Adaptive Scheduling of Parallel Jobs on Functionally
Heterogeneous Resources

Yuxiong He Hongyang Sun Wen-Jing Hsu

Abstract

A parallel program usually incurs operations on multiple processing resources, interleaving
computations, I/Os, and communications, where each task can only be executed on a processor of a
matching category. Many parallel systems also embed special-purpose processors like vector units,
floating-point co-processors, and various I/O processors. Presently, there is no provably good
scheduling algorithm that ensures efficient use of multiple resources with functional heterogeneity.

This paper presents K-RAD, an algorithm that adaptively schedules parallel jobs on multiple
processing resources without requiring prior information about the jobs, such as their release times
and parallelism profiles. Let K denote the number of categories of heterogenous resources and
Ppqx denote the maximum number of processors among all categories. We show that, for any
set of jobs with arbitrary release times, K-RAD is (K 4+ 1 — 1/ P4z)-competitive with respect
to the makespan. This competitive ratio is provably the best possible for any non-clairvoyant
deterministic algorithms for K-resource scheduling. We also show that K-RAD is (4K + 1 —
4K/(]J| + 1))-competitive with respect to the mean response time for any batched job set 7.
For the special case of K = 1, i.e., scheduling on homogeneous resources, the best existing mean
response time bound for online non-clairvoyant algorithm is 2+ v/3 ~ 3.73 proved by Edmonds et
al. in STOC’97. We show that K-RAD is 3-competitive with respect to the mean response time

when K = 1, which offers the best competitive ratio to date.

Technical Report TR-07-01, Center for Advanced Information System, School of Computer Engineering, Nanyang
Technological University, Singapore. The revised version of this paper is published in the 2007 International Conference
on Parallel Processing (ICPP-07). The authors’ e-mail addresses are: {heyu0006, sunh0007, hsu}@ntu.edu.sg

This research was supported in part by Singapore-MIT Alliance.

1 Introduction

Scheduling parallel jobs on multiprocessors has been an important area of research in computer
science. Most prior work is dedicated to the scheduling of jobs that require a single type of processing
resources. However, many parallel systems embed special-purpose processors such as vector units,
floating-point co-processors and various I/O processors. Application programs also generally involve
interleaving of different types of tasks, where a task of a specific type can only be carried out on the
matching type of resource. A scheduler that can handle heterogeneous resources is therefore needed.

Menasce and Almeida [28] defined two distinct forms of heterogeneity in high-performance com-
puting systems, namely performance heterogeneity and function heterogeneity. Performance hetero-
geneity exists in systems that contain general-purpose processors of different speeds. A task can
execute on any of the processors, but it will execute faster on some than others. In [26], perfor-
mance heterogeneity was further classified as uniformly related machines and unrelated machines.
In the case of uniformly related machines, the speed of each machine is the same for all jobs, but
different among the machines. For unrelated machines, the speed of each machine is different for
each job. Executing parallel programs on processors with different speed has been studied exten-
sively [2,9-11,26,32] in the scheduling theory. Function heterogeneity, on the other hand, exists in
systems that contain various types of processors, such as vector units, floating-point co-processors,
and I/0 processors. With functional heterogeneity, not all of the tasks can be executed on all of the
functional units. Hamidzadeh, Lilja and Atif [17] proposed a functionally heterogeneous model that
incorporates performance heterogeneity by assigning an infinite computation time to a task on the
wrong functional units. They studied a dynamic self-adjusting scheduling algorithm (SASH) for this
type of heterogeneous systems empirically. Functional heterogeneity was also defined on a coarse
level for machines with different types of parallel architectures such as SIMD, MIMD and vectors,
etc in [21,22] and more recently for the cell processor [1]. However, to the best of our knowledge,
there is no general algorithm that offers provable efficiency for scheduling parallel applications on
functionally heterogeneous resources.

In this paper, we propose a K -resource scheduling model for functionally heterogeneous re-
sources and show a provably efficient scheduling algorithm. We suppose that the processors and the
tasks are classified into K categories, and a task of a given category can only be executed on a pro-

cessor of the matching category. In this model, any two tasks of a job can be executed concurrently

as long as they do not violate certain precedence constraints. Moreover, we study the online non-
clairvoyant version of this problem, where the characteristics of the jobs such as the release times
and the parallelism profiles are unknown to the scheduling algorithm a priori. For this model, we
propose a scheduling algorithm called K-RAD, which extends the homogeneous resource scheduling
algorithm RAD [18,19] to the heterogeneous resources. RAD is inspired from the previous work
on homogeneous resource scheduling, which has suggested that non-clairvoyant algorithms such as
round robin (RR) and dynamic equi-partitioning (DEQ) [27,33,37] perform well in a multiuser envi-
ronment [8,12,13,18,29]. Round robin ensures that each uncompleted job receives an equal amount
of processing time by time-sharing processors among jobs, while DEQ gives each job an equal share
of processors unless the job requests for less by space-sharing processors among jobs. However,
DEQ algorithm can only be applied when the number of jobs in the system is no more than the
number of processors and round robin works naturally for the other case where the number of jobs
exceeds that of the available processors. RAD combines the two algorithms to work under both
cases, and is proved to have excellent performance in terms of makespan and mean response time
for any set of jobs. The good performance of RAD motivates us in this research to extend it to the
scheduling of heterogenous resources and analyze its performance. In this work, however, we apply
K-RAD with instantaneous parallelism of the jobs rather than the historical feedback parallelism as
was done in [18,19]. This analysis enables us to prove a tighter bound on the mean response time of
batched jobs for RAD on homogeneous resource scheduling. The same analysis can be shown in the

case of feedback parallelism as well to obtain similar results.

Related Work

Parallel job scheduling on homogeneous resources has been studied both empirically [25,27, 33, 36]
and theoretically [8,12,14,18,19,29,32]. Many researchers have proven various competitive ratios
in terms of makespan and mean response time for the problem of scheduling n jobs on P identical
processors.

For makespan, Shmoys, Wein and Williamson [32] proved lower bounds of online non-clairvoyant
scheduling. They showed that the competitive ratio is at least (2 —1/P) for any deterministic online
algorithm, and at least (2 —1/v/P) for any randomized online algorithm with an oblivious adversary.
Brecht, Deng, and Gu [8] proved that DEQ using instantaneous parallelism is (2 — 1/P)-competitive,

and therefore is optimal.

For mean response time, Motwani, Phillips and Torng [29] showed that for jobs with arbitrary
release times, no deterministic algorithm can achieve competitiveness better than Q(n'/3), and no
randomized algorithm can achieve competitiveness better than (logn). However, for batched jobs,
Deng and Dymond [12] proved that DEQ with instantaneous parallelism is (4 — 4/n)-competitive.
Edmonds, Chinn, Brecht and Deng [14] showed that equipartitioning (EQUI) that allocates an equal
number of processors to all the jobs is (2 + ﬁ)—competitive. In our previous work [18,19], we
presented two adaptive schedulers using RAD with historical parallelism feedback, which offer O(1)-
competitiveness.

We will now look at the related work on heterogeneous resource scheduling with respect to both
performance and function heterogeneity. Only makespan is considered for both cases in most work.

Scheduling with performance heterogeneity considers processors with different speed [2,9-11,
32]. For uniformly related machines, Shmoys, Wein, and Williamson [32] presented an O(log P)-
competitive algorithm, which matches the lower bound. Chudak and Shmoys [10] also proved a similar
competitive algorithm using linear programming relaxation. Chekuri and Bender [9] presented a more
efficient algorithm with the same competitive ratio. For unrelated machines, Davis and Jaffe [11]
showed a number of O(y/m)-competitive algorithms for this problem.

Scheduling functionally heterogenous resources were studied empirically [17,21] and theoretically
[16,23,24,32] as well. The theoretical work are mostly under the job-shop scheduling model, in which
each job consists of a chain of heterogeneous tasks and there is only one machine from each type of
resources. Shmoys, Stein and Wein [31] also generalized the job-shop scheduling to the DAG-shop
scheduling with multiple processors from each resource. In the DAG-shop model, rather than a chain,
a partial order among the tasks of a job may be specified. However, no two tasks from the same
job can be executed concurrently. In addition, the job-shop model usually uses offiine scheduling,

which assumes that all the jobs’ resource requirements and release times are known in advance.

Our Results

In this paper, we propose the K-resource scheduling model that captures the functional heterogeneity
of resources on multiprocessors. We also extend the RAD algorithm in homogeneous resource system
to K-RAD in K-resource scheduling model. We formally prove the efficiency of K-RAD with respect

to both makespan and mean response time. Our main analytical results and contributions are:

e We show that any deterministic online non-clairvoyant algorithm is at best (K + 1 —1/Py42)-
competitive for makespan in K-resource system, where P4, denotes the maximum number of
processors among the K categories of resources.

e We show that K-RAD is (K 4+ 1 — 1/P,,4z)-competitive with respect to the makespan for
any job set with arbitrary release times. Since it matches the lower bound, K-RAD is indeed
an optimal deterministic algorithm for non-clairvoyant K-resource scheduling in terms of the
makespan.

e We show that K-RAD is (4K +1—4K/(|J|4+1))-competitive with respect to the mean response
time for any batched job set 7. For the special case of K = 1, i.e., scheduling of homogeneous
resources, we show that K-RAD is 3-competitive with respect to the mean response time
for batched jobs. To the best of our knowledge, this offers the smallest known competitive
ratio with respect to mean response time for the scheduling of parallel jobs on homogeneous

multiprocessors.

The remainder of the paper is organized as follows. Section 2 describes the job model, K-resource
scheduling model, and the objective functions. Section 3 presents the K-RAD algorithm. Section 4
shows the lower bound of K-RAD with respect to the makespan, followed by the competitive analysis
of K-RAD on makespan in Section 5. Section 6 and Section 7 present the analysis of K-RAD for

mean response time. Section 8 briefly concludes the paper.

2 Scheduling Model and Objective Functions

Our scheduling problem consists of a collection of independent jobs [J = {Jl, Joy .y j‘} to be
scheduled on a collection of processors in K-resource systems. The processors and the tasks are
categorized into K types, and a task can only be executed on a processor with the matching type.
We refer to the processors belonging to a category a as a-processors, and the tasks running on
a-processors as a-tasks. For each category a € {1,..., K}, there are P, number of a-processors
in the system. In this section, we formalize the job model, the scheduling model, and present the

optimization criteria of makespan and mean response time.

Job Model

We model the execution of a multi-threaded job J; as a dynamically unfolding directed acyclic graph

(dag) such that J; = (V(J;), E(J;)), where V(J;) and E(J;) represent the sets of J;’s vertices and

M
%

Figure 1: A job represented by a 3-DAG with 3 different types of tasks given by circles, squares, and triangles
respectively.

edges respectively. As a natural extension to the conventional dag [3-7,15,20,30], a parallel job with
heterogenous tasks is represented as a K-color dag, or K-DAG in short. A K-DAG has up to K
types of vertices, and each a-vertex represents a unit-time a-task where ae € {1,..., K}. For a job
Ji € J, V(Ji,) represents the set of a-vertices of the job. Define V(J;) = Ug=1,. .k V (Ji,). The
a-work T (J;,«) corresponds to the total number of a-vertices in the K-DAG, i.e., T1 (J;,a) =
|V (J;,r)|. Each edge e € E(J;) from vertex u to vertex v represents a dependency between the
two corresponding tasks, regardless of their types. The precedence relationship u < v holds if and
only if there exists a path from vertex u to v in E(J;). The span or the critical path length
Two (J;) corresponds to the number of nodes on the longest chain of the precedence dependencies.
The release time r(.J;) is the time at which job .J; becomes first available for processing.

Figure 1 shows an example of a K-DAG job J; with three different types of tasks represented by
three different types of vertices. In this example, the circular vertices, the square vertices and the
triangular vertices denote «-tasks, ao-tasks and as-tasks of the job respectively. The work of each

task is 11 (J;, 1) = 7, Th (J;, 2) = 4 and T} (J;, 3) = 3. The span of the job is Too (J;) = 7.

K-Resource Scheduling Model

A schedule x = (7,7, 7m9,...,mx) of a job set J is defined by K + 1 mappings. The mapping
T:UsegV(Ji) = {1,2,...,00} maps the vertices of the jobs in the job set [J to the set of time steps.
For each resource category a € {1,..., K}, there is a mapping 7o : UsesV (Ji, o) — {1,2,..., Py}
that maps the set of a-vertices of the jobs in the job set 7 to the set of a-processors on the machine. A
valid schedule must preserve the precedence relationship of each job. For any two vertices u, v € V' (J;)
of the job J;, if u < v, then 7(u) < 7(v), i.e., the task denoted by vertex u must be executed before

the task denoted by vertex v. A valid schedule must also ensure that one processor can only be

assigned to one job at any given time. For any two vertices u,v € Uj,c7V (J;,), both 7(u) = 7(v)

and 7y (u) = w4 (v) are true if and only if u = v.

Objective Functions

Our scheduler uses makespan and mean response time as the performance measures, which are defined

as follows.

Definition 1 The completion time Tx(J;) of a job J; under a schedule X is the time at which
the schedule completes the execution of the job, i.e., Tx(J;) = max,cy (s, 7(v). The makespan of

a given job set J under the schedule X is the time taken to complete all jobs in the job set 7, i.e.,

Ty (J) = maxj,es Tx(Ji).

Definition 2 The response time Ry(J;) of a job J; under a schedule x is the duration between its
release time 7(.J;) and the completion time T/(.J;), i.e., Rx(J;) = Tx(J;) —r(J;). The total response
time of a job set 7 under a schedule X is given by Rx(J) = >_.c 7 Rx(J;) and the mean response
time is Ry(J) = Rx(7)/ |T|-

We will make use of competitive analysis to show the performance of our scheduler in terms
of the makespan and the mean response time, that is, we will compare an online non-clairvoyant
scheduling algorithm against an optimal offline algorithm. Let T*(J) denote the makespan pro-
duced by the optimal algorithm on a job set 7, and Ty4)(J) denote the makespan produced by a
deterministic algorithm A for the same job set. Algorithm A is said to be c-competitive in terms of

the makespan if there exists a constant b such that Ty(4)(J) < ¢-T*(J) + b holds for any job set.

3 K-RAD Algorithm

In this section, we present K-RAD algorithm, which is an extension of RAD algorithm that schedules
jobs on homogeneous resources. RAD unifies the space-sharing dynamic equi-partitioning (DEQ)
algorithm and the time-sharing round robin (RR) algorithm to handle systems with different work-
load. Specifically, when the number of jobs in the system is greater than the number of processors,
RAD schedules the jobs in a batched, round-robin fashion, which allocates one processor to each
job with an equal share of time. When the number of jobs in the system is at most the number

of processors, RAD utilizes the DEQ job scheduler, which gives each job an equal share of spatial

allotments unless a job requests for less. To schedule jobs with heterogeneous tasks on heterogeneous
processors, K-RAD assigns one RAD scheduler to each category « of processors to schedule the
a-tasks of all jobs in the job set, where a = 1,..., K. In the remaining part of this section, we will
discuss the RAD algorithm in detail.

For each job J; € J, define the a-desire d(J;,a,t) to be the total number of ready a-tasks or
the instantaneous a-parallelism of J; at time step ¢ and the a-allotment a (J;, a,t) to be the total
number of a-processors allotted to J; at time step t. Note that an uncompleted job J; at any time
t has total desire >, xd(Ji,a,t) > 1, although for some o € {1,..., K}, its a-desire might be
zero. If a job J; has non-zero a-desire at time step ¢, we say that J; is a-active; otherwise, it is
a-inactive. For each category a of processors, let J(«,t) denote the set of a-active jobs at time
step t, i.e., J(a,t) ={J; € J : d(J;,a,t) > 0}.

Whenever |7 (a,t)| < Py, RAD uses DEQ to partition processors among the active jobs. DEQ
gives each job a fair share of allotment unless a job requests for less. As a result, all jobs requesting
less processors tend to get what they request, while the other jobs requesting a larger number of
processors will get an equal number of processors, which we call mean deprived allotment.

Once |J(a,t)| > P,, RAD will start a round-robin (RR) cycle to allot processors among the
a-active jobs. In order to ensure fairness, all a-active jobs that have been scheduled once in the RR
cycle will be marked and RAD maintains the marked and unmarked a-active jobs in two separate
queues. One queue denoted as () contains the a-active jobs that have not been marked since the
beginning of the cycle and the other queue denoted as Q' contains the a-active jobs that have been
marked. At any time step in the cycle, if there are more than P, jobs in @), RAD always schedules P,
jobs at the beginning of (). When there are less than P, jobs in @), in order not to waste processors,
RAD will move min (|Q'|, P, — |Q)]) jobs from queue Q' to @, and partition the processors to the jobs
in @ by DEQ algorithm. Such a time step also indicates the completion of the RR cycle, and all jobs
will be unmarked. Figure 2 shows the pseudo-code of the RAD algorithm. The main procedure RAD
will be called before every step t, and it in turn calls sub-procedures DEQ or Round-Robin depending
on the relationship between the number of processors and the number of unmarked a-active jobs at
t.

Under the schedule of RAD, at any time step t for a category « of processors, an active job J;

can be either a-satisfied if its a-allotment is equal to its a-desire, i.e., a (J;, o, t) = d(J;, a, t), or

DEQ (a,t,Q, P)
if Q=0 return
S—{JieQ:d(J;a,t) < P/|Q|}
if S=0 > Jobs requesting a large number of processors get an equal share of processors
for each J; € Q
CL(Ji,Oé,t) — P/ |Q|
return
else > Jobs requesting less processors get what they request
for each J; € S
a(Ji,a,t) «— d(J;, a,t)
DEQ(a,t,Q — S, P — 3 ;. csd(Ji, 1))

© 00 J O U = W N~

—_
]

ROUND-ROBIN (o, t, @, P)

1 S « the first P jobs from @

2 for each J; € S

3 a(Ji,a,t) —1

4 mark J; to indicate that J; has been scheduled once in the RR cycle

RAD (a,t,J,P)
Q «— {J; € J : J; is unmarked and a-active}
Q' —{J; € J : J; is marked and a-active}
if |Q| > P
RouND-ROBIN(, t, @, P)
else
Move min (|Q’|, P — |Q|) jobs from Q" to @
DEQ(a,t,Q, P)
unmark all jobs to indicate the completion of the RR cycle

0O 3 O UL i W N

Figure 2: Pseudo-code for the RAD scheduler. It includes the main procedure RAD, and two sub-procedures
DEQ that implements the DEQ algorithm and ROUND-ROBIN that implements the round-robin algorithm.
Before each time step ¢, K-RAD calls RAD to partition a-processors among jobs.

a-deprived if its a-allotment is less than its a-desire, i.e., a (J;, a,t) < d(J;, a,t). Moreover, we
define a job J; to be V-satisfied if it is a-satisfied for all « =1, ..., K, and the job is 3-deprived

otherwise.

4 Makespan Lower Bounds

In this section, we will present two lower bounds on the makespan for scheduling any job set with
arbitrary release time. We will also show a lower bound on the competitive ratio for any deterministic
online non-clairvoyant algorithm.

We first introduce the following term for convenience.

Definition 3 The total a-work of a job set J is

Ty (J,a)= > Ti(Ji,a) , (1)

J, €T
where T} (J;, @) is the a-work of job J; € 7.

Let T*(J) denote the makespan of the job set J scheduled by an optimal clairvoyant scheduler.
Since any scheduler on K-DAG can do no better than the optimal scheduler on any single type of
task in the K-DAG, so based on the lower bounds [8] for jobs with a single type of tasks, we obtain
the following two lower bounds on the makespan for any set of jobs represented by K-DAGs with

arbitrary release time:

™(J) = %g?(T(Ji)JrToo(Ji)), (2)
™(J) > [ax (T (T,) [Pa) - (3)

We will now show a lower bound on the competitive ratio for any deterministic online algorithm.
Here, we consider an adversarial setting as with many other online algorithms. Upon knowing the
strategy of any deterministic algorithm, the adversary can always make that algorithm perform badly
at each step so that the competitive ratio is maximized. The following theorem gives a lower bound

on the competitive ratio for any deterministic online algorithm in terms of makespan.

Theorem 1 Any deterministic online non-clairvoyant algorithm can be no better than (K + 1 —

1/ Pz) -competitive with respect to makespan for K-resource scheduling, where Py = maxa—1,. g Pa.

Proof. Without loss of generality, let us assume Pg = P,,4.. Consider a job set J with n = mP; Pk
jobs as shown in Figure 3, where m is a large integer. All except one of the n jobs have only one unit
of 1-task. The other job J;’s critical path length is To, (J;) = K + mPg — 1 and it is highlighted by
the dark nodes in the figure. Level 1 of J; has one unit of 1-task, and each of the subsequent level
a€{2,...,K — 1} has exactly mP, Px units of a-task, all of which depend on one single task from
the previous level. Level K of J; has mPx (P — 1) 4+ 1 units of K-task, one of which is followed by
a chain of K-task of length mPy — 1.

To schedule this set of jobs, an optimal offline scheduler S will always execute the ready tasks of

the job J; on the critical path first so that the tasks at the subsequent level can be executed as early

10

Job1l ... Jobi Jobn #Nodes L evel

. mP;Py 1
mP,Pg 2
K mP3Pg 3

K+1

l ‘ 1 K+ mPyg-1

Figure 3: This example shows a set of n jobs that can force any deterministic online scheduler to have a
competitive ratio of K +1— K/P,,,, in terms of makespan in an adversary setting. The total number of tasks
on a level is indicated on the right of that level. While an optimal clairvoyant scheduler will choose to execute
the ready tasks on the critical path (denoted by the dark nodes of job J; in the figure) first, an adversary can
force a deterministic online scheduler to choose the "wrong” tasks for execution; The delayed execution of the
tasks on the critical path thus prevents the efficient use of the resources.

as possible by other types of processors. For a = 1,..., K, all a-tasks of the job J; will be ready at
time a— 1. The K-tasks, as the last type of tasks, can be completed in m Py time steps by executing
one unit of K-task on the critical path at each step. Therefore, the optimal scheduler S produces a
makespan of T*(7) = K + mPg — 1.

To schedule the same set of jobs, any deterministic nonclairvoyant algorithm A can be prevented
from performing well by the adversary in such a way that the tasks of the job J; on the critical path
are always executed last among the ready tasks. Such an adversarial strategy forces algorithm A
to execute different types of tasks in a sequential manner. Therefore, in the worst case, 4 will take
T(J) > mK Pk + mPg —m time steps.

Thus, the competitive ratio is given by

T(J) S mK P +mPg —m
T™(J) ~— K+mPrg —1
KPyx + P —1
T A

Let m > K, then % approaches 0. Therefore, we have ”l?*((jj)) > KPK;;K_l =K+1- Priaz. L]

11

5 K-RAD Makespan Analysis

This section shows that K-RAD is (K + 1 — 1/P,4,)-competitive with respect to the makespan.
Since this competitive ratio matches the lower bound given in Section 4, it shows that K-RAD is
optimal for a deterministic online algorithm in terms of makespan.

Suppose that T(7) is the makespan of job set 7 scheduled by K-RAD. Thus I = [1,2,...,T(J)]
is the time interval in which K-RAD schedules the job set. Since /7 denotes any job set with arbitrary
job release times, we may have subintervals of I, in which no job is active. We will refer to any
subinterval [= [t1,...,t2] € I as an idle interval if no job is active in [, i.e., all the jobs released
before | are completed by t; — 1, and no new jobs are released until t5 + 1. Thus no work is done
during interval [. In order to analyze the makespan of K-RAD algorithm, we will first prove a lemma
that bounds the makespan of any job set scheduled by K-RAD without any idle interval. Then we
will relax this constraint and give the main theorem.

The following lemma bounds the makespan of any job set scheduled by K-RAD without any idle

interval.

Lemma 2 Suppose that K-RAD schedules a job set J on P, number of a-processors for each

a=1,...,K. If there are no idle intervals during the schedule, then job set J completes in

T(7)< Y. Tl(j’a)Jr(l—

max (Teo (J;) + r(J; 4
P (Too (Ji) + (i) (4)

Pmaw) JieJ
time steps.

Proof. Suppose that job Jj is the last job completed among the jobs in 7. Let R(Jy) denote the
set of time steps before Ji is released and let S(Jy) and D(Jy) denote the sets of V-satisfied and
I-deprived time steps for Ji respectively. Since J is the last job completed, and R(Jy), S(Ji) and
D(Jy) are clearly disjoint sets, we have T(7) = |R(Jx)| + |S(Jx)| + |D(Jx)|. Now, we will bound

these three sets separately.

(1) To bound |R(Jg)|: Clearly, there are r(Ji) time steps before the release of job Jg, i.e.,
[R(Jk)| = r(Jk) - ()

Now we calculate the total amount of work done on these steps. Let T{ (7, «) denote the total a-work

12

done before the release of Ji. Since there are no idle intervals, each step in R(J) completes at least
one unit of work. Thus, we have >-,_; T{(J,a) > |R(Jx)| = r(Jx)-

(2) To bound |S(Jk)|: On each V-satisfied step t for job Jj, all of the ready tasks of Jj are
executed, so the span of Ji is reduced by 1. Therefore, the total number of V-satisfied steps for job

Ji is at most the span Ty (Ji) of Jg, i.e.,

IS(Ji)| < Too (J) - (6)

Let T (J,) denote the total a-work done on V-satisfied steps of Ji. Since each such step completes
at least one unit of work, we have >-,_; T7(T,) > [S(Jx)l-

(3) To bound |D(Jg)|: We will first calculate the number of a-deprived steps of job Jj for
each resource category a. Let D(Ji,«) denote the set of a-deprived steps for job Ji. According to
K-RAD, on each deprived step t € D(Jg,), K-RAD must have allotted all a-processors to jobs.
Thus, the total a-allotment on such a step is always equal to the total number of a-processors P,.
Since jobs always use allotted processors productively, there are P, units of a-work done on such a
time step. The total amount of a-work done on D(Jy,«) steps is T4 (J,a) — T1(T,) — T{ (T, «).
We have |D(Jy, o) < (11 (J,a) = T{(T, o) = T{(T, @) / Pa.

We now bound the total number of 3-deprived steps |D(J)| for job Jj. Since D(Ji) = Ug=1,... .k D(Jk,),
we have |D(Jx)| < >°,—1. i |D(Jg, @)|. Thus, we obtain

’D(Jk” < Z Tl(jaa)_Tl(gva)_Tl(j’a)
a=1,...K @
< (T, a) _ T(Jk)+|S(Jk)|' (7)
a=1,...K Pa Prnaa

To bound T(7J): from Equation (5) and Inequalities (6) and (7), we can conclude that the

makespan of the job set 7 is
T(T) [R(Jk)| + [D(Ji)| + [S(Jr)]

< U+ Y Ty (g,a) _T(Jk);|5(<]k)|
o=l.K ‘o maz

+ [S(Jk)]

13

T 1
< 1(1%) +(1- Pmm) (Too (Ji) + (1))
a=1,.. K
(T, a) 1
: N * <1 B pma) max (Too (Ji) +7(Ji))

The following theorem gives the competitive ratio of K-RAD with respect to the makespan.

Theorem 3 K-RAD is (K + 1 — 1/ P4z)-competitive with respect to the makespan for any set of

jobs with arbitrary release time, where Ppq; = maxa—1,. K FPo.

Proof. Recall that I =[1,2,...,T(J)] is the time interval in which K-RAD schedules the job set
J. We will consider two cases depending on whether I contains any idle intervals or not.
Case 1 : I does not contain idle intervals.

If I does not contain idle intervals, the makespan can be bounded by Inequality (4) from Lemma 2.
Since 3,1 gk T1 (T,) /Po < Kmaxg=1,. .k T1 (J,a) /Pa and both max,=1,. x T1 (J,) / Ps and

max j,c7 (Too (Ji) +7(J;)) are the lower bounds for makespan. Therefore, we obtain

T(J) < Ka:I??.}.{,K Tl(ga’a) + <1 - Pma:v) thax (Too (i) + (i)
< <K+1— max)T*(j)' (8)

Case 2 : [contains idle intervals.

If I contains idle intervals, let I = [t1,...,t2] be the last such interval in I. Clearly, job set J can
be divided into two disjoint subsets J; and /5, such that [contains all the jobs completed before
t1 and 5 contains all the jobs released after to. Since K-RAD completes J; in t; — 1 time steps,
the optimal scheduler S should complete 7; in no more than that amount of time. Therefore both
K-RAD and § will wait till time ¢3 4+ 1 to start scheduling 7. Let T*(7;) denote the makespan
of J5 scheduled by the optimal scheduler S, then we have T*(7) = t2 + T*(J2). From case 1, we
know that K-RAD completes J5 in T(J) < (K 4+ 1 — 1/P4:)T*(J2) time steps. Therefore, the
makespan of the job set J scheduled by K-RAD is

T(T) = t2+T(F)

< t2+(K+1—)T*(Jg)

max

14

IN

(K +1- > (t2 + T*(J2))

)T, (9)

max

= (K+1-
(Pz

Inequalities (8) and (9) indicate that under both cases, K-RAD achieves (K + 1 — 1/Ppaz)-

competitiveness with respect to the makespan. L]

6 Mean Response Time Lower Bounds

In this section, we present two lower bounds on the mean response time for scheduling any batched
job set. We first introduce two equivalent definitions for a useful notion called squashed sum, which

helps to establish the lower bound.

Definition 4 Given a list (a;) of m nonnegative numbers, let f: {1,2,...,m} — {1,2,...,m} be a

permutation satisfying ay1) < af@o) < -+ < ag(y). The squashed sum of list (a;) is defined as

m

sg-sum({a;)) = Z(m —i+Dag - (10)
i=1

By observing that the above permutation f on the list (a;) gives the minimum value for the squashed
sum formulation described by Equation (10), we obtain the following equivalent definition for the
squashed sum of list (a;)

m
sq-sum({a;)) = min » (m —i+)agy) , (11)
9eY i
where T = {glg: {1,2,...,m} — {1,2,...,m}} denotes the set of all permutations on {1,2,...,m}.
We now define two terms for the lower bounds of the mean response time.

Definition 5 The squashed a-work area of a job set J on P, number of a-processors is

swa (7,0) = o saesum({T1 (;,0)) (12)

where T} (J;, «) is the a-work of job J; € 7.

Definition 6 The aggregate span of a job set 7 is

T (J) = Y Too (i) , (13)

J, €T

15

where T, (J;) is the span of job J; € J.

Let R*(7) denote the mean response time of the job set 7 scheduled by an optimal offline
scheduler. Since any scheduler on K-DAG can do no better than the optimal scheduler on any single
type of tasks in the K-DAG, from the mean response time lower bounds [13,34,35] for jobs having
single type of tasks, we obtain the following two lower bounds for the mean response time on any set

of batched jobs represented by K-DAGs:

R*(J) > Tw(D)/|T|, (14)
RY(J) > Jax swa(J,0) /171 - (15)

Thus the optimal total response time R*(.7) has lower bounds of T, (7) and maxq=1,... x swa (7,).

7 K-RAD Mean Response Time Analysis

In this section, we will analyze the mean response time of the K-RAD algorithm. To begin with, we
first present a supporting lemma and a notation that are useful to the mean response time analysis.
Then we will define two cases for the system workload and we will show that under light workload,
K-RAD has a competitive ratio of 2K + 1 — 2K/(|J| + 1) while under heavy workload, K-RAD

performs worse off by at most a factor of two in the worst case.

Lemma 4 Let (a;) and (b;) be two lists of m nonnegative numbers that satisfy b; = a; + s;, where
0<s; <hfori=1,2,...,m, and h is a positive number. Let | denote the number of instances of
si that have value h, i.e., | = |{si|s; = h}| and P =31 s;. If 1 > 0, then we have

Pl+1)

sq-sum((bi)) 2 sa-sum({ai)) + ——

Proof. Let T = {glg:{1,2,...,m} — {1,2,...,m}} denote the set of all permutations from
{1,2,...,m} to {1,2,...,m}. Let f : {1,2,...,m} — {1,2,...,m} denote a permutation that
satisfies by(1) < bya) < -+ < by(my- Then, according to Equation (10) in Definition 4, we have

m

sq-sum ((b;)) = > (m—i+ 1)bg
=1

16

= 2 (m—i+1)(as+s5a)

=1
= Z(m — 1+ l)af(i) + Z(m — i+ 1)8f(i)
i=1 i=1
> 15161%11 1(— i+ age + i‘rél{‘l ;(m — i+ 1)sk0)

= sg-sum ({a;)) + sq-sum ({s;)) .

Now we will show that sq-sum ((s;)) > P(l + 1)/2. To simplify the notation, rename the elements of

the list (s;) such that s1 < s9 <+ < 8y <S4l = Sm—i42 =+ = Sm. Since Y ivq 8, = P, we
have $p,_14+1 = Sm_jp2 =" =8$pn=h=(P — Z?;l s;)/l. Then the squashed sum of (s;) is
m
sg-sum ((s;)) = Z(—i+1)s;
i=1
m—l
= Z(—i+1)s; + Z m—i+1)s
i=1 i=m— l+1
m—l m—I !
P_
= Y (m —i+1)5i+—(2132151) i
i=1 i=1
m—I —1
) (P=>"si)l(l+1)
= — 1 : 1=
> (m—i+1)s; + i 5
=1
_ X @m 2042 (P s+])
2 2
_ P(+1) N m2m — 20 — 14 1)s;
2 2
S P(l+ 1)‘
- 2

The last inequality holds because s; > 0 and 2m —2i —l+1>0fori=1,2,...,m — L. Ll

We will introduce a notation — t-suffiz, in order to simplify the presentation of the response
time analysis. For any time step ¢, t-suffix, denoted as T = {t,t+1,...,T(J)}, represents the set
of time steps from ¢ to the completion of the job set ;7. We will be interested in the suffix of a job,
namely, the tasks that remain to be executed after a given time step. For a job J; € 7, define the

t-suffix of the job J; (?) to be the portion of the job induced by those vertices in V' (.J;) that execute

on or after time step t, i.e.,

3 (7) = (v (4(7))- B (4(T)))

17

where V (Ji (?)) ={veV(J):7(v) >t}and E (JZ- (?)) = {(u,v) eEE(J) uveV (Ji (?))}
The t-suffix of the job set J is

T(T)={n(T):heg and v (5 (7)) #0} .

Thus, we have 7 = J (T), and the number of incomplete jobs at time step ¢ is the number ‘j (?) ’
of nonempty jobs in 7 (7)

Now we will define two cases for the system workload and analyze the performance of RAD under
each one of them separately. Recall that at any time ¢, J(«,t) denotes the set of a-active jobs for
a=1,...,K. We say that the system has light workload when |7 (a,t)| < P, at any time ¢t during the
schedule for all « = 1,..., K. In this case, K-RAD utilizes only the DEQ algorithm. On the other

hand, the system is considered to have heavy workload when |7 (a,t)| > P, for some a =1,..., K

at some time t. In this case K-RAD utilizes both DEQ and RR algorithms during the schedule.

Analysis of K-RAD under light workload

The following theorem gives the competitive ratio for the mean response time produced by K-RAD

scheduler under light system workload.

Theorem 5 K-RAD is (2K +1—2K/(|J|+1))-competitive with respect to the mean response time
for any batched job set T, if at any time t, | T (a,t)| < Py for each a =1,..., K, i.e., the number of

jobs that require processors never exceeds the number of available processors.

Proof. Suppose that K-RAD schedules a batched job set J on a machine with P, number of

a-processors for a = 1,..., K. We will show that the total response time of 7 can be bounded by

2
RW) < (2- 77 (:ZK swa (7, a)) FTo () (16)

Since }5,_; . xswa (J,0) < Kmaxq=—1, kswa(J,«) and both max,—; g swa(J,«) and To (J)
are lower bounds for the total response time, Inequality (16) indicates that K-RAD is (2K + 1 —
2K/(|J| + 1))-competitive with respect to the total response time, or equivalently with respect to
the mean response time under light workload. Now, we will prove Inequality (16) by induction on

the remaining execution time of the job set J (?)

18

Basis: ¢ = T(J) + 1. When t = T(J) + 1, we have 7 (') = 0. It follows that R (7 (7)) =0,
swa (j (?) ,a) —0fora=1,...,K, and T (j (?)) — 0. Thus, the claim holds trivially.

Induction: 1 <t < T(J). Let n = ‘j (7')| denote the number of incomplete jobs at time ¢. Since
n> |7 (F+1)

holds at time step t + 1, i.e.,

, we have 2 —2/(n+1) > 2 -2/ (‘j (m)‘ + 1). Suppose that Inequality (16)

n+1 a=1,...K

R((1)) < (2-)(5 Swa(j(m),a))ww(j(m)). a)

We will prove that it still holds at time step ¢, i.e.,

R(r (M) (- 2) [malo (7)) rlo (@) o

a=1,..,.K

The following notations denote the changes in, respectively, the total response time, the squashed

a-work area, and the aggregate span from time step ¢ and ¢t + 1:

sr=n(s(7)
Aswa(a) =swa (7 (T),a) —swa (7 (F+1),a)
) = T

Given induction hypothesis (Inequality (17)), we need only prove that the following inequality
holds

2
Ar§<2—n+1) (ZKAswa(a))+ATOO, (19)

a=1,...,
in order to prove our claim (Inequality (18)). We divide the proof of Inequality (19) into four steps.
(1) To bound A r: At any time ¢, the total number of incomplete jobs is ‘j (?)‘ = n. Since

each incomplete job in J (?) adds one time step to the total response time during step ¢, we have

Ar=n. (20)

(2) To bound AT,,: At time step ¢, an incomplete job J; is either V-satisfied or 3-deprived. The

incomplete jobs can be partitioned as J (7) = JS(t) U TID(t), representing the set of V-satisfied

19

and J-deprived jobs at time ¢, respectively. If J; € JS(t), the span of J; must reduce by 1 at time
step t, i.e. Tuo (Ji (?)) =T (Ji (t + l)) + 1. If J; € JD(t), the span of J; never increases at any
time step ¢, i.e. Ty (Ji (?)) > Ty (Ji (t + i)) Therefore, the aggregate span of J must reduce

by at least |J7S(t)| at time step ¢, and we have
ATy > |TS(t)] . (21)

(3) To bound Aswa(a): Consider the a-work of J; (?) and J; (t + l) For a job J; that is
a-deprived at time step ¢, J; has a-allotment a (J;, o, t) = p(«,t), where p (e, t) denotes the mean

deprived allotment at time step ¢ for a-processors. Thus, we have
Tl(JZ-(),a):Tl(Ji(t—i-T),a)—i—ﬁ(a,t) . (22)

For a job J; that is a-satisfied at time step t, J;’s a-allotment is equal to its a-desire, i.e., a (J;, o, t) =
d(J;, o, t). We have
T (Jz (?),a) =T (Jz (t + T),a) + d(Ji,Od,t) . (23)

Let JS(a,t) and JD(a, t) denote the set of a-satisfied and a-deprived jobs at time step ¢ respectively.
If there exist no a-deprived jobs at time ¢, i.e., |TD(«,t)| = 0. In this case, it is obvious that for
a=1,...,K, we have

Aswa (a) > 0. (24)

If there exist a-deprived jobs at time ¢, i.e., |TD(c,t)| > 0. In this case, all a-processors must
have been allotted to the jobs (otherwise, there would not be any jobs deprived of the a-processors).
Recall that DEQ first allots jobs that request less processors (than the fair share of equal number of
processors). Consequently, the jobs that get allotments later will have no less allotment than the jobs
getting allotment earlier. Therefore, the deprived jobs actually receive no less number of processors
than the satisfied jobs. With this scenario in mind, Lemma 4 bounds the change in the squashed

a-work.

20

For J;, € J,let a; =T} (Ji (m),a> and b, = T (Ji (7),04). By DEQ, all the a-processors

have been allotted, i.e. > ;c7a (Ji,a,t) = P,. Therefore, according to Lemma 4, we have

sq-sum ((b;)) — sq-sum ({a;)) > Fa (|jD(2a, Hl+1) . (25)

From Inequality (25) and Definition 5, we get for a« = 1,..., K and |JD(a,t)| >0

Aswa(a) = SFsum <<bz’>>;:q-sum ((a1))
ID(es) +1

> e (26)

(4) To derive Inequality (19): Since the incomplete jobs at time ¢ can be partitioned as
J () = JS(t) UID(t), we have [JS(t)| + [TD(H)] = n. Let K = {1,2,..., K}, and let K’ =
{a € K:|TID(a,t)| > 0}. We can obtain the following inequality,

SN 1ID(a,t)] = Y |TD(at)|
ack! aclC
> ’UOcEIC jD(O[, t)|

= n—|JS@®)] . (27)

Hence, from Inequalities (21), (24), (26) and (27), we get

(2— n—2|—1) (Z Aswa(oz)) + ATy

ackC

2n |TD(a,t)| +1
—— (Z —) +17S(1)|

aek’

" =TS+ |K) + |75 (28)

If K" # @, which implies |[K'| > 1. We have

il (n—|TSH)|+ |K']) +1TS(®)]
> n—|JS(t)rn+1 + TS|
> n (29)

21

If K" = 0, then we have |JS(t)| = n. Inequality (29) holds trivially. Now, Equation (20) and In-

equalities (28) and (29) indicate that Inequality (19) holds. The proof is complete. U

In the case where K = 1 for homogeneous resource scheduling, Theorem 5 indicates that DEQ
algorithm is (3 — 2/(|J| + 1))-competitive with respect to the mean response time. This result
tightens the performance bound for DEQ algorithm analyzed in [12,13]. However, DEQ is only
applicable to the light workload case where the number of jobs is no more than the number of
processors. By combining the current mean response time analysis with our previous work in [19],
it is not hard to show that RAD is also (3 — 2/(|J| + 1))-competitive for scheduling homogeneous
resources on any batched job set. To the best of our knowledge, RAD is the first algorithm that

offers 3-competitiveness with respect to mean response time for the scheduling of parallel jobs.

Analysis of K-RAD under heavy workload

Under heavy system workload, i.e., there exists some time ¢ and some o = 1,..., K for which
|J (v, t)] > P, and K-RAD will utilize both DEQ and RR algorithms. The following theorem gives
the competitive ratio for the mean response time produced by K-RAD scheduler under this more

general case.

Theorem 6 K-RAD is (4K +1—4K/(|J|+1))-competitive with respect to the mean response time

for any batched job set J.

Proof. Similar to the proof of Theorem 5, we will show that to schedule a batch of n jobs, K-RAD

achieves the following total response time

4
R(T) < (4 - 1) (a:Msza 7, a)) + T (7). (30)

Then the main theorem follows directly. Also to prove it by induction, we need only show the

following inequality holds on each time step ¢,

4
Ar< (4— n+1> (ZKAswa(a)) + AT (31)

a=1,...,

Since the change of the total response time A7 and the aggregate span AT, are still given by

Equation (20) and Inequality (21), the rest of the proof will focus on calculating the change of the

22

squashed a-work area Aswa (a). By comparing Inequalities (19), (31) and (26), it suffices to show
that when being scheduled by round robin (RR),

o [ID(a, 1) +1

Aswa (a) > 1 (32)

fora =1,...,K and |JD(e,t)| > 0. Recall from Section 3 that a RR cycle consists of more than
one time steps. Specifically, during a RR cycle, all the jobs that have been a-active are scheduled
at least once. Let | denote the total number of jobs scheduled in the RR cycle, and let 7 denote the

total number of time steps in the RR cycle. We have

T = [l/P]

< I/Py+1.

Since each scheduled job has reduced its a-work by at least 1, according to Lemma 4 and Definition 5,
the total change of the squashed a-work area ARR («) during the cycle is given by

I(1+1)

>
ARR (a) > =50

(33)

Thus, given P, < [, the average change of the squashed a-work area A swa («) during each time step

of the cycle is

Aswa(a) = ART@
o W+1)/2P,
— (I+P)/Pa
> % (34)

At any time step ¢ in the cycle, the number of a-deprived jobs | TD(«, t)| is at most the total number [
of a-active jobs in the cycle, i.e., | TD(a,t)| < I. Inequality (34) then directly implies Inequality (32).
The proof is complete. |

The results of Theorem 5 and Theorem 6 suggest that K-RAD doubles the competitive ratio
under heavy workload by using round robin. One intuitive explanation is that, when round robin

is used under heavy workload, if only a small number of jobs are active with limited desires, then

23

almost all the processor cycles in the last time step of a RR cycle can be wasted, which causes the

bound to double in the worst case.

8 Concluding Remarks

We have proposed a new scheduling model — K-resource scheduling to incorporate the functional
heterogeneity. We have also presented a provably efficient algorithm — K-RAD for scheduling
parallel jobs under this model. Ultimately, efficient algorithms will be needed for scheduling large
parallel machines with both general-purpose processors of different speed and special-purpose pro-
cessors with different functionality. Therefore, one interesting challenge now is to extend the results

to such scenarios.
References
[1] http://researchweb.watson.ibm.com/cell/.

[2] M. A. Bender and M. O. Rabin. Scheduling Cilk multithreaded computations on processors of
different speeds. In SPAA, pages 13-21, July 2000.

[3] G. Blelloch, P. Gibbons, and Y. Matias. Provably efficient scheduling for languages with fine-
grained parallelism. Journal of the ACM, 46(2):281-321, 1999.

[4] G. E. Blelloch and J. Greiner. A provable time and space efficient implementation of NESL. In
ICFP, pages 213-225, Philadelphia, Pennsylvania, 1996.

[5] R. D. Blumofe. Ezecuting Multithreaded Programs Efficiently. PhD thesis, Massachusetts Insti-
tute of Technology, Cambridge, MA, USA, 1995.

[6] R. D. Blumofe and C. E. Leiserson. Space-efficient scheduling of multithreaded computations.
SIAM Journal on Computing, 27(1):202-229, 1998.

[7] R. D. Blumofe and C. E. Leiserson. Scheduling multithreaded computations by work stealing.
Journal of the ACM, 46(5):720-748, 1999.

[8] T. Brecht, X. Deng, and N. Gu. Competitive dynamic multiprocessor allocation for parallel

applications. In Parallel and Distributed Processing, pages 448 — 455, San Antonio, TX, 1995.

24

[9]

[10]

[18]

[19]

C. Chekuri and M. Bender. An efficient approximation algorithm for minimizing makespan on

uniformly related machines. Journal of Algorithms, 41(2):212-224, 2001.

F. A. Chudak and D. B. Shmoys. Approximation algorithms for precedence-constrained schedul-
ing problems on parallel machines that run at different speeds. In SODA, pages 581-590,
Philadelphia, PA, USA, 1997.

E. Davis and J. M. Jaffe. Algorithms for scheduling tasks on unrelated processors. Journal of

ACM, 28(4):721-736, 1981.

X. Deng and P. Dymond. On multiprocessor system scheduling. In SPAA, pages 82-88, Padua,
Italy, 1996.

X. Deng, N. Gu, T. Brecht, and K. Lu. Preemptive scheduling of parallel jobs on multiprocessors.
In SODA, pages 159-167, Philadelphia, PA, USA, 1996.

J. Edmonds, D. D. Chinn, T. Brecht, and X. Deng. Non-clairvoyant multiprocessor scheduling
of jobs with changing execution characteristics (extended abstract). In STOC, pages 120-129,
1997.

Z. Fang, P. Tang, P.-C. Yew, and C.-Q. Zhu. Dynamic processor self-scheduling for general

parallel nested loops. IEEE Transactions on Computers, 39(7):919-929, 1990.

Goldberg, Paterson, Srinivasan, and Sweedyk. Better approximation guarantees for job-shop
scheduling. In SODA: ACM-SIAM Symposium on Discrete Algorithms (A Conference on The-

oretical and Ezxperimental Analysis of Discrete Algorithms), 1997.

B. Hamidzadeh, D. J. Lilja, and Y. Atif. Dynamic scheduling techniques for heterogeneous

computing systems. Concurrency: Practice and Experience, 7(7):633—652, 1995.

Y. He, W. J. Hsu, and C. E. Leiserson. Provably efficient two-level adaptive scheduling. In
JSSPP, Saint-Malo, France, 2006.

Y. He, W. J. Hsu, and C. E. Leiserson. Provably efficient adaptive scheduling through equalized
allotments. In IPDPS, Long Beach, California, USA, 2007.

25

[20]

[21]

22]

[29]

[30]

S. F. Hummel and E. Schonberg. Low-overhead scheduling of nested parallelism. IBM Journal
of Research and Development, 35(5-6):743-765, 1991.

A. Khokhar, V. K. Prasanna, M. Shaaban, and C.-L.. Wang. Heterogeneous supercomputing:

Problems and issues. In Workshop on Heterogeneous Processing, 1992.

T. T. Kwan, R. E. McGrath, and D. A. Reed. Em3: A taxonomy of heterogeneous computing
systems. Computer, 28(12):68-70, 1995.

E. L. Lawler, J. K. Lenstra, A. H. G. Rinnooy Kan, and D. B. Shmoys. Sequencing and
scheduling: Algorithms and complexity. Technical Report BS—-R89xx, Centre for Mathematics

and Computer Science, The Netherlands, 1989.

F. T. Leighton, B. M. Maggs, and S. B. Rao. Packet routing and job-shop scheduling in o

(congestion + dilation) steps. Combinatorica, 14(2):167-186, 1994.

S. T. Leutenegger and M. K. Vernon. The performance of multiprogrammed multiprocessor

scheduling policies. In SIGMETRICS, pages 226-236, Boulder, Colorado, United States, 1990.

R. L.Graham, E. L. Lawler, J. K. Lenstra, and A. H. G. RinnooyKan. Optimization and approx-
imation in deterministic sequencing and scheduling: A survey. Annals of Discrete Mathematics,

5:287-326, 1979.

C. McCann, R. Vaswani, and J. Zahorjan. A dynamic processor allocation policy for multipro-
grammed shared-memory multiprocessors. ACM Transactions on Computer Systems, 11(2):146—

178, 1993.

D. Menasce and V. Almeida. Heterogeneous supercomputing: Is it cost-effective? In Supercom-

puting, pages 169-177, 1990.

R. Motwani, S. Phillips, and E. Torng. Non-clairvoyant scheduling. In SODA, pages 422-431,

Austin, Texas, United States, 1993.

G. J. Narlikar and G. E. Blelloch. Space-efficient scheduling of nested parallelism. ACM Trans-

actions on Programming Languages and Systems, 21(1):138-173, 1999.

26

[31]

32]

33]

Shmoys, Stein, and Wein. Improved approximation algorithms for shop scheduling problems. In

SODA, 1991.

D. B. Shmoys, J. Wein, and D. P. Williamson. Scheduling parallel machines online. In FOCS,

pages 131-140, San Juan, Puerto Rico, 1991.

A. Tucker and A. Gupta. Process control and scheduling issues for multiprogrammed shared-

memory multiprocessors. In SOSP, pages 159-166, New York, NY, USA, 1989.

J. Turek, W. Ludwig, J. L. Wolf, L. Fleischer, P. Tiwari, J. Glasgow, U. Schwiegelshohn, and
P. S. Yu. Scheduling parallelizable tasks to minimize average response time. In SPAA, pages

200209, Cape May, New Jersey, United States, 1994.

J. Turek, U. Schwiegelshohn, J. L. Wolf, and P. S. Yu. Scheduling parallel tasks to minimize
average response time. In SODA, pages 112-121, Philadelphia, PA, USA, 1994.

K. K. Yue and D. J. Lilja. Implementing a dynamic processor allocation policy for multipro-
grammed parallel applications in the SolarisTMoperating system. Concurrency and Computation-

Practice and Experience, 13(6):449-464, 2001.

J. Zahorjan and C. McCann. Processor scheduling in shared memory multiprocessors. In SIG-

METRICS, pages 214-225, Boulder, Colorado, United States, 1990.

27

