concern. However, the la-
tency associated with uploading an image to the server over a slow network can
be quite significant. To reduce latency of landmark recognition on mobile devices,
we explore an alternative approach where location specific data is downloaded to
the device based on its GPS location after which all computation happens on the
device. To make this approach feasible the download size must be small and the
subsequent processing must be efficient on low-end devices. Our new approach
addresses these pertinent issues and we analyze the accuracy and download size
tradeoffs of our method and existing methods under these constraints.

In this paper, we propose a memory efficient discriminative approach to land-
mark recognition that uses the approximate GPS coordinates of the querying
device. Instead of storing all the images in a database, we selectively store infor-
mation necessary to uniquely distinguish each landmark from other landmarks
within a reasonable geospatial scope. This is accomplished by training a Random
Decision Forest (RDF) classifier [6] to classify each query to the set of possible
locations or landmarks within a small region surrounding the GPS location of the
querying device. During offline processing, local image features reliably matched
across training images of the same landmark are first automatically discovered
and matched densely across every training image, yielding features that can be
used for landmark classification. During the training stage, a small set of discrim-
inative features are automatically selected from this pool of potential features.
For efficient dense matching1 and for invariance to perspective distortion, all
images are rectified prior to matching [4, 22] (see Figure 1 for an overview).
For fast query processing, we propose using min-hash to further accelerate the
dense matching step. We demonstrate our approach on two public benchmarks
for landmark recognition and in two urban scenes where all query images are

1 a patch is compared to patches at all 2d positions across a range of discrete scales
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captured on mobile devices. The number of landmarks in these datasets vary be-
tween 50–200. In all four cases, our classifiers are quite compact with download
size in the range of 150–230 KBytes, with accuracy comparable or better than
existing methods which are also impractical for on-device processing.

Our main contribution is a new approach suitable for landmark recognition on
the mobile device. We train compact random forest classifiers using geospatial
scope of the training images and in the process a small set of discriminative
and repeatable local features are discovered. At query classification time, these
features are densely matched in the image using binary descriptors. A min-hash
technique significantly improves the efficiency of this dense matching step.

1.1 Related work

Most prior work in landmark recognition has focused on improving keypoint-
based retrieval. Knopp et al. [15] remove confusing features in a bag-of-words
model, while Li et al. [19] prioritize the matching of repeatable and frequently
occurring features. Turcot and Lowe [26] remove features that are not repeatable
and merge the remaining features from neighboring images. A vocabulary tree
based approach that maximizes the information gain of the visual words was
proposed by [23] whereas Jegou et al. [14] developed compact global descriptors
for scalable similar image retrieval. Zamir et al. [28] remove noisy matches be-
tween images using a variant of the descriptor distance ratio test, and Zhang et
al. [29] uses robust motion estimation. Our approach avoids keypoint extraction
and instead uses dense matching of a few selective features in the whole im-
age across position and scale. Other methods perform location recognition using
scene categorization [12], or using structure from motion point clouds [13, 19].

Image rectification is important for wide baseline matching [22, 29, 5] and also
useful for location matching with upright SIFT features [4]. Our work is closely
related to [18] that uses a discriminative approach for classifying landmarks using
SVMs with histograms of visual words as features. However they rely on text
features for obtaining higher classification accuracy. In contrast, we use random
decision forest classifiers [6] which are ideal for multi-class classification[2, 16, 25],
can be compactly represented and allow fast evaluation at classification time.

Compact feature descriptors have been proposed for feature extraction on a
mobile device [8] and a number of approaches upload a set of feature descrip-
tors instead of the query image [3]. Although this improves the efficiency of the
upload, significant latency may still be present. Our use of min-hash for accel-
erating the dense matching is related to prior work on min-hash for efficient
retrieval of near duplicate images from large databases [11, 10].

2 Learning location classifiers

We recognise the landmark seen in a query image by classifying it as one of the
predefined landmark classes. Our training set consists of geo-referenced images
annotated with locations labels, typically corresponding to individual buidlings
or street intersections. We use random decision forests (RDF) for this multi-
class classification task. The input features for RDF are computed from a set of
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selected patch templates that are densely matched across the image. To ensure
that discriminative features are selected during training, we first identify patches
that are repeatable within each landmark class [26]. We rectify the images during
preprocessing to remove perspective distortion which also makes dense matching
more efficient. Our approach is now described in detail.

2.1 Rectification

Fig. 2. Three query images and their rectified versions computed by our method.

Planar building facades often undergo severe perspective distortion, based
on the camera’s orientation and position. Searching over all plausible distortions
is computationally prohibitive for dense matching. If the camera’s focal length
is known and vanishing points can be identified, the degrees of freedom can be
reduced using image rectification. Dense patch matching on the rectified image
reduces the search to 2d position and scale. Rectification has been used similarly
in prior work [4, 22]. Our automatic metric rectification method first detects
orthogonal vanishing points (VP) using an approximate focal length estimate.
By assuming that images have small roll angle, we can easily identify the vertical
VP in the image. As in upright SIFT [4], the lack of rotational invariance makes
our features more discriminative.

We detect vanishing points in multiple stages. First, the vertical VP is es-
timated via sequential RANSAC on 2D line segments subtending a small angle
to the vertical. For speed and accuracy, longer lines are given preference during
the random sampling. When the focal length is known, the vertical VP deter-
mines the horizon line in the image. Horizontal VPs are then found using a
1-line RANSAC on non vertical lines that intersect the horizon. When the focal
length is unknown, our RANSAC hypothesis also includes a random guess of
the focal length, sampled from the normal distribution N(f, σ) where f = 1.5 is
the normalized focal length and σ = 1.0. If two orthogonal vanishing points are
found, we rectify the image using the 2D homography, H=KR−1K−1 where,
the matrix K = diag([ff1]) represents camera intrinsics with normalized focal
length f and R denotes the 3D rotation with respect to the 3D vanishing di-
rections. The image quad to be rectified is chosen based on a threshold for the
maximum distortion induced by H. Figure 2 shows some examples of images
rectified using our approach. However, an accurate rectification is not essential
for our approach. When only the vertical VP is detected, we only perform roll
correction, thereby eliminating one degree of freedom in camera rotation 2.

2.2 Feature selection

A set of repeatable image patches is first extracted from the rectified images.
These serve as the input for training the random forest. We densely match each

2 Accelerometers on mobile devices can also provide a vertical VP estimate
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patch in an image, searching for the most similar patch across all position and a
few discrete scales. We use the distance between the patch templates and their
most similar patches in the image as the input feature F for the classifier.

An ideal pool of features D would contain image patches that are both unique
as well as repeatable within a class. To obtain such patches, we extract scale in-
variant DoG keypoints [20] and DAISY descriptors [27] in the rectified images
and perform robust feature matching on image pairs in the training set [20, 26].
Outliers are removed using RANSAC and geometric verification after which the
correspondences are linked to form multi-view tracks. The set of patches D is
then computed by randomly sampling from these tracks 3. Next, a candidate
patch from each track is chosen by selecting the one with the minimum descrip-
tor distance to all other patches in the track. This is added to the set D4. For
images that did not match any other image, we randomly sample 10 patches
corresponding to DoG keypoints in the image. All image patches in our imple-
mentation are axis-aligned square patches. They are resampled to 32× 32 pixels
before computing feature descriptors to be used for dense matching.

We represent the patches using binary (BRIEF) [7] descriptors which allow
for very efficient matching. This descriptor is computed by randomly sampling
k pixel pairs pk and p′k from a 32 × 32 image patch based on a 2D Gaussian
distribution centered on the center pixel, and then setting the k-th bit of the
descriptor only if I(pk) > I(p′k). Based on experiments, we found k=192 was
a good trade-off between accuracy and speed. Distance between descriptors is
measured using Hamming distance, which can be computed very efficiently [7].

2.3 Random decision forests

Given a feature vector F computed from densely matching patch descriptors D
in the rectified training images, we train a set of random decision trees using
standard techniques [6]. The data is recursively split into subsets at each internal
node of the binary trees which correspond to binary tests. The leaf nodes of the
forest store the class distributions. During classification, the class label is pre-
dicted by averaging the class probabilities predicted by all the trees in the forest
and selecting the most likely class. We learn binary tests based on single features
in F . Thus for each internal node in each tree, we need to learn on which features
to make decisions and the corresponding thresholds. The trees are trained inde-
pendently using standard approaches that randomly selects a subset of potential
features from F for training each tree. The best feature at each recursive step is
selected as the one which has the largest decrease in Gini impurity. The selection
size parameter s (= 20 by default) determines how many random features are
considered. No tree pruning is performed in our implementation.

Random forests have several benefits – trees with axis-aligned splits can be
stored very efficiently, since only the feature index and a threshold must be stored
at each internal node. The classification step is very fast. Storing the features
themselves is efficient, since the set of features F ∗ actually used by the forest

3 Longer tracks are given preference during random sampling.
4 In our experiments, D had at most 4000 patches, but more patches can be used too.
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is typically smaller than the size of F . Finally, the random selection of features
increases robustness to occlusions. We observed that occasionally features are
selected on temporary stationary objects in the scene such as parked cars, which
will produce non-informative features at classification time. Random selection
reduces the effect of such bias in the training sets. By default, we trained our
forests with 50 trees where the number of selected features varied between 200
to 3000. Further discussions on the impact of parameters on accuracy versus
storage tradeoffs can be found in Section 3.

2.4 Efficient dense matching

Computing the feature vector for the query image prior to classification requires
densely matching each patch descriptor in the query image. During training, a
subset of features F ∗ ⊂ F are selected for the internal nodes of the forest. At
query time, we only need to densely match the corresponding descriptors in F ∗.
However for 500+ descriptors in F ∗, brute force Hamming distance computations
can be quite expensive. Rectification makes such a dense matching approach
more practical, as it restricts the search to 2D translation within multiple scaled
version of the image. In practice, we search 10 scales between 0.25X and 1.25X
magnification, with a patch size of 32 × 32 pixels. It is worth noting that no
interest points are required by our method.

Significant computational efficiency is obtained using a min-hash approach [11,
10] to discard dissimilar patches. With min-hash, we compute a set of hashes
for BRIEF descriptors that have a probability of collision equal to the Jaccard
similarity of the two binary vectors. If viewed as sets, the Jaccard similarity of
two vectors is the cardinality of their intersection divided by their union. Specif-
ically, the min-hash is the minimum index of a positive bit after the vectors are
permuted by a random permutation. As in [11], we compute multiple min hashes
and concatenate them into sketches for improved discriminability5.

We compute a set of sketches for each BRIEF descriptor in F ∗ and construct
an inverse lookup table for them. We scan the image, finding potentially simi-
lar patches by detecting sketch collisions using efficient lookup (at least k = 2
sketches must be identical). The Hamming distance is computed for these de-
scriptors pairs. In practice, we found that no Hamming distances was computed
for 80% of all patches at classification time and on average less than ten distance
computations were needed for the remaining patches. Since all the bits of the
BRIEF descriptor are not required for computing its min-hash sketches, the bits
are computed on demand, as needed by the min-hash function. Thus for 80%
of the patches, the full BRIEF descriptor is not computed, saving computation.
However computing Hamming distance was usually the bottleneck.

3 Experimental Results

Datasets: We evaluated our approach on the public zubud [24] and caltech
building datasets [1], each of which has five images of 200 and 50 buildings re-
spectively. We created random sets of query images using a leave one out strategy

5 In our implementation we use 5 sketches each containing 5 sketches
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dataset #imgs #classes Training Query Stats

#Features #Trees Download size # Queries. Accuracy

ZuBuD 804 200 4107 50 233 KBytes 200 92%

CalTech-50 200 50 2820 50 153 KBytes 50 90%

Suburb-48 504 48 2200 60 220 KBytes 131 50%

Town-56 464 56 3138 60 198 KBytes 62 35.5%

Table 1. Datasets used in our experiments and the performance of the proposed ap-
proach in terms of compactness of the classifiers and classification accuracy.

for each building. We also report results on two challenging streetside datasets –
suburb-48 and town-56, collected by us, where the training images comprise
of 504 and 464 images corresponding to an area of about four city blocks. For
both these datasets, prominent landmarks (classes) such as buildings, restau-
rants, stores are labeled manually. Our query set contains 200 images captured
by cameras on several mobile devices and have strong viewpoint and appearance
changes compared to the training images which were acquired during a different
season. Table 1 lists the accuracy of our method and the corresponding download
sizes for all four datasets. In Figure 3, we show how varying the selection size
and the number of decision trees affect the compactness of our classifiers. The
accuracy improves as these parameters are increased but starts to converge for
a selection size of about 20 and with 50 decision trees.
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Fig. 3. Accuracy on caltech-50 with different RDF parameters – (a) selection size and
(b) the number of trees. Accuracy is the fraction of correctly classified queries consider-
ing top k results (k = 1, 2 and 5). (c) Feature extraction timings: Brute force distance
computation timings shown in blue. Timings for our method is shown in red/black,
where Hamming distance is computed only when at least k min-hash sketches collide.

Comparison with BoW and SIFT: To assess the suitability of our ap-
proach for a mobile device, we compare the accuracy and download size tradeoff
of our method with SIFT matching [20] and BOW method of [21]. These are
considered as state of the art for location recognition when memory footprint
and storage is not an issue. The classification accuracy is the percentage of query
images correctly recognized. For SIFT, the retrieved images for each query are
ranked by the number of matches. The ranked image list is mapped to a list of
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Fig. 4. Four example queries on town-56 and suburb-48 datasets. The original and
rectified images are shown on the left and the recognized building is shown on the right.

classes by finding the first occurrence of each class in the sorted list. To force
memory/download constraints on SIFT matching, only a fraction of SIFT key-
points were sampled from the database image and used for matching. Further
the descriptor vectors were quantized to k-bits entries (k = 1 to 8). Similarly
storage constraints were forced on the BoW method by choosing vocabularies
with 1K to 100K words and quantizing the histogram entries to use 1 to 16 bits.
BOW histogram were represented as sparse vectors. Figure 5 shows that both
SIFT and BOW accuracy degrades significantly when the memory/storage size
is lowered. In our method, the download size is varied by choosing different RDF
parameters. Rectified input images were used in all the comparisons.

Our method outperforms both BoW and SIFT in accuracy even though our
classifiers are one or more orders of magnitude more compact. For example,
on Town-56 and Suburb-48 datasets our method had an accuracy of 36% and
49.5% respectively with about 200KB storage size. While SIFT matching did not
work at all, BOW methods had an accuracy of approximately 8% and 12% for
the two datasets. The best performance with BOW and SIFT was obtained with
2MB+ and 40MB+ storage size in both datasets. The results on caltechR-50
is similar; our method has an accuracy of 90% with 100KB of storage whereas
BOW methods had an accuracy of 50% when compressed to about 200KB.

Download size. Each internal node of our decision trees require roughly 5.5
bytes to represent a feature index, an integer threshold and two pointers. The
total download size can be approximated as 24N + 6.5TH bytes (assuming we
have fewer than 1024 classes), where the random forest selects N patches (each
of which is represented using 32 bytes). T is the number of trees in the RDF and
H is the average tree height. For C classes, we need decision trees with height
log2 (|C|). With hundreds of classes, the storage size is typically dominated by
the feature descriptors which are selected during the training stage.

Running Time. For dense matching, we resize the images setting its larger
dimension to 512 pixels. When searching 10 levels of scale from 0.25X to 1.25X,
the running time varies between 0.5s to 1.5s for most datasets. The time com-
plexity is linear in the number of features. Figure 3(c) shows the running time for
performing dense matching on an image of resolution 512×420 on a laptop with
a single core 2.66GHz processor. For the min-hash based approach, we computed
Hamming distance between descriptors only when k out of five sketches matched
between a pair of descriptors. Figure 3(c) shows running time for k = 2 and 3
and shows how the min-hash produces an order of magnitude speedup.
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Fig. 5. Classification Accuracy: On both streetside datasets and Caltech-50, our
method outperforms BoW and SIFT even though our classifiers are 1 or 2 orders of mag-
nitude more compact. Each method was configured with different storage/download
sizes to obtain the scatter plots. The X-axes are in log-scale. The best configuration of
our method is shown using dotted lines. Our accuracies are reasonable under 100KB
whereas BOW performs poorly under 100KB and SIFT matching completely fails.

4 Conclusion

We have proposed a new discriminative method for classifying urban landmarks
that exploits geospatial scope to train very compact classifiers with efficient
query processing capabilities. Our method is currently less robust to recognizing
landmarks across different seasons. In the future we will focus on improving the
recognition accuracies using diverse multi-season imagery for training.
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