
Adaptive Scheduling of Parallel Jobs on Functionally
Heterogeneous Resources

Yuxiong He Hongyang Sun Wen-Jing Hsu

Abstract

A parallel program usually incurs operations on multiple processing resources, interleaving

computations, I/Os, and communications, where each task can only be executed on a processor of a

matching category. Many parallel systems also embed special-purpose processors like vector units,

floating-point co-processors, and various I/O processors. Presently, there is no provably good

scheduling algorithm that ensures efficient use of multiple resources with functional heterogeneity.

This paper presents K-RAD, an algorithm that adaptively schedules parallel jobs on multiple

processing resources without requiring prior information about the jobs, such as their release times

and parallelism profiles. Let K denote the number of categories of heterogenous resources and

Pmax denote the maximum number of processors among all categories. We show that, for any

set of jobs with arbitrary release times, K-RAD is (K + 1 − 1/Pmax)-competitive with respect

to the makespan. This competitive ratio is provably the best possible for any non-clairvoyant

deterministic algorithms for K-resource scheduling. We also show that K-RAD is (4K + 1 −
4K/(|J | + 1))-competitive with respect to the mean response time for any batched job set J .

For the special case of K = 1, i.e., scheduling on homogeneous resources, the best existing mean

response time bound for online non-clairvoyant algorithm is 2+
√

3 ≈ 3.73 proved by Edmonds et

al. in STOC’97. We show that K-RAD is 3-competitive with respect to the mean response time

when K = 1, which offers the best competitive ratio to date.

Technical Report TR-07-01, Center for Advanced Information System, School of Computer Engineering, Nanyang
Technological University, Singapore. The revised version of this paper is published in the 2007 International Conference
on Parallel Processing (ICPP-07). The authors’ e-mail addresses are: {heyu0006, sunh0007, hsu}@ntu.edu.sg

This research was supported in part by Singapore-MIT Alliance.

1 Introduction

Scheduling parallel jobs on multiprocessors has been an important area of research in computer

science. Most prior work is dedicated to the scheduling of jobs that require a single type of processing

resources. However, many parallel systems embed special-purpose processors such as vector units,

floating-point co-processors and various I/O processors. Application programs also generally involve

interleaving of different types of tasks, where a task of a specific type can only be carried out on the

matching type of resource. A scheduler that can handle heterogeneous resources is therefore needed.

Menasce and Almeida [28] defined two distinct forms of heterogeneity in high-performance com-

puting systems, namely performance heterogeneity and function heterogeneity. Performance hetero-

geneity exists in systems that contain general-purpose processors of different speeds. A task can

execute on any of the processors, but it will execute faster on some than others. In [26], perfor-

mance heterogeneity was further classified as uniformly related machines and unrelated machines.

In the case of uniformly related machines, the speed of each machine is the same for all jobs, but

different among the machines. For unrelated machines, the speed of each machine is different for

each job. Executing parallel programs on processors with different speed has been studied exten-

sively [2, 9–11, 26, 32] in the scheduling theory. Function heterogeneity, on the other hand, exists in

systems that contain various types of processors, such as vector units, floating-point co-processors,

and I/O processors. With functional heterogeneity, not all of the tasks can be executed on all of the

functional units. Hamidzadeh, Lilja and Atif [17] proposed a functionally heterogeneous model that

incorporates performance heterogeneity by assigning an infinite computation time to a task on the

wrong functional units. They studied a dynamic self-adjusting scheduling algorithm (SASH) for this

type of heterogeneous systems empirically. Functional heterogeneity was also defined on a coarse

level for machines with different types of parallel architectures such as SIMD, MIMD and vectors,

etc in [21, 22] and more recently for the cell processor [1]. However, to the best of our knowledge,

there is no general algorithm that offers provable efficiency for scheduling parallel applications on

functionally heterogeneous resources.

In this paper, we propose a K-resource scheduling model for functionally heterogeneous re-

sources and show a provably efficient scheduling algorithm. We suppose that the processors and the

tasks are classified into K categories, and a task of a given category can only be executed on a pro-

cessor of the matching category. In this model, any two tasks of a job can be executed concurrently

2

as long as they do not violate certain precedence constraints. Moreover, we study the online non-

clairvoyant version of this problem, where the characteristics of the jobs such as the release times

and the parallelism profiles are unknown to the scheduling algorithm a priori. For this model, we

propose a scheduling algorithm called K-RAD, which extends the homogeneous resource scheduling

algorithm RAD [18, 19] to the heterogeneous resources. RAD is inspired from the previous work

on homogeneous resource scheduling, which has suggested that non-clairvoyant algorithms such as

round robin (RR) and dynamic equi-partitioning (DEQ) [27,33,37] perform well in a multiuser envi-

ronment [8,12,13,18,29]. Round robin ensures that each uncompleted job receives an equal amount

of processing time by time-sharing processors among jobs, while DEQ gives each job an equal share

of processors unless the job requests for less by space-sharing processors among jobs. However,

DEQ algorithm can only be applied when the number of jobs in the system is no more than the

number of processors and round robin works naturally for the other case where the number of jobs

exceeds that of the available processors. RAD combines the two algorithms to work under both

cases, and is proved to have excellent performance in terms of makespan and mean response time

for any set of jobs. The good performance of RAD motivates us in this research to extend it to the

scheduling of heterogenous resources and analyze its performance. In this work, however, we apply

K-RAD with instantaneous parallelism of the jobs rather than the historical feedback parallelism as

was done in [18,19]. This analysis enables us to prove a tighter bound on the mean response time of

batched jobs for RAD on homogeneous resource scheduling. The same analysis can be shown in the

case of feedback parallelism as well to obtain similar results.

Related Work

Parallel job scheduling on homogeneous resources has been studied both empirically [25, 27, 33, 36]

and theoretically [8, 12, 14, 18, 19, 29, 32]. Many researchers have proven various competitive ratios

in terms of makespan and mean response time for the problem of scheduling n jobs on P identical

processors.

For makespan, Shmoys, Wein and Williamson [32] proved lower bounds of online non-clairvoyant

scheduling. They showed that the competitive ratio is at least (2− 1/P) for any deterministic online

algorithm, and at least (2−1/
√

P) for any randomized online algorithm with an oblivious adversary.

Brecht, Deng, and Gu [8] proved that DEQ using instantaneous parallelism is (2−1/P)-competitive,

and therefore is optimal.

3

For mean response time, Motwani, Phillips and Torng [29] showed that for jobs with arbitrary

release times, no deterministic algorithm can achieve competitiveness better than Ω(n1/3), and no

randomized algorithm can achieve competitiveness better than Ω(log n). However, for batched jobs,

Deng and Dymond [12] proved that DEQ with instantaneous parallelism is (4 − 4/n)-competitive.

Edmonds, Chinn, Brecht and Deng [14] showed that equipartitioning (EQUI) that allocates an equal

number of processors to all the jobs is (2 +
√

3)-competitive. In our previous work [18, 19], we

presented two adaptive schedulers using RAD with historical parallelism feedback, which offer O(1)-

competitiveness.

We will now look at the related work on heterogeneous resource scheduling with respect to both

performance and function heterogeneity. Only makespan is considered for both cases in most work.

Scheduling with performance heterogeneity considers processors with different speed [2, 9–11,

32]. For uniformly related machines, Shmoys, Wein, and Williamson [32] presented an O(log P)-

competitive algorithm, which matches the lower bound. Chudak and Shmoys [10] also proved a similar

competitive algorithm using linear programming relaxation. Chekuri and Bender [9] presented a more

efficient algorithm with the same competitive ratio. For unrelated machines, Davis and Jaffe [11]

showed a number of O(
√

m)-competitive algorithms for this problem.

Scheduling functionally heterogenous resources were studied empirically [17,21] and theoretically

[16,23,24,32] as well. The theoretical work are mostly under the job-shop scheduling model, in which

each job consists of a chain of heterogeneous tasks and there is only one machine from each type of

resources. Shmoys, Stein and Wein [31] also generalized the job-shop scheduling to the DAG-shop

scheduling with multiple processors from each resource. In the DAG-shop model, rather than a chain,

a partial order among the tasks of a job may be specified. However, no two tasks from the same

job can be executed concurrently. In addition, the job-shop model usually uses offline scheduling,

which assumes that all the jobs’ resource requirements and release times are known in advance.

Our Results

In this paper, we propose the K-resource scheduling model that captures the functional heterogeneity

of resources on multiprocessors. We also extend the RAD algorithm in homogeneous resource system

to K-RAD in K-resource scheduling model. We formally prove the efficiency of K-RAD with respect

to both makespan and mean response time. Our main analytical results and contributions are:

4

• We show that any deterministic online non-clairvoyant algorithm is at best (K + 1− 1/Pmax)-

competitive for makespan in K-resource system, where Pmax denotes the maximum number of

processors among the K categories of resources.

• We show that K-RAD is (K + 1 − 1/Pmax)-competitive with respect to the makespan for

any job set with arbitrary release times. Since it matches the lower bound, K-RAD is indeed

an optimal deterministic algorithm for non-clairvoyant K-resource scheduling in terms of the

makespan.

• We show that K-RAD is (4K+1−4K/(|J |+1))-competitive with respect to the mean response

time for any batched job set J . For the special case of K = 1, i.e., scheduling of homogeneous

resources, we show that K-RAD is 3-competitive with respect to the mean response time

for batched jobs. To the best of our knowledge, this offers the smallest known competitive

ratio with respect to mean response time for the scheduling of parallel jobs on homogeneous

multiprocessors.

The remainder of the paper is organized as follows. Section 2 describes the job model, K-resource

scheduling model, and the objective functions. Section 3 presents the K-RAD algorithm. Section 4

shows the lower bound of K-RAD with respect to the makespan, followed by the competitive analysis

of K-RAD on makespan in Section 5. Section 6 and Section 7 present the analysis of K-RAD for

mean response time. Section 8 briefly concludes the paper.

2 Scheduling Model and Objective Functions

Our scheduling problem consists of a collection of independent jobs J =
{
J1, J2, . . . , J|J |

}
to be

scheduled on a collection of processors in K-resource systems. The processors and the tasks are

categorized into K types, and a task can only be executed on a processor with the matching type.

We refer to the processors belonging to a category α as α-processors, and the tasks running on

α-processors as α-tasks. For each category α ∈ {1, . . . , K}, there are Pα number of α-processors

in the system. In this section, we formalize the job model, the scheduling model, and present the

optimization criteria of makespan and mean response time.

Job Model

We model the execution of a multi-threaded job Ji as a dynamically unfolding directed acyclic graph

(dag) such that Ji = (V (Ji), E(Ji)), where V (Ji) and E(Ji) represent the sets of Ji’s vertices and

5

Figure 1: A job represented by a 3-DAG with 3 different types of tasks given by circles, squares, and triangles
respectively.

edges respectively. As a natural extension to the conventional dag [3–7,15,20,30], a parallel job with

heterogenous tasks is represented as a K-color dag, or K-DAG in short. A K-DAG has up to K

types of vertices, and each α-vertex represents a unit-time α-task where α ∈ {1, . . . , K}. For a job

Ji ∈ J , V (Ji, α) represents the set of α-vertices of the job. Define V (Ji) = ∪α=1,...,KV (Ji, α). The

α-work T1 (Ji, α) corresponds to the total number of α-vertices in the K-DAG, i.e., T1 (Ji, α) =

|V (Ji, α)|. Each edge e ∈ E(Ji) from vertex u to vertex v represents a dependency between the

two corresponding tasks, regardless of their types. The precedence relationship u ≺ v holds if and

only if there exists a path from vertex u to v in E(Ji). The span or the critical path length

T∞ (Ji) corresponds to the number of nodes on the longest chain of the precedence dependencies.

The release time r(Ji) is the time at which job Ji becomes first available for processing.

Figure 1 shows an example of a K-DAG job Ji with three different types of tasks represented by

three different types of vertices. In this example, the circular vertices, the square vertices and the

triangular vertices denote α1-tasks, α2-tasks and α3-tasks of the job respectively. The work of each

task is T1 (Ji, α1) = 7, T1 (Ji, α2) = 4 and T1 (Ji, α3) = 3. The span of the job is T∞ (Ji) = 7.

K-Resource Scheduling Model

A schedule χ = (τ, π1, π2, . . . , πK) of a job set J is defined by K + 1 mappings. The mapping

τ : ∪Ji∈J V (Ji) → {1, 2, . . . ,∞} maps the vertices of the jobs in the job set J to the set of time steps.

For each resource category α ∈ {1, . . . , K}, there is a mapping πα : ∪Ji∈J V (Ji, α) → {1, 2, . . . , Pα}
that maps the set of α-vertices of the jobs in the job set J to the set of α-processors on the machine. A

valid schedule must preserve the precedence relationship of each job. For any two vertices u, v ∈ V (Ji)

of the job Ji, if u ≺ v, then τ(u) < τ(v), i.e., the task denoted by vertex u must be executed before

the task denoted by vertex v. A valid schedule must also ensure that one processor can only be

6

assigned to one job at any given time. For any two vertices u, v ∈ ∪Ji∈J V (Ji, α), both τ(u) = τ(v)

and πα(u) = πα(v) are true if and only if u = v.

Objective Functions

Our scheduler uses makespan and mean response time as the performance measures, which are defined

as follows.

Definition 1 The completion time Tχ(Ji) of a job Ji under a schedule χ is the time at which

the schedule completes the execution of the job, i.e., Tχ(Ji) = maxv∈V (Ji) τ(v). The makespan of

a given job set J under the schedule χ is the time taken to complete all jobs in the job set J , i.e.,

Tχ(J) = maxJi∈J Tχ(Ji).

Definition 2 The response time Rχ(Ji) of a job Ji under a schedule χ is the duration between its

release time r(Ji) and the completion time Tχ(Ji), i.e., Rχ(Ji) = Tχ(Ji)−r(Ji). The total response

time of a job set J under a schedule χ is given by Rχ(J) =
∑

Ji∈J Rχ(Ji) and the mean response

time is Rχ(J) = Rχ(J)/ |J |.

We will make use of competitive analysis to show the performance of our scheduler in terms

of the makespan and the mean response time, that is, we will compare an online non-clairvoyant

scheduling algorithm against an optimal offline algorithm. Let T∗(J) denote the makespan pro-

duced by the optimal algorithm on a job set J , and Tχ(A)(J) denote the makespan produced by a

deterministic algorithm A for the same job set. Algorithm A is said to be c-competitive in terms of

the makespan if there exists a constant b such that Tχ(A)(J) ≤ c · T∗(J) + b holds for any job set.

3 K-RAD Algorithm

In this section, we present K-RAD algorithm, which is an extension of RAD algorithm that schedules

jobs on homogeneous resources. RAD unifies the space-sharing dynamic equi-partitioning (DEQ)

algorithm and the time-sharing round robin (RR) algorithm to handle systems with different work-

load. Specifically, when the number of jobs in the system is greater than the number of processors,

RAD schedules the jobs in a batched, round-robin fashion, which allocates one processor to each

job with an equal share of time. When the number of jobs in the system is at most the number

of processors, RAD utilizes the DEQ job scheduler, which gives each job an equal share of spatial

7

allotments unless a job requests for less. To schedule jobs with heterogeneous tasks on heterogeneous

processors, K-RAD assigns one RAD scheduler to each category α of processors to schedule the

α-tasks of all jobs in the job set, where α = 1, . . . ,K. In the remaining part of this section, we will

discuss the RAD algorithm in detail.

For each job Ji ∈ J , define the α-desire d(Ji, α, t) to be the total number of ready α-tasks or

the instantaneous α-parallelism of Ji at time step t and the α-allotment a (Ji, α, t) to be the total

number of α-processors allotted to Ji at time step t. Note that an uncompleted job Ji at any time

t has total desire
∑

α=1...K d(Ji, α, t) ≥ 1, although for some α ∈ {1, . . . ,K}, its α-desire might be

zero. If a job Ji has non-zero α-desire at time step t, we say that Ji is α-active ; otherwise, it is

α-inactive . For each category α of processors, let J (α, t) denote the set of α-active jobs at time

step t, i.e., J (α, t) = {Ji ∈ J : d(Ji, α, t) > 0}.
Whenever |J (α, t)| ≤ Pα, RAD uses DEQ to partition processors among the active jobs. DEQ

gives each job a fair share of allotment unless a job requests for less. As a result, all jobs requesting

less processors tend to get what they request, while the other jobs requesting a larger number of

processors will get an equal number of processors, which we call mean deprived allotment .

Once |J (α, t)| > Pα, RAD will start a round-robin (RR) cycle to allot processors among the

α-active jobs. In order to ensure fairness, all α-active jobs that have been scheduled once in the RR

cycle will be marked and RAD maintains the marked and unmarked α-active jobs in two separate

queues. One queue denoted as Q contains the α-active jobs that have not been marked since the

beginning of the cycle and the other queue denoted as Q′ contains the α-active jobs that have been

marked. At any time step in the cycle, if there are more than Pα jobs in Q, RAD always schedules Pα

jobs at the beginning of Q. When there are less than Pα jobs in Q, in order not to waste processors,

RAD will move min (|Q′| , Pα − |Q|) jobs from queue Q′ to Q, and partition the processors to the jobs

in Q by DEQ algorithm. Such a time step also indicates the completion of the RR cycle, and all jobs

will be unmarked. Figure 2 shows the pseudo-code of the RAD algorithm. The main procedure RAD

will be called before every step t, and it in turn calls sub-procedures DEQ or Round-Robin depending

on the relationship between the number of processors and the number of unmarked α-active jobs at

t.

Under the schedule of RAD, at any time step t for a category α of processors, an active job Ji

can be either α-satisfied if its α-allotment is equal to its α-desire, i.e., a (Ji, α, t) = d(Ji, α, t), or

8

DEQ (α, t, Q, P)
1 if Q = ∅ return
2 S ← {Ji ∈ Q : d(Ji, α, t) ≤ P/ |Q|}
3 if S = ∅ ¤ Jobs requesting a large number of processors get an equal share of processors
4 for each Ji ∈ Q
5 a (Ji, α, t) ← P/ |Q|
6 return
7 else ¤ Jobs requesting less processors get what they request
8 for each Ji ∈ S
9 a (Ji, α, t) ← d(Ji, α, t)

10 DEQ(α, t, Q− S, P −∑
Ji∈S d(Ji, α, t))

Round-Robin (α, t,Q, P)
1 S ← the first P jobs from Q
2 for each Ji ∈ S
3 a (Ji, α, t) ← 1
4 mark Ji to indicate that Ji has been scheduled once in the RR cycle

RAD (α, t,J , P)
1 Q ← {Ji ∈ J : Ji is unmarked and α-active}
2 Q′ ← {Ji ∈ J : Ji is marked and α-active}
3 if |Q| > P
4 Round-Robin(α, t, Q, P)
5 else
6 Move min (|Q′| , P − |Q|) jobs from Q′ to Q
7 DEQ(α, t, Q, P)
8 unmark all jobs to indicate the completion of the RR cycle

Figure 2: Pseudo-code for the RAD scheduler. It includes the main procedure RAD, and two sub-procedures
DEQ that implements the DEQ algorithm and Round-Robin that implements the round-robin algorithm.
Before each time step t, K-RAD calls RAD to partition α-processors among jobs.

α-deprived if its α-allotment is less than its α-desire, i.e., a (Ji, α, t) < d(Ji, α, t). Moreover, we

define a job Ji to be ∀-satisfied if it is α-satisfied for all α = 1, . . . , K, and the job is ∃-deprived

otherwise.

4 Makespan Lower Bounds

In this section, we will present two lower bounds on the makespan for scheduling any job set with

arbitrary release time. We will also show a lower bound on the competitive ratio for any deterministic

online non-clairvoyant algorithm.

We first introduce the following term for convenience.

9

Definition 3 The total α-work of a job set J is

T1 (J , α) =
∑

Ji∈J
T1 (Ji, α) , (1)

where T1 (Ji, α) is the α-work of job Ji ∈ J .

Let T∗(J) denote the makespan of the job set J scheduled by an optimal clairvoyant scheduler.

Since any scheduler on K-DAG can do no better than the optimal scheduler on any single type of

task in the K-DAG, so based on the lower bounds [8] for jobs with a single type of tasks, we obtain

the following two lower bounds on the makespan for any set of jobs represented by K-DAGs with

arbitrary release time:

T∗(J) ≥ max
Ji∈J

(r(Ji) + T∞ (Ji)) , (2)

T∗(J) ≥ max
α=1,...,K

(T1 (J , α) /Pα) . (3)

We will now show a lower bound on the competitive ratio for any deterministic online algorithm.

Here, we consider an adversarial setting as with many other online algorithms. Upon knowing the

strategy of any deterministic algorithm, the adversary can always make that algorithm perform badly

at each step so that the competitive ratio is maximized. The following theorem gives a lower bound

on the competitive ratio for any deterministic online algorithm in terms of makespan.

Theorem 1 Any deterministic online non-clairvoyant algorithm can be no better than (K + 1 −
1/Pmax)-competitive with respect to makespan for K-resource scheduling, where Pmax = maxα=1,...,K Pα.

Proof. Without loss of generality, let us assume PK = Pmax. Consider a job set J with n = mP1PK

jobs as shown in Figure 3, where m is a large integer. All except one of the n jobs have only one unit

of 1-task. The other job Ji’s critical path length is T∞ (Jj) = K + mPK − 1 and it is highlighted by

the dark nodes in the figure. Level 1 of Ji has one unit of 1-task, and each of the subsequent level

α ∈ {2, . . . , K − 1} has exactly mPαPK units of α-task, all of which depend on one single task from

the previous level. Level K of Ji has mPK(PK − 1) + 1 units of K-task, one of which is followed by

a chain of K-task of length mPK − 1.

To schedule this set of jobs, an optimal offline scheduler S will always execute the ready tasks of

the job Ji on the critical path first so that the tasks at the subsequent level can be executed as early

10

.
.
.

.
.
.

.
.
.

.
.
.

.
.
.

.
.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

m
P
K
-

1

J
o
b

1

.
.
.
.

J
o
b

i

J
o
b

n

#
N
o
d
e
s

L
 e
v
e
l

.
.
.

m
P
2
P
K

m
P
3
P
K

m
P
1
P
K

m
P
K
(
P
K
-

1
)

+

1

K

.
.

.
.

.
.

1

.
.

.
.

.
.

1

.
.

.
.

.
.

.
.
.

.
.
.

.
.
.

.
.
.
 .
.
.
 1

2

3

K

.
.

.
.

.
.

K

+

1

K

+
m
P
K
-

1

.
.

.
.

.
.

Figure 3: This example shows a set of n jobs that can force any deterministic online scheduler to have a
competitive ratio of K +1−K/Pmax in terms of makespan in an adversary setting. The total number of tasks
on a level is indicated on the right of that level. While an optimal clairvoyant scheduler will choose to execute
the ready tasks on the critical path (denoted by the dark nodes of job Ji in the figure) first, an adversary can
force a deterministic online scheduler to choose the ”wrong” tasks for execution; The delayed execution of the
tasks on the critical path thus prevents the efficient use of the resources.

as possible by other types of processors. For α = 1, . . . , K, all α-tasks of the job Ji will be ready at

time α−1. The K-tasks, as the last type of tasks, can be completed in mPK time steps by executing

one unit of K-task on the critical path at each step. Therefore, the optimal scheduler S produces a

makespan of T∗(J) = K + mPK − 1.

To schedule the same set of jobs, any deterministic nonclairvoyant algorithm A can be prevented

from performing well by the adversary in such a way that the tasks of the job Ji on the critical path

are always executed last among the ready tasks. Such an adversarial strategy forces algorithm A
to execute different types of tasks in a sequential manner. Therefore, in the worst case, A will take

T(J) ≥ mKPK + mPK −m time steps.

Thus, the competitive ratio is given by

T(J)
T∗(J)

≥ mKPK + mPK −m

K + mPK − 1

=
KPK + PK − 1

K−1
m + PK

.

Let m À K, then K−1
m approaches 0. Therefore, we have T(J)

T∗(J) ≥ KPK+PK−1
PK

= K + 1− 1
Pmax

.

11

5 K-RAD Makespan Analysis

This section shows that K-RAD is (K + 1 − 1/Pmax)-competitive with respect to the makespan.

Since this competitive ratio matches the lower bound given in Section 4, it shows that K-RAD is

optimal for a deterministic online algorithm in terms of makespan.

Suppose that T(J) is the makespan of job set J scheduled by K-RAD. Thus I = [1, 2, . . . ,T(J)]

is the time interval in which K-RAD schedules the job set. Since J denotes any job set with arbitrary

job release times, we may have subintervals of I, in which no job is active. We will refer to any

subinterval l = [t1, . . . , t2] ∈ I as an idle interval if no job is active in l, i.e., all the jobs released

before l are completed by t1 − 1, and no new jobs are released until t2 + 1. Thus no work is done

during interval l. In order to analyze the makespan of K-RAD algorithm, we will first prove a lemma

that bounds the makespan of any job set scheduled by K-RAD without any idle interval. Then we

will relax this constraint and give the main theorem.

The following lemma bounds the makespan of any job set scheduled by K-RAD without any idle

interval.

Lemma 2 Suppose that K-RAD schedules a job set J on Pα number of α-processors for each

α = 1, . . . , K. If there are no idle intervals during the schedule, then job set J completes in

T(J) ≤
∑

α=1,...,K

T1 (J , α)
Pα

+
(

1− 1
Pmax

)
max
Ji∈J

(T∞ (Ji) + r(Ji)) (4)

time steps.

Proof. Suppose that job Jk is the last job completed among the jobs in J . Let R(Jk) denote the

set of time steps before Jk is released and let S(Jk) and D(Jk) denote the sets of ∀-satisfied and

∃-deprived time steps for Jk respectively. Since Jk is the last job completed, and R(Jk), S(Jk) and

D(Jk) are clearly disjoint sets, we have T(J) = |R(Jk)| + |S(Jk)| + |D(Jk)|. Now, we will bound

these three sets separately.

(1) To bound |R(Jk)|: Clearly, there are r(Jk) time steps before the release of job Jk, i.e.,

|R(Jk)| = r(Jk) . (5)

Now we calculate the total amount of work done on these steps. Let T ′1(J , α) denote the total α-work

12

done before the release of Jk. Since there are no idle intervals, each step in R(Jk) completes at least

one unit of work. Thus, we have
∑

α=1,...,K T ′1(J , α) ≥ |R(Jk)| = r(Jk).

(2) To bound |S(Jk)|: On each ∀-satisfied step t for job Jk, all of the ready tasks of Jk are

executed, so the span of Jk is reduced by 1. Therefore, the total number of ∀-satisfied steps for job

Jk is at most the span T∞ (Jk) of Jk, i.e.,

|S(Jk)| ≤ T∞ (Jk) . (6)

Let T ′′1 (J , α) denote the total α-work done on ∀-satisfied steps of Jk. Since each such step completes

at least one unit of work, we have
∑

α=1,...,K T ′′1 (J , α) ≥ |S(Jk)|.
(3) To bound |D(Jk)|: We will first calculate the number of α-deprived steps of job Jk for

each resource category α. Let D(Jk, α) denote the set of α-deprived steps for job Jk. According to

K-RAD, on each deprived step t ∈ D(Jk, α), K-RAD must have allotted all α-processors to jobs.

Thus, the total α-allotment on such a step is always equal to the total number of α-processors Pα.

Since jobs always use allotted processors productively, there are Pα units of α-work done on such a

time step. The total amount of α-work done on D(Jk, α) steps is T1 (J , α) − T ′1(J , α) − T ′′1 (J , α).

We have |D(Jk, α)| ≤ (T1 (J , α)− T ′1(J , α)− T ′′1 (J , α)) /Pα.

We now bound the total number of ∃-deprived steps |D(Jk)| for job Jk. Since D(Jk) = ∪α=1,...,KD(Jk, α),

we have |D(Jk)| ≤
∑

α=1,...,K |D(Jk, α)|. Thus, we obtain

|D(Jk)| ≤
∑

α=1,...,K

T1 (J , α)− T ′1(J , α)− T ′′1 (J , α)
Pα

≤
∑

α=1,...,K

T1 (J , α)
Pα

− r(Jk) + |S(Jk)|
Pmax

. (7)

To bound T (J): from Equation (5) and Inequalities (6) and (7), we can conclude that the

makespan of the job set J is

T(J) = |R(Jk)|+ |D(Jk)|+ |S(Jk)|

≤ r(Jk) +
∑

α=1,...,K

T1 (J , α)
Pα

− r(Jk) + |S(Jk)|
Pmax

+ |S(Jk)|

13

≤
∑

α=1,...,K

T1 (J , α)
Pα

+
(

1− 1
Pmax

)
(T∞ (Jk) + r(Jk))

≤
∑

α=1,...,K

T1 (J , α)
Pα

+
(

1− 1
Pmax

)
max
Ji∈J

(T∞ (Ji) + r(Ji)) .

The following theorem gives the competitive ratio of K-RAD with respect to the makespan.

Theorem 3 K-RAD is (K + 1 − 1/Pmax)-competitive with respect to the makespan for any set of

jobs with arbitrary release time, where Pmax = maxα=1,...,K Pα.

Proof. Recall that I = [1, 2, . . . ,T(J)] is the time interval in which K-RAD schedules the job set

J . We will consider two cases depending on whether I contains any idle intervals or not.

Case 1 : I does not contain idle intervals.

If I does not contain idle intervals, the makespan can be bounded by Inequality (4) from Lemma 2.

Since
∑

α=1,...,K T1 (J , α) /Pα ≤ K maxα=1,...,K T1 (J , α) /Pα and both maxα=1,...,K T1 (J , α) /Pα and

maxJi∈J (T∞ (Ji) + r(Ji)) are the lower bounds for makespan. Therefore, we obtain

T(J) ≤ K max
α=1,...,K

T1 (J , α)
Pα

+
(

1− 1
Pmax

)
max
Ji∈J

(T∞ (Ji) + r(Ji))

≤
(

K + 1− 1
Pmax

)
T∗(J). (8)

Case 2 : I contains idle intervals.

If I contains idle intervals, let l = [t1, . . . , t2] be the last such interval in I. Clearly, job set J can

be divided into two disjoint subsets J1 and J2, such that J1 contains all the jobs completed before

t1 and J2 contains all the jobs released after t2. Since K-RAD completes J1 in t1 − 1 time steps,

the optimal scheduler S should complete J1 in no more than that amount of time. Therefore both

K-RAD and S will wait till time t2 + 1 to start scheduling J2. Let T∗(J2) denote the makespan

of J2 scheduled by the optimal scheduler S, then we have T∗(J) = t2 + T∗(J2). From case 1, we

know that K-RAD completes J2 in T(J2) ≤ (K + 1 − 1/Pmax)T∗(J2) time steps. Therefore, the

makespan of the job set J scheduled by K-RAD is

T(J) = t2 + T(J2)

≤ t2 +
(

K + 1− 1
Pmax

)
T∗(J2)

14

≤
(

K + 1− 1
Pmax

)
(t2 + T∗(J2))

=
(

K + 1− 1
Pmax

)
T∗(J). (9)

Inequalities (8) and (9) indicate that under both cases, K-RAD achieves (K + 1 − 1/Pmax)-

competitiveness with respect to the makespan.

6 Mean Response Time Lower Bounds

In this section, we present two lower bounds on the mean response time for scheduling any batched

job set. We first introduce two equivalent definitions for a useful notion called squashed sum, which

helps to establish the lower bound.

Definition 4 Given a list 〈ai〉 of m nonnegative numbers, let f : {1, 2, . . . , m} → {1, 2, . . . , m} be a

permutation satisfying af(1) ≤ af(2) ≤ · · · ≤ af(m). The squashed sum of list 〈ai〉 is defined as

sq-sum(〈ai〉) =
m∑

i=1

(m− i + 1)af(i) . (10)

By observing that the above permutation f on the list 〈ai〉 gives the minimum value for the squashed

sum formulation described by Equation (10), we obtain the following equivalent definition for the

squashed sum of list 〈ai〉
sq-sum(〈ai〉) = min

g∈Υ

m∑

i=1

(m− i + 1)ag(i) , (11)

where Υ = {g|g : {1, 2, . . . , m} → {1, 2, . . . ,m}} denotes the set of all permutations on {1, 2, . . . , m}.

We now define two terms for the lower bounds of the mean response time.

Definition 5 The squashed α-work area of a job set J on Pα number of α-processors is

swa (J , α) =
1

Pα
sq-sum(〈T1 (Ji, α)〉) , (12)

where T1 (Ji, α) is the α-work of job Ji ∈ J .

Definition 6 The aggregate span of a job set J is

T∞ (J) =
∑

Ji∈J
T∞ (Ji) , (13)

15

where T∞ (Ji) is the span of job Ji ∈ J .

Let R∗(J) denote the mean response time of the job set J scheduled by an optimal offline

scheduler. Since any scheduler on K-DAG can do no better than the optimal scheduler on any single

type of tasks in the K-DAG, from the mean response time lower bounds [13, 34, 35] for jobs having

single type of tasks, we obtain the following two lower bounds for the mean response time on any set

of batched jobs represented by K-DAGs:

R∗(J) ≥ T∞ (J) / |J | , (14)

R∗(J) ≥ max
α=1,...,K

swa (J , α) / |J | . (15)

Thus the optimal total response time R∗(J) has lower bounds of T∞ (J) and maxα=1,...,K swa (J , α).

7 K-RAD Mean Response Time Analysis

In this section, we will analyze the mean response time of the K-RAD algorithm. To begin with, we

first present a supporting lemma and a notation that are useful to the mean response time analysis.

Then we will define two cases for the system workload and we will show that under light workload,

K-RAD has a competitive ratio of 2K + 1 − 2K/(|J | + 1) while under heavy workload, K-RAD

performs worse off by at most a factor of two in the worst case.

Lemma 4 Let 〈ai〉 and 〈bi〉 be two lists of m nonnegative numbers that satisfy bi = ai + si, where

0 ≤ si ≤ h for i = 1, 2, . . . ,m, and h is a positive number. Let l denote the number of instances of

si that have value h, i.e., l = |{si|si = h}| and P =
∑m

i=1 si. If l > 0, then we have

sq-sum(〈bi〉) ≥ sq-sum(〈ai〉) +
P (l + 1)

2
.

Proof. Let Υ = {g|g : {1, 2, . . . ,m} → {1, 2, . . . , m}} denote the set of all permutations from

{1, 2, . . . , m} to {1, 2, . . . ,m}. Let f : {1, 2, . . . ,m} → {1, 2, . . . , m} denote a permutation that

satisfies bf(1) ≤ bf(2) ≤ · · · ≤ bf(m). Then, according to Equation (10) in Definition 4, we have

sq-sum (〈bi〉) =
m∑

i=1

(m− i + 1)bf(i)

16

=
m∑

i=1

(m− i + 1)(af(i) + sf(i))

=
m∑

i=1

(m− i + 1)af(i) +
m∑

i=1

(m− i + 1)sf(i)

≥ min
g∈Υ

m∑

i=1

(m− i + 1)ag(i) + min
k∈Υ

m∑

i=1

(m− i + 1)sk(i)

= sq-sum (〈ai〉) + sq-sum (〈si〉) .

Now we will show that sq-sum (〈si〉) ≥ P (l + 1)/2. To simplify the notation, rename the elements of

the list 〈si〉 such that s1 ≤ s2 ≤ · · · ≤ sm−l < sm−l+1 = sm−l+2 = · · · = sm. Since
∑m

i=1 si = P , we

have sm−l+1 = sm−l+2 = · · · = sm = h = (P −∑m−l
i=1 si)/l. Then the squashed sum of 〈si〉 is

sq-sum (〈si〉) =
m∑

i=1

(m− i + 1)si

=
m−l∑

i=1

(m− i + 1)si +
m∑

i=m−l+1

(m− i + 1)si

=
m−l∑

i=1

(m− i + 1)si +
(P −∑m−l

i=1 si)
l

l∑

i=1

i

=
m−l∑

i=1

(m− i + 1)si +
(P −∑m−l

i=1 si)
l

l(l + 1)
2

=
∑m−l

i=1 (2m− 2i + 2)si

2
+

(P −∑m−l
i=1 si)(l + 1)

2

=
P (l + 1)

2
+

∑m−l
i=1 (2m− 2i− l + 1)si

2

≥ P (l + 1)
2

.

The last inequality holds because si ≥ 0 and 2m− 2i− l + 1 > 0 for i = 1, 2, . . . , m− l.

We will introduce a notation — t-suffix , in order to simplify the presentation of the response

time analysis. For any time step t, t-suffix, denoted as −→t = {t, t + 1, . . . , T (J)}, represents the set

of time steps from t to the completion of the job set J . We will be interested in the suffix of a job,

namely, the tasks that remain to be executed after a given time step. For a job Ji ∈ J , define the

t-suffix of the job Ji

(−→
t

)
to be the portion of the job induced by those vertices in V (Ji) that execute

on or after time step t, i.e.,

Ji

(−→
t

)
=

(
V

(
Ji

(−→
t

))
, E

(
Ji

(−→
t

)))
,

17

where V
(
Ji

(−→
t

))
= {v ∈ V (Ji) : τ(v) ≥ t} and E

(
Ji

(−→
t

))
=

{
(u, v) ∈ E(Ji) : u, v ∈ V

(
Ji

(−→
t

))}
.

The t-suffix of the job set J is

J
(−→

t
)

=
{
Ji

(−→
t

)
: Ji ∈ J and V

(
Ji

(−→
t

))
6= ∅

}
.

Thus, we have J = J
(−→1

)
, and the number of incomplete jobs at time step t is the number

∣∣∣J
(−→

t
)∣∣∣

of nonempty jobs in J
(−→

t
)
.

Now we will define two cases for the system workload and analyze the performance of RAD under

each one of them separately. Recall that at any time t, J (α, t) denotes the set of α-active jobs for

α = 1, . . . , K. We say that the system has light workload when |J (α, t)| ≤ Pα at any time t during the

schedule for all α = 1, . . . , K. In this case, K-RAD utilizes only the DEQ algorithm. On the other

hand, the system is considered to have heavy workload when |J (α, t)| > Pα for some α = 1, . . . , K

at some time t. In this case K-RAD utilizes both DEQ and RR algorithms during the schedule.

Analysis of K-RAD under light workload

The following theorem gives the competitive ratio for the mean response time produced by K-RAD

scheduler under light system workload.

Theorem 5 K-RAD is (2K +1−2K/(|J |+1))-competitive with respect to the mean response time

for any batched job set J , if at any time t, |J (α, t)| ≤ Pα for each α = 1, . . . ,K, i.e., the number of

jobs that require processors never exceeds the number of available processors.

Proof. Suppose that K-RAD schedules a batched job set J on a machine with Pα number of

α-processors for α = 1, . . . , K. We will show that the total response time of J can be bounded by

R(J) ≤
(

2− 2
|J |+ 1

) 
 ∑

α=1,...,K

swa (J , α)


 + T∞ (J) . (16)

Since
∑

α=1,...,K swa (J , α) ≤ K maxα=1,...,K swa (J , α) and both maxα=1,...,K swa (J , α) and T∞ (J)

are lower bounds for the total response time, Inequality (16) indicates that K-RAD is (2K + 1 −
2K/(|J | + 1))-competitive with respect to the total response time, or equivalently with respect to

the mean response time under light workload. Now, we will prove Inequality (16) by induction on

the remaining execution time of the job set J
(−→

t
)
.

18

Basis: t = T (J) + 1. When t = T (J) + 1, we have J
(−→

t
)

= ∅. It follows that R
(
J

(−→
t

))
= 0,

swa
(
J

(−→
t

)
, α

)
= 0 for α = 1, . . . , K, and T∞

(
J

(−→
t

))
= 0. Thus, the claim holds trivially.

Induction: 1 ≤ t ≤ T (J). Let n =
∣∣∣J

(−→
t

)∣∣∣ denote the number of incomplete jobs at time t. Since

n ≥
∣∣∣J

(−−→
t + 1

)∣∣∣, we have 2 − 2/(n + 1) ≥ 2 − 2/
(∣∣∣J

(−−→
t + 1

)∣∣∣ + 1
)
. Suppose that Inequality (16)

holds at time step t + 1, i.e.,

R
(
J

(−−→
t + 1

))
≤

(
2− 2

n + 1

) 
 ∑

α=1,...,K

swa
(
J

(−−→
t + 1

)
, α

)

 + T∞

(
J

(−−→
t + 1

))
. (17)

We will prove that it still holds at time step t, i.e.,

R
(
J

(−→
t

))
≤

(
2− 2

n + 1

) 
 ∑

α=1,...,K

swa
(
J

(−→
t

)
, α

)

 + T∞

(
J

(−→
t

))
. (18)

The following notations denote the changes in, respectively, the total response time, the squashed

α-work area, and the aggregate span from time step t and t + 1:

∆ r = R
(
J

(−→
t

))
− R

(
J

(−−→
t + 1

))
,

∆swa (α) = swa
(
J

(−→
t

)
, α

)
− swa

(
J

(−−→
t + 1

)
, α

)
,

∆T∞ = T∞
(
J

(−→
t

))
− T∞

(
J

(−−→
t + 1

))
.

Given induction hypothesis (Inequality (17)), we need only prove that the following inequality

holds

∆ r ≤
(

2− 2
n + 1

) 
 ∑

α=1,...,K

∆swa (α)


 + ∆T∞ , (19)

in order to prove our claim (Inequality (18)). We divide the proof of Inequality (19) into four steps.

(1) To bound ∆ r : At any time t, the total number of incomplete jobs is
∣∣∣J

(−→
t

)∣∣∣ = n. Since

each incomplete job in J
(−→

t
)

adds one time step to the total response time during step t, we have

∆ r = n . (20)

(2) To bound ∆T∞: At time step t, an incomplete job Ji is either ∀-satisfied or ∃-deprived. The

incomplete jobs can be partitioned as J
(−→

t
)

= JS(t) ∪ JD(t), representing the set of ∀-satisfied

19

and ∃-deprived jobs at time t, respectively. If Ji ∈ JS(t), the span of Ji must reduce by 1 at time

step t, i.e. T∞
(
Ji

(−→
t

))
= T∞

(
Ji

(−−→
t + 1

))
+ 1. If Ji ∈ JD(t), the span of Ji never increases at any

time step t, i.e. T∞
(
Ji

(−→
t

))
≥ T∞

(
Ji

(−−→
t + 1

))
. Therefore, the aggregate span of J must reduce

by at least |J S(t)| at time step t, and we have

∆T∞ ≥ |J S(t)| . (21)

(3) To bound ∆swa (α): Consider the α-work of Ji

(−→
t

)
and Ji

(−−→
t + 1

)
. For a job Ji that is

α-deprived at time step t, Ji has α-allotment a (Ji, α, t) = p̄ (α, t), where p̄ (α, t) denotes the mean

deprived allotment at time step t for α-processors. Thus, we have

T1

(
Ji

(−→
t

)
, α

)
= T1

(
Ji

(−−→
t + 1

)
, α

)
+ p̄ (α, t) . (22)

For a job Ji that is α-satisfied at time step t, Ji’s α-allotment is equal to its α-desire, i.e., a (Ji, α, t) =

d(Ji, α, t). We have

T1

(
Ji

(−→
t

)
, α

)
= T1

(
Ji

(−−→
t + 1

)
, α

)
+ d(Ji, α, t) . (23)

Let JS(α, t) and JD(α, t) denote the set of α-satisfied and α-deprived jobs at time step t respectively.

If there exist no α-deprived jobs at time t, i.e., |JD(α, t)| = 0. In this case, it is obvious that for

α = 1, . . . , K, we have

∆ swa (α) ≥ 0. (24)

If there exist α-deprived jobs at time t, i.e., |JD(α, t)| > 0. In this case, all α-processors must

have been allotted to the jobs (otherwise, there would not be any jobs deprived of the α-processors).

Recall that DEQ first allots jobs that request less processors (than the fair share of equal number of

processors). Consequently, the jobs that get allotments later will have no less allotment than the jobs

getting allotment earlier. Therefore, the deprived jobs actually receive no less number of processors

than the satisfied jobs. With this scenario in mind, Lemma 4 bounds the change in the squashed

α-work.

20

For Ji ∈ J , let ai = T1

(
Ji

(−−→
t + 1

)
, α

)
and bi = T1

(
Ji

(−→
t

)
, α

)
. By DEQ, all the α-processors

have been allotted, i.e.
∑

Ji∈J a (Ji, α, t) = Pα. Therefore, according to Lemma 4, we have

sq-sum (〈bi〉)− sq-sum (〈ai〉) ≥ Pα (|JD(α, t)|+ 1)
2

. (25)

From Inequality (25) and Definition 5, we get for α = 1, . . . ,K and |JD(α, t)| > 0

∆ swa (α) =
sq-sum (〈bi〉)− sq-sum (〈ai〉)

Pα

≥ |JD(α, t)|+ 1
2

. (26)

(4) To derive Inequality (19): Since the incomplete jobs at time t can be partitioned as

J
(−→

t
)

= JS(t) ∪ JD(t), we have |J S(t)| + |JD(t)| = n. Let K = {1, 2, . . . , K}, and let K′ =

{α ∈ K : |JD(α, t)| > 0}. We can obtain the following inequality,

∑

α∈K′
|JD(α, t)| =

∑

α∈K
|JD(α, t)|

≥ |∪α∈K JD(α, t)|

= n− |J S(t)| . (27)

Hence, from Inequalities (21), (24), (26) and (27), we get

(
2− 2

n + 1

) (∑

α∈K
∆swa (α)

)
+ ∆T∞

≥ 2n

n + 1


 ∑

α∈K′

|JD(α, t)|+ 1
2


 + |J S(t)|

≥ n

n + 1
(
n− |J S(t)|+ ∣∣K′∣∣) + |J S(t)| . (28)

If K′ 6= ∅, which implies |K′| ≥ 1. We have

n

n + 1
(
n− |J S(t)|+ ∣∣K′∣∣) + |J S(t)|

≥ n− |J S(t)| n

n + 1
+ |J S(t)|

≥ n (29)

21

If K′ = ∅, then we have |J S(t)| = n. Inequality (29) holds trivially. Now, Equation (20) and In-

equalities (28) and (29) indicate that Inequality (19) holds. The proof is complete.

In the case where K = 1 for homogeneous resource scheduling, Theorem 5 indicates that DEQ

algorithm is (3 − 2/(|J | + 1))-competitive with respect to the mean response time. This result

tightens the performance bound for DEQ algorithm analyzed in [12, 13]. However, DEQ is only

applicable to the light workload case where the number of jobs is no more than the number of

processors. By combining the current mean response time analysis with our previous work in [19],

it is not hard to show that RAD is also (3 − 2/(|J | + 1))-competitive for scheduling homogeneous

resources on any batched job set. To the best of our knowledge, RAD is the first algorithm that

offers 3-competitiveness with respect to mean response time for the scheduling of parallel jobs.

Analysis of K-RAD under heavy workload

Under heavy system workload, i.e., there exists some time t and some α = 1, . . . , K for which

|J (α, t)| > Pα and K-RAD will utilize both DEQ and RR algorithms. The following theorem gives

the competitive ratio for the mean response time produced by K-RAD scheduler under this more

general case.

Theorem 6 K-RAD is (4K +1−4K/(|J |+1))-competitive with respect to the mean response time

for any batched job set J .

Proof. Similar to the proof of Theorem 5, we will show that to schedule a batch of n jobs, K-RAD

achieves the following total response time

R(J) ≤
(

4− 4
n + 1

) 
 ∑

α=1,...,K

swa (J , α)


 + T∞ (J) . (30)

Then the main theorem follows directly. Also to prove it by induction, we need only show the

following inequality holds on each time step t,

∆ r ≤
(

4− 4
n + 1

) 
 ∑

α=1,...,K

∆swa (α)


 + ∆T∞. (31)

Since the change of the total response time ∆ r and the aggregate span ∆T∞ are still given by

Equation (20) and Inequality (21), the rest of the proof will focus on calculating the change of the

22

squashed α-work area ∆ swa (α). By comparing Inequalities (19), (31) and (26), it suffices to show

that when being scheduled by round robin (RR),

∆ swa (α) ≥ |JD(α, t)|+ 1
4

(32)

for α = 1, . . . , K and |JD(α, t)| > 0. Recall from Section 3 that a RR cycle consists of more than

one time steps. Specifically, during a RR cycle, all the jobs that have been α-active are scheduled

at least once. Let l denote the total number of jobs scheduled in the RR cycle, and let τ denote the

total number of time steps in the RR cycle. We have

τ = dl/Pαe

≤ l/Pα + 1 .

Since each scheduled job has reduced its α-work by at least 1, according to Lemma 4 and Definition 5,

the total change of the squashed α-work area ∆ RR (α) during the cycle is given by

∆ RR(α) ≥ l(l + 1)
2Pα

(33)

Thus, given Pα < l, the average change of the squashed α-work area ∆ swa (α) during each time step

of the cycle is

∆ swa (α) =
∆ RR(α)

τ

≥ l(l + 1)/2Pα

(l + Pα)/Pα

≥ l + 1
4

. (34)

At any time step t in the cycle, the number of α-deprived jobs |JD(α, t)| is at most the total number l

of α-active jobs in the cycle, i.e., |JD(α, t)| ≤ l. Inequality (34) then directly implies Inequality (32).

The proof is complete.

The results of Theorem 5 and Theorem 6 suggest that K-RAD doubles the competitive ratio

under heavy workload by using round robin. One intuitive explanation is that, when round robin

is used under heavy workload, if only a small number of jobs are active with limited desires, then

23

almost all the processor cycles in the last time step of a RR cycle can be wasted, which causes the

bound to double in the worst case.

8 Concluding Remarks

We have proposed a new scheduling model — K-resource scheduling to incorporate the functional

heterogeneity. We have also presented a provably efficient algorithm — K-RAD for scheduling

parallel jobs under this model. Ultimately, efficient algorithms will be needed for scheduling large

parallel machines with both general-purpose processors of different speed and special-purpose pro-

cessors with different functionality. Therefore, one interesting challenge now is to extend the results

to such scenarios.

References

[1] http://researchweb.watson.ibm.com/cell/.

[2] M. A. Bender and M. O. Rabin. Scheduling Cilk multithreaded computations on processors of

different speeds. In SPAA, pages 13–21, July 2000.

[3] G. Blelloch, P. Gibbons, and Y. Matias. Provably efficient scheduling for languages with fine-

grained parallelism. Journal of the ACM, 46(2):281–321, 1999.

[4] G. E. Blelloch and J. Greiner. A provable time and space efficient implementation of NESL. In

ICFP, pages 213–225, Philadelphia, Pennsylvania, 1996.

[5] R. D. Blumofe. Executing Multithreaded Programs Efficiently. PhD thesis, Massachusetts Insti-

tute of Technology, Cambridge, MA, USA, 1995.

[6] R. D. Blumofe and C. E. Leiserson. Space-efficient scheduling of multithreaded computations.

SIAM Journal on Computing, 27(1):202–229, 1998.

[7] R. D. Blumofe and C. E. Leiserson. Scheduling multithreaded computations by work stealing.

Journal of the ACM, 46(5):720–748, 1999.

[8] T. Brecht, X. Deng, and N. Gu. Competitive dynamic multiprocessor allocation for parallel

applications. In Parallel and Distributed Processing, pages 448 – 455, San Antonio, TX, 1995.

24

[9] C. Chekuri and M. Bender. An efficient approximation algorithm for minimizing makespan on

uniformly related machines. Journal of Algorithms, 41(2):212–224, 2001.

[10] F. A. Chudak and D. B. Shmoys. Approximation algorithms for precedence-constrained schedul-

ing problems on parallel machines that run at different speeds. In SODA, pages 581–590,

Philadelphia, PA, USA, 1997.

[11] E. Davis and J. M. Jaffe. Algorithms for scheduling tasks on unrelated processors. Journal of

ACM, 28(4):721–736, 1981.

[12] X. Deng and P. Dymond. On multiprocessor system scheduling. In SPAA, pages 82–88, Padua,

Italy, 1996.

[13] X. Deng, N. Gu, T. Brecht, and K. Lu. Preemptive scheduling of parallel jobs on multiprocessors.

In SODA, pages 159–167, Philadelphia, PA, USA, 1996.

[14] J. Edmonds, D. D. Chinn, T. Brecht, and X. Deng. Non-clairvoyant multiprocessor scheduling

of jobs with changing execution characteristics (extended abstract). In STOC, pages 120–129,

1997.

[15] Z. Fang, P. Tang, P.-C. Yew, and C.-Q. Zhu. Dynamic processor self-scheduling for general

parallel nested loops. IEEE Transactions on Computers, 39(7):919–929, 1990.

[16] Goldberg, Paterson, Srinivasan, and Sweedyk. Better approximation guarantees for job-shop

scheduling. In SODA: ACM-SIAM Symposium on Discrete Algorithms (A Conference on The-

oretical and Experimental Analysis of Discrete Algorithms), 1997.

[17] B. Hamidzadeh, D. J. Lilja, and Y. Atif. Dynamic scheduling techniques for heterogeneous

computing systems. Concurrency: Practice and Experience, 7(7):633–652, 1995.

[18] Y. He, W. J. Hsu, and C. E. Leiserson. Provably efficient two-level adaptive scheduling. In

JSSPP, Saint-Malo, France, 2006.

[19] Y. He, W. J. Hsu, and C. E. Leiserson. Provably efficient adaptive scheduling through equalized

allotments. In IPDPS, Long Beach, California, USA, 2007.

25

[20] S. F. Hummel and E. Schonberg. Low-overhead scheduling of nested parallelism. IBM Journal

of Research and Development, 35(5-6):743–765, 1991.

[21] A. Khokhar, V. K. Prasanna, M. Shaaban, and C.-L. Wang. Heterogeneous supercomputing:

Problems and issues. In Workshop on Heterogeneous Processing, 1992.

[22] T. T. Kwan, R. E. McGrath, and D. A. Reed. Em3: A taxonomy of heterogeneous computing

systems. Computer, 28(12):68–70, 1995.

[23] E. L. Lawler, J. K. Lenstra, A. H. G. Rinnooy Kan, and D. B. Shmoys. Sequencing and

scheduling: Algorithms and complexity. Technical Report BS–R89xx, Centre for Mathematics

and Computer Science, The Netherlands, 1989.

[24] F. T. Leighton, B. M. Maggs, and S. B. Rao. Packet routing and job-shop scheduling in o

(congestion + dilation) steps. Combinatorica, 14(2):167–186, 1994.

[25] S. T. Leutenegger and M. K. Vernon. The performance of multiprogrammed multiprocessor

scheduling policies. In SIGMETRICS, pages 226–236, Boulder, Colorado, United States, 1990.

[26] R. L.Graham, E. L. Lawler, J. K. Lenstra, and A. H. G. RinnooyKan. Optimization and approx-

imation in deterministic sequencing and scheduling: A survey. Annals of Discrete Mathematics,

5:287–326, 1979.

[27] C. McCann, R. Vaswani, and J. Zahorjan. A dynamic processor allocation policy for multipro-

grammed shared-memory multiprocessors. ACM Transactions on Computer Systems, 11(2):146–

178, 1993.

[28] D. Menasce and V. Almeida. Heterogeneous supercomputing: Is it cost-effective? In Supercom-

puting, pages 169–177, 1990.

[29] R. Motwani, S. Phillips, and E. Torng. Non-clairvoyant scheduling. In SODA, pages 422–431,

Austin, Texas, United States, 1993.

[30] G. J. Narlikar and G. E. Blelloch. Space-efficient scheduling of nested parallelism. ACM Trans-

actions on Programming Languages and Systems, 21(1):138–173, 1999.

26

[31] Shmoys, Stein, and Wein. Improved approximation algorithms for shop scheduling problems. In

SODA, 1991.

[32] D. B. Shmoys, J. Wein, and D. P. Williamson. Scheduling parallel machines online. In FOCS,

pages 131–140, San Juan, Puerto Rico, 1991.

[33] A. Tucker and A. Gupta. Process control and scheduling issues for multiprogrammed shared-

memory multiprocessors. In SOSP, pages 159–166, New York, NY, USA, 1989.

[34] J. Turek, W. Ludwig, J. L. Wolf, L. Fleischer, P. Tiwari, J. Glasgow, U. Schwiegelshohn, and

P. S. Yu. Scheduling parallelizable tasks to minimize average response time. In SPAA, pages

200–209, Cape May, New Jersey, United States, 1994.

[35] J. Turek, U. Schwiegelshohn, J. L. Wolf, and P. S. Yu. Scheduling parallel tasks to minimize

average response time. In SODA, pages 112–121, Philadelphia, PA, USA, 1994.

[36] K. K. Yue and D. J. Lilja. Implementing a dynamic processor allocation policy for multipro-

grammed parallel applications in the SolarisTMoperating system. Concurrency and Computation-

Practice and Experience, 13(6):449–464, 2001.

[37] J. Zahorjan and C. McCann. Processor scheduling in shared memory multiprocessors. In SIG-

METRICS, pages 214–225, Boulder, Colorado, United States, 1990.

27

