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Abstract

We obtain a new formalism for concurrent object-oriented languages by extending
Abadi and Cardelli’s imperative object calculus with operators for concurrency from
the m-calculus and with operators for synchronisation based on mutexes. Our syntax
of terms is extremely expressive; in a precise sense it unifies notions of expression,
process, store, thread, and configuration. We present a chemical-style reduction
semantics, and prove it equivalent to a structural operational semantics. We identify
a deterministic fragment that is closed under reduction and show that it includes
the imperative object calculus. A collection of type systems for object-oriented
constructs is at the heart of Abadi and Cardelli’s work. We recast one of Abadi and
Cardelli’s first-order type systems with object types and subtyping in the setting of
our calculus and prove subject reduction. Since our syntax of terms includes both
stores and running expressions, we avoid the need to separate store typing from
typing of expressions. We translate asynchronous communication channels and the
choice-free asynchronous 7-calculus into our calculus to illustrate its expressiveness;
the types of read-only and write-only channels are supertypes of read-write channels.

1 Motivation

A great deal of software is coded in terms of concurrent processes and objects.
The purpose of our work is to develop a new formalism for expressing, typing,
and reasoning about computations based on concurrent processes and objects.
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Our concurrent object calculus concg,, consists of Abadi and Cardelli’s
imperative object calculus imp¢ extended with primitives for parallel compo-
sition and for synchronisation via mutexes. Our work extends the analysis by
Abadi and Cardelli [1] of object-oriented features to concurrent languages. At
the heart of their work is a series of type systems able to express a great vari-
ety of object-oriented idioms. Given conc,,, we may smoothly and soundly
extend these type systems to accommodate concurrency.

There are by now many formalisms capable of encoding objects and con-
currency. Support of Abadi and Cardelli’s type systems is one distinctive
feature of our calculus. Others are the following. Unlike most process calculi,
the syntax of concg,, includes sequential composition of expressions that are
expected to return results; there is no need to encode results in terms of contin-
uations. Rather than reducing concurrent objects to other concepts, concg,,
treats objects as primitive. Rather than introduce auxiliary notions of stores
or configurations or labelled transitions, we directly describe the semantics of
concG,, in terms of a reduction relation on expressions.

As evidence of the expressiveness of our calculus, we present an encoding
of the asynchronous 7w-calculus. An extended version of this paper, available
from the authors, includes more examples, as well as full definitions and full
proofs. Here are our main technical results.

First, we describe a semantics for concurrent objects based on a reduction
relation and a structural congruence relation in the style of Milner’s reduction
semantics [16] for the m-calculus [17]. We prove that our reduction seman-
tics is equivalent to a classical structural operational semantics defined using
auxiliary notions of stores, threads, and configurations.

Second, we identify a single-threaded subset of our calculus that is pre-
served by reduction and includes the impc-calculus.

Third, given a few simple rules for parallel composition and restriction, we
confer Abadi and Cardelli’s first-order type system with objects and subtyping,
Ob;_., on our calculus. We prove subject reduction for this system without
needing any notion of store typing separate from the notion of expression

typing.

1.1 Related work

Plotkin’s structural operational semantics [22] is a standard technique for con-
current languages. A computation is described as a sequence of configurations.
A configuration typically consists of a collection of runnable threads, a store,
and other data such as the state of communication channels. Di Blasio and
Fisher [8] describe their calculus of concurrent objects in this style. Other
languages treated in this style include an actor language [2] and CML [4,23].

Ferreira, Hennessy, and Jeffrey [9] avoid configurations in their operational
semantics for CML by employing a CCS-style labelled transition system. In
their work, and in ours, the parallel composition a " b of two expressions a
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and b is an expression consisting of ¢ and b running in parallel. Any result
returned by b is returned by the whole composition; any result returned by a is
discarded. So unlike the situation in most process calculi, parallel composition
is not commutative: the effects of a " b and b a are different. In implemen-
tation terms this is perfectly natural; running a ' b amounts to forking off a
as a new thread and then running b.

Our reduction semantics is directly inspired by Milner’s [16] presentation of
the chemical abstract machine of Berry and Boudol [5]. In a chemical seman-
tics, a computation state is represented by a term of the calculus; there is no
need for the auxiliary notion of a configuration. Previous chemical semantics
for concurrent languages use evaluation contexts to treat sequential composi-
tion of expressions [3,6,18]; instead, our semantics exploits a non-commutative
parallel composition.

Di Blasio and Fisher’s paper is the work most closely related to ours.
Their principal results are the definition of a configuration-based reduction
semantics for their calculus, a type soundness theorem, and the proof that
certain guard expressions used for synchronisation have no side-effects. As in
their work, we prove the soundness of a type system for concurrent objects.
Our chemical semantics has no need for the auxiliary notions of configurations
and reduction contexts used in theirs. Unlike their work, ours includes two
independent but equivalent characterisations of our operational semantics.

Various formalisms in the m-calculus family have been used to model im-
perative or concurrent objects [7,10,12-14,20,24,25]. All these models use
formalisms based on processes, computations with no concept of returning a
result, instead of expressions. The operation of returning a result is translated
using continuations into sending a message on a result channel. Our concg-
calculus is based on expressions that return results because its precursor impg
is based on expressions, because we do not wish to presuppose channel-based
communication for returning results, and because expressions with results are
a fundamental aspect of many programming languages and therefore deserve
a semantics in their own right.

1.2 Organisation of the paper

In Section 2 we present the syntax and semantics of a core calculus of con-
current objects, the conc-calculus. In Section 3 we add mutexes to obtain
the concgy,-calculus. Our syntax of terms unifies auxiliary notions of process,
expression, store, and configuration, and hence supports a particularly simple
reduction semantics. In Section 4 we show that our semantics corresponds
precisely to a more conventional, but more complex, semantics phrased in
terms of configurations. In Section 5 we demonstrate the soundness of the
Ob, .. type system for concg,,. Section 6 concludes the paper.
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2 Concurrent Objects

We extend the imperative object calculus by adding names to objects, and
adding parallel composition and name scoping operators from the m-calculus.

2.1 Syntaz

We assume there are disjoint infinite sets of names, variables, and labels. We
let p, ¢, and r range over names. We let x, y, and z range over variables. We
let ¢ range over labels. We define the sets of results, denotations, and terms
by the grammars:

Syntax of the conc¢-calculus

u,v = results
x variable
P name
d .= denotations
[0; = ¢(;)b; "€ object
a,b,c:= terms
u result
p—d denomination
u.l method select
u.l <= ¢(x)b method update
clone(u) cloning
let x=a in b let
al b parallel composition
(vp)a restriction

In a method ¢(x)b, the variable z is bound; its scope is b. In a term
let z=a in b, the variable x is bound; its scope is b. In a restriction, (vp)a,
the name p is bound; its scope is a. Let fn(a) and fv(a) be the sets of names
and variables, respectively, free in the term a. We write affx < v} for the
substitution of the result v for each free occurrence of x in term a. We write
a = b to mean that the terms a and b are equal up to the renaming of bound
names and bound variables, and the reordering of the labelled components of
objects.

Some syntactic conventions: (vp)a I bis read ((vp)a) b, u.l < ¢(x)b T ¢
is read (u.l <= ¢(x)b) I ¢, and let x=a in b T c is read (let x=a in b) " c. We
write (vp)a for (vpy)(vps) ... (vp,)a where p'= p1,pa, ..., Dy

Our syntax distinguishes names, which represent the addresses of stored
objects, from variables, which represent intermediate values. The distinction
reflects the different uses of names and variables, but is not essential; we
believe it will be useful when we come to treat observational equivalences.
Results in our syntax are atomic names or atomic variables; our techniques
would easily extend to structured results, such as tuples or A-abstractions. We
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obtained our syntax by directly combining that of the impc-calculus and the 7-
calculus. Our syntax uses separate constructs, restriction and denomination,
for name scoping and name definition, respectively. This allows for cyclic
dependencies between definitions. An alternative is to use a single construct
defining several names simultaneously with mutually recursive scopes, as in
the join-calculus [10] for example. Due to the generality of our syntax, we
need a simple type system, defined in Section 4, to rule out certain terms as
not well-formed. For example, a process such as (p—[| ' p—1]) I p, that
contains two denominations for the same name, is not well-formed.

2.2 Informal Semantics

We may interpret a term of our object calculus either as a process or as an
expression. A process is simply a concurrent computation. An expression
is a concurrent computation that is expected to return a result. In fact, an
expression may be regarded as a process, since we may always ignore any
result that it returns.

A result u is an expression that immediately returns itself.

A denomination p s [(; = ¢(x;)b; ‘1" is a process that confers the name
p on the object [(; = ¢(x;)b; “'-"]. We say that the object [¢; = ¢(x;)b; *&'"]
is the denotation of the name p. Intuitively, the process represents an object
stored at a memory location and the name p represents the address of the
object.

A method select p.f is an expression that invokes the method labelled /¢
of the object denoted by p. In the presence of a denomination p— [¢; =
G(w;)b; *€""], where ¢ = ¢; for some j € 1..n, the effect of p.¢ is to run the
expression b;{{r; < p}}, that is, to run the body b; of the method labelled ¢,
with the variable z; bound to the name of the object itself.

A method update p.f <= ¢(x)b is an expression that updates the method
labelled ¢ of the object denoted by p. In the presence of a denomination
p> [0 = ¢(x;)b; '€, where £ = ¢; for some j € 1..n, the effect of p.l < ¢(z)b
is to update the denomination to be p [¢; = ¢(z)b, £; = ¢(z;)b; ‘€ —{}]
and to return p as its result.

A clone clone(p) is an expression that makes a shallow copy of the object
denoted by p. In the presence of a denomination p [¢; = ¢(x;)b; *<'"], the
effect of clone(p) is to generate a fresh name ¢ with denomination ¢+ [¢; =
¢(z;)b; *€%"] and to return ¢ as its result. After a clone, the names p and ¢
denote two copies of the same denotation [¢; = ¢(x;)b; “'-"]; updates to one
will not affect the other.

A let let x=a in b is an expression that first runs the expression a, and if
it returns a result, calls it z, and then runs the expression b.

A parallel composition a I b is either an expression or a process, depending
on whether b is an expression or a process. In a I" b the terms a and b are
running in parallel. If b is an expression then a " b is an expression, whose
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result, if any, is the result returned by b. Any result returned by a is ignored.

A restriction (vp)a is either an expression or a process, depending on
whether a is an expression or a process. A restriction (vp)a generates a fresh
name p whose scope is a.

2.3 Formal Semantics

We base our operational semantics on structural congruence and reduction
relations. Reduction represents individual computation steps, and is de-
fined in terms of structural congruence. Structural congruence allows the
rearrangement of the syntactic structure of a term so that reduction rules
may be applied. We may regard our semantics as a concurrent extension
of the small-step substitution-based semantics of imp¢ described by Gordon,
Hankin, and Lassen [11].

The most interesting aspect of our formal semantics is the management
of concurrent expressions that return results. We intend that the result of an
expression be that returned from the right-hand side of the topmost parallel
composition. Therefore, as we discussed in Section 1, in contexts expecting a
result, parallel composition is not commutative. On the other hand, in con-
texts immediately to the left of a parallel composition, where any result is
discarded, parallel composition is commutative. Therefore, structural congru-
ence identifies (a T b) ' ¢ with (b1 a) I’ ¢, since any results returned by a or b
are discarded.

Let structural congruence be the least congruence on terms to satisfy:

Structural congruence a =0

(arb)yre=ar (b7 c)
(arb)re=((Bra)re
(vp)(vq)a = (vq)(vp)a
(vp)(a T b)=aT (vp)b if p ¢ fn(a)
(vp)(a T b) = ((vp)a) T b if p & fn(b)
let x=(let y=a in b) in ¢ = let y=a in (let x=b in c¢) if y & fo(c)
(Vp)let x=a in b = let x=(vp)a in b if p ¢ fn(b)

arl let x=b in ¢ = let x=(a T b) in c

Let reduction be the least relation on terms to satisfy:
Reduction a — b

For the first three rules, let d = [(; = ¢(z;)b; €""].

(p—=d) T pl; = (p—d) T bifr; < p} if jel.n

(p—=d) T (pl; <= ¢(x)b) = (p—=d)Tp if j € 1.n, d' = [{; = ¢(x)b,
l; = ¢(x;)b; *€0-m— 1}

(pr=>d) T clone(p) — (p—>d) T (vq)(q—dT q) if ¢ ¢ fn(d)

let x=p in b — b{x < p}

(vp)a — (vp)d ifa—d
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alb—d b ifa—d
bra—»ora ifa—d
let x=a in b — let x=a' in b ifa—d
a—b ifa=d,d —=>V,0=0b

We can embed all the expressions of the impc-calculus in concg via the
following abbreviations. If a is not a result, let a./, a.l < ¢(x)b, and clone(a)
be short for let x=a in x.0, let y=a in y.l < ¢(x)b, and let x=a in clone(z),
respectively. In contexts expecting a term, let an object [(; = ¢(x;)b; ']
be short for the term (vp)(p+[l; = ¢(x;)b; "] I p) where p ¢ fn([¢; =
¢(z;)b; *€+"]). We show in Section 4 that the reductions of any term of impg
embedded in concC are deterministic.

2.4 An Ezample

The following example from Abadi and Cardelli’s book illustrates these ab-
breviations and the reduction rules for eliminating a let and for method select
and update:

[l = ¢(z)xl <= ¢(y)x].0

= let z=[l = ¢(x)x.l <= ¢(y)z] in 2.4

= let 2=(vp)(p— [l = ¢(z)x.L <= ¢(y)x] T p) in 2.0

= (vp)(p—= [l = ¢(x)x.l <= ¢(y)x] T let z=p in z.0)
= (p)(p= [ = g(z)z.l <= ¢(y)z] T p.l)

— (vp)(p= [0 = G(x)2.l <= ¢(y)a] T p.l <= ¢(y)p)
— (vp)(p> [ =g(y)p] T p)

3 Synchronisation

Since conc( can express atomic reads and writes on a shared memory, we
could use a standard shared memory mutual exclusion algorithm for encoding
synchronisation mechanisms. We prefer not to for two reasons. First, such
an encoding would be anachronistic since mutual exclusion is normally solved
using hardware primitives (such as inhibition of interrupts) rather than reads
and writes on a shared memory. Second, such an encoding would lead to
complicated calculations about the reduction behaviour of higher level syn-
chronisation mechanisms, such as communication channels.

Instead, we prefer to encode such higher level mechanisms in a calcu-
lus concg, obtained by extending the concg-calculus with mutexes (binary
semaphores). Unlike shared variable mutual exclusion algorithms, mutexes
are commonly used in the runtime systems of object-oriented languages and
have simple reduction rules. Still, we have defined a compositional transla-
tion of concg,, into concg, though we omit it here. We use a two process
mutual exclusion algorithm [15] to guarantee exclusive access to the objects
representing mutexes.



(GORDON AND HANKIN

A third approach would be to add synchronisation mechanisms to the
primitive operations on objects, as in the calculus of Di Blasio and Fisher [8].
To keep the primitives of our calculus simple, we prefer not to integrate a
specific synchronisation construct into the semantics of method select and
method update.

3.1 Syntaz

We enrich the syntax to include the denotations locked and unlocked, and to in-
clude the terms acquire(u) and release(v). As before, we adopt the convention
that if a denotation d is used as a term, it abbreviates the term (vp)(p+d T p)
for p ¢ fn(d). Moreover, if a is not a result, let acquire(a) and release(a) be
short for let x=a in acquire(z) and let x=a in release(x), respectively.

3.2 Informal Semantics

A denomination p~— locked or p+—> unlocked represents a mutex, denoted by
p, whose state is locked or unlocked, respectively. Intuitively, the mutex is a
bit stored at memory location p.

A mutex acquisition acquire(p) attempts to lock the mutex denoted by p.
If a denomination p+— unlocked is present, the acquisition acquire(p) changes
its state to p+— locked, and returns p as its result. Otherwise the acquisition
blocks.

A mutex release release(p) unconditionally unlocks the mutex denoted by
p. If a denomination p+ d is present, for d € {locked, unlocked}, the release
release(p) sets its state to p— unlocked, and returns p as its result.

3.8 Formal Semantics

We define the structural congruence relation = by exactly the same rules as
in Section 2. The reduction relation — is defined by the rules in Section 2
together with two new rules for mutex acquisition and release:

Additional reduction rules

(p > unlocked) " acquire(p) — (p+> locked) I p
(pr—=>d) T release(p) — (p+—> unlocked) T p for d € {locked, unlocked}

3.4  An FExample

We can use mutexes to encode standard forms of synchronisation, such as
critical regions and synchronised objects in which at most one method may be
active at once. Here we focus on one example: the encoding of asynchronous
communications channels similar to those in Pict [21]. Such a channel is an
object named by p, that either contains a result or is empty, and has two meth-
ods read and write. If the channel p is empty, the operation p.write(v) updates
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p so that it contains v, while the operation p.read blocks. If the channel p
contains the result v, the operation p.read returns v and updates p so that it
is empty, while the operation p.write(u) blocks. Di Blasio and Fisher [8] im-
plement a similar abstraction in their calculus of concurrent objects. We code
channel behaviour as follows. As usual, a;b abbreviates let x=a in b, where
z ¢ fu(b). We borrow from the impg-calculus an encoding of A-abstractions
A(z)b and function applications b(a) using objects.

newChan =
let rd=locked in let wr=unlocked in
[reader = ¢(s)rd, writer = ¢(s)wr, val = ¢(s)s.val,
read = ¢(s)acquire(s.reader); let x=s.val in (release(s.writer) " x),
write = ¢(s)A(z)
(acquire(s.writer); s.val <= ¢(s)x; release(s.reader)) " x)]

This code maintains the invariant that at any time at most one of the locks
reader and writer is unlocked. If reader is unlocked, the result in wval is the
contents of the channel. If writer is unlocked, the channel is empty.

Given asynchronous channels, we can encode the asynchronous m-calculus:
[zy] = z.write(y), [x(y).P] = let y=z.read in [P], [P | Q] = [P] T [Q],
[(new x)P] = let x=newChan in [P], and, for s ¢ {z,y}Ufo(P), [lz(y).P] =
[rep = ¢(s)let y=x.read in ([P] T s.rep)].rep. We conjecture that this trans-
lation is sound with respect to a suitable notion of observational equivalence.
This particular translation is not fully abstract, since the encoding of channels
allows an observer to discover the last message sent on a channel.

4 A Structural Characterisation of Reduction

The purpose of this section is to characterise our reduction semantics in terms
of a more conventional structural operational semantics. This is desirable
for two reasons. First, it increases our confidence in the correctness of our
semantics. Second, it provides a convenient way to enumerate all possible
reductions of a term. For the sake of brevity, we work just with concg; it is
easy to extend our treatment to concq,.

Section 4.1 describes the well-formed terms of concg using a rudimentary
type system that distinguishes expressions (terms expected to return a result)
from processes. In Section 4.2, we demonstrate that on well-formed terms our
reduction semantics coincides with a structural operational semantics defined
using configurations. Finally, in Section 4.3, we identify a single-threaded
fragment of concg by omitting a single rule from the rudimentary type system.
This fragment is deterministic and includes the impc-calculus.
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4.1  Well-formed Terms

We present a type system for well-formed terms that distinguishes expressions
from processes. In this type system, there are only two types Proc and Fxp.
They represent processes and expressions respectively. Since we may always
ignore the result of an expression, any term of type Fzp is also a term of type
Proc. The type system is very liberal and provides only two guarantees about
well-formed terms. First, it guarantees that a proper process does not occur
in a context expecting an expression. Second, it guarantees that the top-level
denominations of free names in a term represent a partial function from names
to objects whose domain is preserved by computation steps.

Let the domain of a term a, dom(a), be given by: dom(p—d) = {p},
dom(let x=a in b) = dom(a), dom(a T b) = dom(a) U dom(b), dom((vp)a) =
dom(a) — {p}, and dom(a) = @ for any other kind of a.

Let T stand for either Proc or Exp. The well-formed terms are given by
the judgment a : T defined in the following table. We say that a term a is a
process or an expression if and only if a : Proc or a : Exp, respectively.
Well-formed terms

(Well Concur) (Well Result) (Well Object)

a: Exp b, : Exp dom(b;)) =@ Vi€ l.n
a: Proc w: Exp p [0 = ¢(x;)b; 11"« Proc
(Well Select) (Well Update) (Well Clone)  (Well Res)

b: Exp dom(b) =2 a:T pe dom(a)
u.l : Exp ul <= ¢(x)b: Exp  clone(u) : Exp (vp)a:T
(Well Let) (Well Par)
a:Exp b:FEzp dom(b)=9 a:Proc b:T dom(a)Ndom(b) =

let x=a in b: Fxp alb:T

Lemma 4.1 Suppose a : T. Ifa =b ora — b then b : T and dom(a) =
dom(b).

Terms that are not well-formed include pr—d; " p+>ds, let x=p+>d in b,
(vp)p.L, and p+— [ = ¢(x)g+— d]. None of these receives a type.

4.2 A Structural Operational Semantics

A conventional technique for describing the semantics of concurrent languages
with state relies on a syntactic category of configurations, which consist of a
store paired with a set of runnable threads. To mimic this technique, we
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identify sets of terms that represent threads, stores, and configurations.

Let an elementary thread, e, be one of the following: a result, a method
update or select, or a clone. Let a thread, t, be either an elementary thread,
or a term let x=t' in b, where t' is a thread. Let a store, o, be a term of the
form py—=d; 7 -+ - T pp— dy. Let a configuration, (vq){o || t1,...,t,), be an
abbreviation for the term (v@)(o " t; 7 --- T t,).

We may transform any term into a configuration as follows:

Normalising terms to configurations

Ne) =(@|le

N(prd) = (prd || 2)

N (let z=a in b) = (vp){(o || p, let x=t in b)
where N (a) = (vp){(o || p,t) and {p} N fn(b) = @

N ((vp)a) = (vp)N (a)

N(ar b) = (vp)(vq) (o' || p, o)
where N'(a) = (vp)(o || p), N'(b) = (vq)(c" || p'), and
{p} N (fn(o’) U fn(p) ={q} N (fnlo) U fu(p)) = @

We can show by induction on the derivation of a : T', that a : T implies
that NV (a) is well defined and in particular that T = Ezp implies that N (a)
takes the form (vp)(o || p,1).

We define the structural operational semantics to be a relation on terms
a % b. In the definition, the term a is normalised to a configuration before

being reduced to the term b, which is always a configuration.

Structural operational semantics

(SOS Select) (where {p} N fn(o, p1, p2) = D)
o= o1,pr [l = ¢(2i)b "], 0 J €l.n N(bfle; < p}) = (vp)(o' || o)

<U || p17p€]7p2> (l/m<0- o’ || pl,p p2>

(SOS Update)

d = [l; = ¢(z:)b; <"1 d' = (¢ (:zr)b,& q(x;)b; 1€-m=1i)]
S

(o1, p—=d, o9 || p1,pl; <= ()b, 2> (o1, p—=d, oo || p1,p, p2)

(SOS Clone) (where g ¢ fn(o, p1, p2))
d = [l; = ¢(x:)b; Z.61“”] o =01,pd, 0

(o || pr clone(p), p2) 3 (va)(o,a—d || p1, . p)
11
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(SOS Let Result) (where {p} N fn(o, p1, p2) = @)
N (ofz < p}) = wp)(o' || P)

. SOS
(o || p1, let x=p in b, po) = (vp){o,0" || p1, ', p2)

(SOS Let) (where {p} N fn(p1,b, p2) = @)

@ty X wp) o' | o, t)

(o || pr.let a=t in b, py) = (Wp)(' || p1, g, let z=t' in b, py)

(SOS Res) (SOS Norm)
o F wi)ollp)  Na) T @po| )

(vp)a = (wp)(wp)(o [ p) o™= (vp)(o [ p)

The structural operational semantics coincides with the reduction seman-
tics up to structural congruence. We write a %9 = b to mean there is ¢ such
508 _
that @ = c and ¢ = b.

Theorem 4.2 For all a,b: Fxp, a — b if and only a 95— ),

Theorem 4.2 suggests a procedure for discovering all possible reductions

of an expression: normalise the expression, then see what %9 reductions are
derivable. It is not obvious how to use the — relation directly to discover all
possible reductions of an expression, since they are defined up to structural
congruence.

Theorem 4.2 fails to hold for processes that are not expressions. Consider
the process p.l ' p— [¢ = ¢(s)s]. This term has type Proc but not Ezp. It
has no reductions, because composition is not commutative. On the other
hand, it is normalised to a configuration (p+— [¢ = ¢(s)s] || p.¢) and we have

(= [0 =(5)s] | p-0) =F (sl = ¢(s)s] || p)-

The difficulty here is that the reduction relation a — b does not represent
all of the behaviour of processes that are running as subterms to the left of a
composition, where composition is commutative. To remedy this situation, we

define versions of structural congruence and reduction specialised to processes

. .. P . . .
situated to the left of a composition. Let a =" b if and only if there is

p ¢ fn(a) U fn(b) such that a ' p = b " p. Roughly, "2 is the same as

=, except that composition is commutative at the top level. Let a ¢ b if

P P
and only if a = o, d — U, and b/ = b. (An alternative definition is to

specify these relations by a set of inference rules, simultaneously with the

definitions of a = b and @ — b.) We can show that a I" b ™2 b7 a and that

Proc

pLlT p—=[l=¢(s)s] = prp—[l=¢(s)s]. Moreover, we have:
12
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Proposition 4.3 For all a,b: Proc, a ey, if and only if a o5ty

4.8 A Single-Threaded Fragment

To identify a deterministic fragment of concg, let the single-threaded type
system for concq be the judgment a :' T defined by the typing rules except
for (Well Concur). We can show that if a :' Proc then a = (vp)(o || &), and
if a :' Exp then a = (vp)(o || t). Moreover, we have:

Lemma 4.4 Suppose a:' Ezp. Ifa=0b or a — b then b:' FEzp.
Theorem 4.5 Suppose a :' Exp. If a — a' and a — a" then a' = d".

We can show that if a represents a term of impg, then a :' Ezp. Hence it
follows that imp¢ is embedded within a deterministic fragment of concg that
is closed under reduction.

5 A First-Order Type System

The types of our type system consist of the first-order object types of Abadi
and Cardelli’s Ob; .. together with types for processes and expressions. As in
Section 4, we work with concg; concg, needs an additional type for mutexes.

Let a type A be either Proc, Ezp, or [(; : A;*€"] where the /; are distinct,
and A; # Proc for each ¢ € 1..n. As in the rudimentary type system, Fxp
is the type of expressions, and Proc is the type of processes. As in Oby..,
[0; + A;"1"] is the type of objects with methods /1, ..., £, that return results of
types Ay, ..., A,, respectively. We identify object types up to the reordering
of their components. The subtype relation A <: B is the least reflexive and
transitive relation on types that satisfies [¢; : B; *€'-"t™] <. [(; : B; -1,
[0; + A; """ <: Ezp, and Ezp <: Proc.

Let an environment E be a list vy : Ay,...,v, : A,; we write £ F ¢ to
mean that the results v; are distinct. We define the typing judgment E'-a: A
as follows:

Typing rules

(Val Subsumption) (Val ) (Val Select)
FEra:A A<:B FEu:AEto FEru:[l;:B*"" jelmn
Era:B Eu:AEFu:A EFuld;: B;

(Val Object) (where A = [¢; : B; "))
E:El;piA,EZ E,.CL'ZAI_I)ZBZ dom(bz)zg Viel.n
E l_ p|—> [‘el frd C(xz)bz iEl..n] . PTOC

13
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(Val Update) (where A = [¢; : B; *€-"])
Etru:A jel.n Ex:AFb:B; dom(b) =0
B+ uly < ¢(z)b: A

(Val Clone) (Val Let) (where A <: Exp and B <: Ezp)
Etuw:[t: B; " Etra:A Ex:AFb:B dom(b) =9

E F clone(u) : [¢; : B; €] Etrlet v=ainb: B

(Val Par) (where dom(a) N dom(b) = @) (Val Res)
Eta:Proc E-b:B Ep:AF-a:B pe€ dom(a)
Erarb:B Et+ (vp)a: B

These rules are a straightforward combination of the rules of Abadi and
Cardelli’s Ob; . and the rules of the rudimentary type system from Section 4.

Lemma 5.1 If EFa: A, A<:T, and T € {Proc, Exp} then a : T.

Theorem 5.2 Suppose EFa:A. Ifa=bora—bthen EFb: A.

To prove a subject reduction theorem like Theorem 5.2 for typed forms of
imp¢, Abadi and Cardelli need to introduce the standard auxiliary notion of
store typing. Since the terms of our calculus include both sequential threads
and stores, we have no need to separate the notion of store typing from the
notion of a typable term. The outcome is a crisper statement of subject
reduction than for the imperative form of Ob; .. in Abadi and Cardelli’s book.

The forms of structural congruence and reduction specialised to processes
situated to the left of a composition preserve typing at type Proc:

Proposition 5.3 Suppose E + a : Proc. If a S bora ™ bthen EFb:

Proc.

Let A — B be short for [arg : A, val : B], as usual in object calculi. Let JA
be the type [read : A, write : A — A]. Using subsumption to hide the internal
methods reader, writer, and val, we get @ F newChan : JA where & is the
empty environment. To further refine usage of these channel types we define
a type of write-only channels, TA = [write : A — A], and a type of read-only
channels, |A = [read : A], as in the work of Pierce and Sangiorgi [19]. The
inclusions JA <: 14 and JA <: [ A are part of the definition of Pierce and
Sangiorgi’s system but are derivable in ours.

14
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6 Conclusions

We described a concurrent extension of Abadi and Cardelli’s imperative object
calculus, impq. The syntax of our calculus is essentially that of imp¢ together
with parallel composition and restriction from the m-calculus, and new primi-
tives for synchronisation via mutexes. This syntax is extremely expressive; in a
precise sense it unifies notions of expression, process, store, thread, and config-
uration. We presented a novel reduction semantics for concurrent expressions,
without any need for evaluation contexts, and proved that it corresponds to
a more conventional structural operational semantics defined in terms of con-
figurations. We exhibited translations of the asynchronous 7-calculus and the
impc-calculus into our calculus, and showed that it supports the first-order
type system Ob;_. of objects with subtyping.

Our translations of 7 and imp( into our calculus raise questions concerning
observational equivalences that we intend to study in future work. Another
avenue to investigate is the encoding of other concurrency primitives, like
monitors, condition variables, and named threads.
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