
Countering Persistent Kernel Rootkits Through
Systematic Hook Discovery

Zhi Wang, Xuxian Jiang Weidong Cui Xinyuan Wang
North Carolina State University Microsoft Research George Mason University

Abstract. Kernel rootkits, as one of the most elusive types of malware, pose
significant challenges for investigation and defense. Among the most notable are
persistent kernel rootkits, a special type of kernel rootkits that implant persistent
kernel hooks to tamper with the kernel execution to hide their presence. To defend
against them, an effective approach is to first identify those kernel hooks and then
protect them from being manipulated by these rootkits. In this paper, we focus on
the first step by proposing a systematic approach to identify those kernel hooks.
Our approach is based on two key observations: First, rootkits by design will
attempt to hide its presence from all running rootkit-detection software includ-
ing various system utility programs (e.g., ps and ls). Second, to manipulate OS
kernel control-flows, persistent kernel rootkits by their nature will implant kernel
hooks on the corresponding kernel-side execution paths invoked by the security
programs. In other words, for any persistent kernel rootkit, either it is detectable
by a security program or it has to tamper with one of the kernel hooks on the
corresponding kernel-side execution path(s) of the security program. As a result,
given an authentic security program, we only need to monitor and analyze its
kernel-side execution paths to identify the related set of kernel hooks that could be
potentially hijacked for evasion. We have built a proof-of-concept system called
HookMap and evaluated it with a number of Linux utility programs such as ls, ps,
and netstat in RedHat Fedora Core 5. Our system found that there exist 35 kernel
hooks in the kernel-side execution path of ls that can be potentially hijacked for
manipulation (e.g., for hiding files). Similarly, there are 85 kernel hooks for ps
and 51 kernel hooks for netstat, which can be respectively hooked for hiding
processes and network activities. A manual analysis of eight real-world rootkits
shows that our identified kernel hooks cover all those used in them.

1 Introduction

Rootkits have been increasingly adopted by general malware or intruders to hide their
presence on or prolong their control of compromised machines. In particular, kernel
rootkits, with the unique capability of directly subverting the victim operating system
(OS) kernel, have been frequently leveraged to expand the basic OS functionalities
with additional (illicit) ones, such as providing unauthorized system backdoor access,
gathering personal information (e.g., user keystrokes), escalating the privilege of a
malicious process, as well as neutralizing defense mechanisms on the target system.

In this paper, we focus on a special type of kernel rootkits called persistent kernel
rootkits. Instead of referring to those rootkits that are stored as persistent disk files and
will survive machine reboots, the notion of persistent kernel rootkits here (inherited
from [14]) represents those rootkits that will make persistent modifications to run-
time OS kernel control-flow, so that normal kernel execution will be somehow hijacked



to provide illicit rootkit functionality1. For example, many existing rootkits [1, 2] will
modify the system call table to hijack the kernel-level control flow. This type of rootkits
is of special interest to us for a number of reasons. First, a recent survey [14] of
both Windows and Linux kernel rootkits shows that 96% of them are persistent kernel
rootkits and they will make persistent control-flow modifications. Second, by running
inside the OS kernel, these rootkits have the highest privilege on the system, making
them very hard to be detected or removed. In fact, a recent report [3] shows that, once
a system is infected by these rootkits, the best way to recover from them is to re-install
the OS image. Third, by directly making control-flow modifications, persistent kernel
rootkits provide a convenient way to add a rich set of malicious rootkit functionalities.

On the defensive side, one essential step to effectively defending against persistent
kernel rootkits is to identify those hooking points (or kernel hooks) that are used by
rootkits to regain kernel execution control and then inflict all sorts of manipulations
to cloak their presence. The identification of these kernel hooks is useful for not only
understanding the hooking mechanism [23] used by rootkits, but also providing better
protection of kernel integrity [10, 14, 20]. For example, existing anti-rootkit tools such
as [8, 16, 17] all can be benefited because they require the prior knowledge of those
kernel hooks to detect the rootkit presence.

To this end, a number of approaches [14, 23] have been proposed. For example,
SBCFI [14] analyzes the Linux kernel source code and builds an approximation of
kernel control-flow graph that will be followed at run-time by a legitimate kernel. Un-
fortunately, due to the lack of dynamic run-time information, it is only able to achieve
an approximation of kernel control-flow graph. From another perspective, HookFinder
[23] is developed to automatically analyze a given malware sample and identify those
hooks that are being used by the provided malware. More specifically, HookFinder
considers any changes made by the malware as tainted and recognizes a specific change
as a hooking point if it eventually redirects the execution control to the tainted attack
code. Though effective in identifying specific hooks used by the malware, it cannot
discover other hooks that can be equally hijacked but are not being used by the malware.

In this paper, we present a systematic approach that, given a rootkit-detection pro-
gram, discovers those related kernel hooks that could be potentially used by persistent
kernel rootkits to evade from it. Our approach is motivated by the following observation:
To hide its presence, a persistent kernel rootkit by design will hide from the given
security program and the hiding is achieved by implanting kernel hooks in a number
of strategic locations within the kernel-side execution paths of the security program.
In other words, for any persistent kernel rootkit, either it is detectable by the security
program or it has to tamper with one of the kernel hooks. Therefore, for the purpose of
detecting persistent kernel rootkits, it is sufficient to just identify all kernel hooks in the
kernel-side execution paths of a given rootkit-detection program.

To identify hooks in the kernel-side execution of a program, we face three main
challenges: (1) accurately identifying the right kernel-side execution path for monitor-
ing; (2) obtaining the relevant run-time context information (e.g., the ongoing system
call and specific kernel functions) with respect to the identified execution path; (3)

1 For other types of kernel rootkits that may attack kernel data, they are not the focus of this
paper and we plan to explore them as future work.
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uncovering the kernel hooks in the execution path and extracting associated semantic
definition. To effectively address the first two challenges, we developed a context-aware
kernel execution monitor and the details will be described in Section 3.1. For the third
one, we have built a kernel hook identifier (Section 3.2) that will first locate the run-
time virtual address of an uncovered kernel hook and then perform OS-aware semantics
resolution to reveal a meaningful definition of the related kernel object or variable.

We have developed a prototype called HookMap on top of a software-based QEMU
virtual machine implementation [6]. It is appropriate for two main reasons: First, software-
based virtualization allows to conveniently support commodity OSes as guest virtual
machines (VMs). And more importantly, given a selected execution path, the virtual-
ization layer can be extended to provide the unique capability in instrumenting and
recording its execution without affecting its functionality. Second, since we are dealing
with a legitimate OS kernel in a clean system, not with a rootkit sample that may
detect the VM environment and alter its behavior accordingly, the use of virtualization
software will not affect the results in identifying kernel hooks.

To evaluate the effectiveness of our approach, we ran a default installation of Red-
Hat Fedora Core 5 (with Linux kernel 2.6.15) in our system. Instead of using any
commercial rootkit-detection software, we chose to test with three utility programs,
ls, ps and netstat since they are often attacked by rootkits to hide files, processes or
network connections. By monitoring their kernel-side executions, our system was able
to accurately identify their execution contexts, discover all encountered kernel hooks,
and then resolve their semantic definitions. In particular, our system identified 35, 85,
and 51 kernel hooks, for ls, ps and netstat, respectively. To empirically evaluate the
completeness of identified kernel hooks, we performed a manual analysis of eight real-
world kernel rootkits and found that the kernel hooks employed by these rootkits are
only a small subset of our identified hooks.

The rest of the paper is structured as follows: Section 2 introduces the background
on rootkit hooking mechanisms. Section 3 gives an overview of our approach, followed
by the description of HookMap implementation in Section 4. Section 5 presents the
experimental results and Section 6 discusses some limitations of the proposed approach.
Finally, Section 7 surveys related work and Section 8 concludes the paper.

2 Background

In this section, we introduce the hooking mechanisms that are being used by persistent
kernel rootkits and define a number of terms that will be used throughout the paper.

There exist two main types of kernel hooks: code hooks and data hooks. To implant
a code hook, a kernel rootkit typically modifies the kernel text so that the execution
of the affected text will be directly hijacked. However, since the kernel text section is
usually static and can be marked as read-only (or not writable), the way to implant
the code hook can be easily detected. Because of that, rootkit authors are now more
inclined to implant data hooks at a number of strategic memory locations in the kernel
space. Data hooks are usually a part of kernel data that are interpreted as the destination
addresses in control-flow transition instructions such as call and jmp. A typical example
of kernel data hook is the system call table that contains the addresses to a number of
specific system call service routines (e.g., sys open). In addition, many data hooks may
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 int $0x80

Applications

ENTRY(system_call)

        SAVE_ALL
        ...

        ...

        pushl %eax                           # eax: syscall number

        call *0xc030f960(,%eax,4) # call sys_call_table[eax]

Userland

Kernel

A HAP instruction

(a) The system call dispatcher on Linux

#define REPLACE(x) o_##x = sys_call_table[__NR_##x];\
                        sys_call_table[__NR_##x] = n_##x

        REPLACE(getdents);
        REPLACE(write);

        ...

        REPLACE(kill);
        REPLACE(fork);
        REPLACE(clone);
        REPLACE(close);
        REPLACE(open);
        REPLACE(stat);
        REPLACE(lstat);        ...

{
int adore_init(void)

}

module_init(adore_init);

(b) The Linux adore rootkit

Fig. 1. A HAP instruction example inside the Linux system call dispatcher – the associated kernel
data hooks have been attacked by various rootkits, including the Linux adore rootkit [1].

contain dynamic content as they are mainly used to hold the run-time addresses of
kernel functions and can be later updated because of the loading or unloading of kernel
modules. For ease of presentation, we refer to the control-flow transition instructions
(i.e., call or conditional or un-conditional jumps) whose destination addresses are not
hard-coded constants as hook attach points (HAPs).

In Figure 1, we show an HAP example with associated kernel data hooks, i.e.,
the system call table, which is commonly attacked by kernel rootkits. In particular,
Figure 1(a) shows the normal system call dispatcher on Linux while Figure 1(b) con-
tains the code snippet of a Linux rootkit – adore [1]. From the control-flow transfer
instruction – call *0xc030f960(,%eax,4)2 in Figure 1(a), we can tell the existence of
a hook attach point inside the system call dispatcher. In addition, Figure 1(b) reveals
that the adore rootkit will replace a number of system call table entries (as data hooks)
so that it can intervene and manipulate the execution of those replaced system calls.
For instance, the code statement REPLACE(write) rewrites the system call table entry
sys call table[4] to intercept the sys write routine before its execution. The correspond-
ing run-time memory location 0xc030f970 and the associated semantic definition of
sys call table[4] will be identified as a data hook. More specifically, the memory loca-
tion 0xc030f970 is calculated as 0xc030f960 + %eax × 4 where 0xc030f960 is the
base address of system call table and %eax = 4 is the actual number for the specific
sys write system call. We defer an in-depth analysis of this particular rootkit in Section
5.2.

Meanwhile, as mentioned earlier, there are a number of rootkits that will replace
specific instructions (as code hooks) in the system call handler. For instance, the SucKit
[19] rootkit will prepare its own version of the system call table and then change the
dispatcher so that it will invoke system call routines populated in its own system call
table. Using Figure 1(a) as an example, the rootkit will modify the control-flow transfer

2 This instruction is in the standard AT&T assembly syntax, meaning that it will transfer its
execution to another memory location pointed to by 0xc030f960 + %eax × 4.
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Fig. 2. A systematic approach to discovering kernel hooks

instruction or more specifically the base address of the system call table 0xc030f960
to point to a rootkit-controlled system call table. Considering that (1) implanting a code
hook will inflict kernel code modifications, which can be easily detected, and (2) every
kernel instruction could be potentially overwritten for code hook purposes, we in this
paper focus on the identification of kernel data hooks. Without ambiguity, we use the
term kernel hooks to represent kernel data hooks throughout the paper.

Finally, we point out that kernel hooks are elusive to identify because they can be
widely scattered across the kernel space and rootkit authors keep surprising us in using
new kernel hooks for rootkit purposes [7, 18]. In fact, recent research results [23] show
that some stealth rootkits use previously unknown kernel hooks to evade all existing
security programs for rootkit detection. In this paper, our goal is to systematically
discover all kernel hooks that can be used by persistent kernel rootkits to tamper with
and thus hide from a given security program.

3 System Design

The intuition behind our approach is straightforward but effective: a rootkit by nature
is programmed to hide itself especially from various security programs including those
widely-used system utility programs such as ps, ls, and netstat. As such for an infected
OS kernel, the provided kernel service (e.g., handling a particular system call) to any
request from these security software is likely manipulated. The manipulation typically
comes from the installation of kernel hooks at strategic locations somewhere within
the corresponding kernel-side execution path of these security software. Based on this
insight, if we can develop a system to comprehensively monitor the kernel-side exe-
cution of the same set of security programs within a clean system, we can use it to
exhaustively uncover all kernel hooks related to the execution path being monitored.
Figure 2 shows an architectural overview of our system with two main components:
context-aware execution monitor and kernel hook identifier. In the following, we will
describe these two components in detail.

3.1 Context-Aware Execution Monitor

As mentioned earlier, our system is built on top of an open-source virtual machine
implementation, which brings the convenient support of commodity OSes as guest
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VMs. In addition, for a running VM, the context-aware execution monitor is further
designed to monitor the internal process events including various system calls made by
running processes. As suggested by the aforementioned insight, we need to only capture
those kernel events related to security software that is running inside the VM. Note that
the main purpose of monitoring these events is to understand the right execution context
inside the kernel (e.g., “which process is making the system call?”). With that, we can
then accurately instrument and record all executed kernel instructions that are relevant
to the chosen security software.

However, a challenging part is that modern OS kernels greatly complicate the cap-
ture and interpretation of execution contexts with the introduction of “out of order” ex-
ecution (mainly for improving system concurrency and performance reasons). The “out
of order” execution means that the kernel-side execution of any process can be asyn-
chronously interrupted to handle an incoming interrupt request or temporarily context-
switched out for the execution of another unrelated process. Notice that the “out of
order” execution is considered essential in modern OSes for the support of multi-tasking
and asynchronous interrupt handling.

Fortunately, running a commodity OS as a guest VM provides a convenient way to
capture those external events 3 that trigger the “out of order” executions in a guest ker-
nel. For example, if an incoming network packet leads to the generation of an interrupt,
the interrupt event needs to be emulated by the underlying virtual machine monitor and
thus can be intercepted and recorded by our system. The tricky part is to determine when
the corresponding interrupt handler ends. For that purpose, we instrument the execution
of iret instruction to trace when the interrupt handler returns. However, additional com-
plexities are introduced for the built-in support of nested interrupts in the modern OS
design where an interrupt request (IRQ) of a higher priority is allowed to preempt IRQs
of a lower priority. For that, we need to maintain a shadow interrupt stack to track the
nested level of an interrupt.

In addition to those external events, the “out of order” execution can also be intro-
duced by some internal events. For example, a running process may voluntarily yield
the CPU execution to another process. For that, instead of locating and intercepting all
these internal events, we need to take another approach by directly intercepting context
switch events occurred inside the monitored VM. The interception of context switch
events requires some knowledge of the OS internals. We will describe it in more details
in Section 4.

With the above capabilities, we can choose and run a particular security program
(or any rootkit-detection tool) inside the monitor. The monitor will record into a local
trace file a stream of system calls made by the chosen program and for each system call,
a sequence of kernel instructions executed within the system call execution path.

3.2 Kernel Hook Identifier

The context-aware execution monitor will collect a list of kernel instructions that are
sequentially executed when handling a system call request from a chosen security

3 Note that the external events here may also include potential debug exceptions caused from
hardware-based debugger registers. However, in this work, we do not count those related hooks
within the debug interrupt handler.
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program. Given the collected instructions, the kernel hook identifier component is de-
veloped to identify those HAPs where kernel hooks are involved. The identification of
potential HAPs is relatively straightforward because they are the control-flow transfer
instructions, namely those call or jmp instructions.

Some astute readers may wonder “wouldn’t static analysis work for the very same
need?” By statically analyzing kernel code, it is indeed capable of identifying those
HAPs. Unfortunately, it cannot lead to the identification of the corresponding kernel
hooks. There are two main reasons: (1) A HAP may use registers or memory loca-
tions to resolve the run-time locations of the related kernel hooks. In other words, the
corresponding kernel hook location cannot be determined through static analysis. (An
example is already shown in Figure 1(a).) (2) Moreover, there exists another complexity
that is introduced by the loadable kernel module (LKM) support in commodity OS
kernels. In particular, when a LKM is loaded into the kernel, not only its loading
location may be different from previous runs, but also the module text content will be
updated accordingly during the time when the module is being loaded. This is mainly
due to the existence of certain dependencies of the new loaded module on other loaded
modules or the main static kernel text. And we cannot resolve these dependencies until
at run-time.

Our analysis shows that for some discovered HAPs, their run-time execution trace
can readily reveal the locations of associated kernel hooks. As an example, in the system
call dispatcher shown in Figure 1(a), the HAP instruction – call *0xc030f960(,%eax,4),
after the execution, will jump to a function which is pointed to from the memory
location: 0xc030f960 + %eax × 4, where the value of %eax register can be known
at run-time. In other words, the result of the calculation at run-time will be counted as a
kernel hook in the related execution path. In addition, there also exist other HAPs (e.g.,
call *%edx) that may directly call registers and reveal nothing about kernel hooks but
the destination addresses the execution will transfer to. For that, we need to start from
the identified HAP and examine in a backwards manner those related instructions to
identify the source, which eventually affects the calculated destination value and will
then be considered a kernel hook. (The detailed discussion will be presented in Section
4.2.) In our analysis, we also encounter some control-flow transfer instructions whose
destination addresses are hardcoded or statically linked inside machine code. In this
case, both static analysis and dynamic analysis can be used to identify the corresponding
hooks. Note that according to the nature of this type of hooks (Section 2), we consider
them as code hooks in this paper.

Finally, after identifying those kernel hooks, we also aim to resolve the memory
addresses to the corresponding semantic definitions. For that, we leverage the symbol
information available in the raw kernel text file as well as loaded LKMs. More specifi-
cally, for main kernel text, we obtain the corresponding symbol information (e.g., object
names and related memory locations) from the related System.map file. For kernel
modules, we derive the corresponding symbol information from the object files (e.g., by
running the nm command)4. If we use Figure 1(a) as an example, in an execution path

4 We point out that the nm command output will be further updated with the run-time loading
address of the corresponding module. For that, we will instrument the module-loading
instructions in the kernel to determine the address at run-time.
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related to the sys open routine, the hook’s memory address is calculated as 0xc030f974.
From the symbol information associated with the main kernel text, that memory ad-
dress is occupied by the system call table (with the symbol name sys call table) whose
base address is 0xc030f960. As a result, the corresponding kernel hook is resolved as
sys call table[5]5 where 5 is actually the system call number for the sys open routine.

4 Implementation

We have built a prototype system called HookMap based on an open-source QEMU
0.9.0 [6] virtual machine monitor (VMM) implementation. As mentioned earlier, we
choose it due to the following considerations: (1) First, since we are dealing with normal
OS kernels, the VM environment will not affect the results in the identified kernel
hooks; (2) Second, it contains the implementation of a key virtualization technique
called dynamic binary translation [6, 4], which can be leveraged and extended to select,
record, and disassemble kernel instruction sequences of interest; (3) Third, upon the
observation of VM-internal process events, we need to embed our own interpretation
logic to extract related execution context information. The open-source nature of the
VM implementation provides great convenience and flexibility in making our imple-
mentation possible. Also, due to the need of obtaining run-time symbols for semantic
resolution, our current system only supports Linux. Nevertheless, we point out that
the principle described here should also be applicable for other software-based VM
implementations (e.g., VMware Workstation [4]) and other commodity OSes (e.g.,
Windows).

4.1 Context-Aware Execution Logging

One main task in our implementation is that, given an executing kernel instruction, we
need to accurately understand the current execution context so that we can determine
whether the instruction should be monitored and recorded. Note that the execution
context here is defined as the system call context the current (kernel) instruction belongs
to. To achieve that, we have the need of keeping track of the lifetime of a system call
event. Fortunately, the lifetime of a system call event is well defined as the kernel
accepts only two standard methods in requesting for a system call service: int $0x80
and sysenter. Since we are running the whole system on top of a binary-translation-
capable VMM, we can conveniently intercept these two instructions and then interpret
the associated system call arguments accordingly. For this specific task, we leverage an
“out-of-the-box” VM monitoring framework called VMscope [11] as it already allows
to real-time capture system calls completely outside the VM. What remains to do is to
correlate a system call event and the related system call return event to form its lifetime.
Interested readers are referred to [11] for more details.

Meanwhile, we also face another challenge caused by the “out-of-order” execution
(Section 3). To address that, we monitor relevant external events (e.g., interrupts) as well
as internal events (e.g., context switches) to detect run-time changes of the execution
context. The main goal here is to avoid the introduction of “noises” – unnecessary kernel

5 The calculation is based on the following: (0xc030f974 − 0xc030f960)/4 = 5, where 4
represents the number of bytes occupied by a function pointer.
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executions – into the execution path for monitoring and analysis. Fortunately, with a
software-based VM implementation, we are able to intercept all these external events
as they need to be eventually emulated by the underlying VMM. However, an interesting
part is to handle the nested interrupts scenario where a shadow interrupt stack should be
maintained at the VMM layer to keep track of the nested level of the ongoing interrupt.
For the internal events, our prototype sets a breakpoint on a kernel function that actually
performs context-switching. On Linux, the related function is called switch to and its
location is exported by kernel and can be found in the System.map file.

With the above capabilities, our system essentially organizes the kernel instruction
execution into a stream of system calls and each system call contains a sequence of
kernel instructions executed within this specific context. Furthermore, to facilitate later
identification and analysis of kernel hooks, for each kernel instruction in one particular
context, we further dump the memory locations as well as registers, if any, involved in
this instruction. The additional information is needed for later kernel hook identifica-
tion, which we describe next.

4.2 Kernel Hook Identification

Based on the collected sequence of kernel instructions, the kernel hook identifier locates
and analyzes those control-flow transfer call or jmp instructions (as HAP instructions)
to uncover relevant kernel hooks. As a concrete example, we show in Table 1 a list of
identified HAPs, associated system call contexts, as well as those kernel hooks that are
obtained by monitoring kernel-side execution of the ls command. Note that a (small)
subset of those identified kernel hooks have already been used by rootkits for file-hiding
purposes (more in Section 5).

As mentioned earlier, for an HAP instruction that will read a memory location and
jump to the function pointed by a memory location, we can simply record the memory
location as a kernel hook. However, if an HAP instruction directly calls a register (e.g.,
call *%edx), we need to develop an effective scheme to trace back to the source – a
kernel hook that determines the value of the register.

We point out that this particular problem is similar to the classic problem addressed
by dynamic program slicing [5, 24]: Given an execution history and a variable as the
input, the goal of dynamic program slicing is to extract a slice that contains all the
instructions in the execution history that affected the value of that variable. As such,
for the register involved in an identified HAP instruction, we apply the classic dynamic
program slicing algorithm [5] to find out a memory location that is associated with
a kernel object (including a global static variable) and whose content determines the
register value. To do that, we follow the algorithm by first computing two sets for
each related instruction: one is DEF [i] that contains the variable(s) defined by this
instruction, and another is USE[i] that includes all variables used by this instruction.
Each set can contain an element of either a memory location or a machine register. After
that, we then examine backwards to find out the memory location that is occupied by

6 A different version of ls can result in the execution of sys getdents64 instead of sys getdents,
which leads to one variation in the identified kernel hooks – sys call table[220] instead of
sys call table[141]. A similar scenario also happens when identifying another set of kernel
hooks by monitoring the ps command (to be shown in Table 2).
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Table 1. File-hiding kernel hooks obtained by monitoring the ls -alR / command in RedHat
Fedora Core 5

execution path # Hook Attach Points (HAPs) Kernel Hooks
address instruction address

sys write

1 0xc0102b38 call *0xc030f960(,%eax,4) sys call table[4]
2 0xc014e5a3 call *0xec(%ecx) selinux ops[59]
3 0xc014e5c9 call *%edi tty fops[4]
4 0xc01c63c6 jmp *0xc02bfb40(,%eax,4) dummy con[33]
5 0xc01fa9d2 call *0xc(%esp) tty ldisc N TTY.write chan
6 0xc01fd4f5 call *0xc8(%ecx) con ops[3]
7 0xc01fd51e call *0xd0(%edx) con ops[5]
8 0xc01fd5fa call *%edx con ops[4]
9 0xc01fd605 call *0xc4(%ebx) con ops[2]

10 0xc0204caa call *0x1c(%ecx) vga con[7]

sys open

1 0xc0102b38 call *0xc030f960(,%eax,4) sys call table[5]
2 0xc014f024 call *0xf0(%edx) selinux ops[60]
3 0xc0159677 call *%esi ext3 dir inode operations[13] (ext3.ko)
4 0xc015969d call *0xbc(%ebx) selinux ops[47]
5 0xc019ea96 call *0xbc(%ebx) capability ops[47]

sys close
1 0xc0102b38 call *0xc030f960(,%eax,4) sys call table[6]
2 0xc014f190 call *%ecx ext3 dir operations[14] (ext3.ko)
3 0xc014f19a call *0xf4(%edx) selinux ops[61]

sys ioctl

1 0xc0102b38 call *0xc030f960(,%eax,4) sys call table[54]
2 0xc015dbcf call *%esi tty fops[8]
3 0xc015de16 call *0xf8(%ebx) selinux ops[62]
4 0xc01fc5a1 call *%ebx con ops[7]
5 0xc01fc5c9 call *%ebx tty ldisc N TTY.n tty ioctl

sys mmap2

1 0xc0102b38 call *0xc030f960(,%eax,4) sys call table[192]
2 0xc0143e0e call *0xfc(%ebx) selinux ops[63]
3 0xc0143ebc call *0x2c(%edx) selinux ops[11]
4 0xc0144460 call *%esi mm→get unmapped area
5 0xc019dc50 call *0x18(%ecx) capability ops[6]
6 0xc019f5d5 call *0xfc(%ebx) capability ops[63]

sys fstat64 1 0xc0102b38 call *0xc030f960(,%eax,4) sys call table[197]
2 0xc0155f33 call *0xc4(%ecx) selinux ops[49]

sys getdents6

1 0xc0102b38 call *0xc030f960(,%eax,4) sys call table[114]
2 0xc015de80 call *0xec(%ecx) selinux ops[59]
3 0xc015decc call *0x18(%ebx) ext3 dir operations[6] (ext3.ko)
4 0xc016b711 call *%edx ext3 dir inode operations[3] (ext3.ko)

sys getdents64

1 0xc0102b38 call *0xc030f960(,%eax,4) sys call table[220]
2 0xc015de80 call *0xec(%ecx) selinux ops[59]
3 0xc015decc call *0x18(%ebx) ext3 dir operations[6] (ext3.ko)
4 0xc016b711 call *%edx ext3 dir inode operations[3] (ext3.ko)

sys fcntl64 1 0xc0102b38 call *0xc030f960(,%eax,4) sys call table[221]
2 0xc015d7a7 call *0x108(%ebx) selinux ops[66]
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a kernel object and whose content determines the register value. In the following, we
will walk-through the scheme with an example. (For the classic algorithm, interested
readers are referred to [5] for more details.)

#line machine code       instruction             DEF        USE
====  =============    ====================    ========    =====
i-1 : ...
i+0 : 89 c3             mov    %eax,%ebx        %ebx       %eax                   
i+1 : 83 ec 04          sub    $0x4,%esp        %esp       %esp 
i+2 : 8b 80 c4 00 00 00 mov    0xc4(%eax),%eax  %eax       mem[%eax+0xc4], %eax
i+3 : f6 c2 03          test   $0x3,%dl         eflags     %dl  
i+4 : 89 04 24          mov    %eax,(%esp)      mem[esp]   %eax   
i+5 : 74 0e             je     c016b713                    eflags
i+6 : 8b 40 24          mov    0x24(%eax),%eax  %eax       mem[%eax+0x24], %eax  
i+7 : 8b 50 0c          mov    0xc(%eax),%edx   %edx       mem[%eax+0xc],  %eax    
i+8 : 85 d2             test   %edx,%edx        eflags     %edx 
i+9 : 74 04             je     c016b713                    eflags
i+10: 89 d8             mov    %ebx,%eax        %eax       %ebx 
i+11: ff d2             call   *%edx            %eip       %edx 
i+12: ...

Fig. 3. Discovering a kernel hook based on dynamic program slicing

Figure 3 shows some sequential kernel instructions7 of a kernel function mark inode dirty
that are executed in the sys getdent64 context of the ls command. In particular, the se-
quence contains an HAP instruction – call *%edx – at the memory location 0xc016b711
(line i + 11 in Figure 3). Note that since we monitor at run-time, we can precisely
tell which memory locations/registers are defined and/or used. As a result, we directly
derive the corresponding destination address (contained in the %edx register), which
is 0xc885bca0 – the entry point of a function ext3 dirty inode within a LKM named
ext3.ko. Obviously, it is the destination address the HAP instruction will transfer to,
not the relevant kernel hook. Next, our prototype further expands the associated se-
mantics of every executed instruction i to compute the two sets DEF [i] and USE[i]
and the results are shown in Figure 3. With the two sets defined for each instruc-
tion, we can then apply the dynamic slicing algorithm. Specifically, from the HAP
instruction (line i + 11), the USE set contains the %edx register, which is defined
by the instruction at line i + 7. This particular instruction is associated with a USE

set having two members: %eax and mem[%eax+0xc]. It turns out the %eax points
to the kernel object ext3 dir inode operations and 0xc is an offset from the kernel
object. After identifying the responsible kernel object, the slicing algorithm then outputs
ext3 dir inode operations[3] as the corresponding kernel hook and terminates. In Table
1, this is the fourth kernel hook identified in the sys getdent64 context. Note that this
particular kernel object is a jump table containing a number of function pointers. The
offset 0xc indicates that it is the fourth member function in the object as each function
pointer is four bytes in size. (The first four member functions in the kernel object are in
the offsets of 0x0, 0x4, 0x8, and 0xc, respectively.)

5 Evaluation

In this section, we present the evaluation results. In particular, we conduct two sets
of experiments. The first set of experiments (Section 5.1) is to monitor the execution

7 These instructions are in the AT&T assembly syntax, where source and destination operands,
if any, are in the reverse order when compared with the Intel assembly syntax.
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of various security programs and identify those kernel hooks that can be potentially
hijacked for hiding purposes. The second set of experiments (Section 5.2) is to empiri-
cally evaluate those identified hooks by analyzing a number of real-world rootkits and
see whether the used kernel hooks are actually a part of the discovered ones.

5.1 Kernel Hooks

In our experiments, we focus on three types of resources that are mainly targeted
by rootkits: files, processes, and network connections. To enumerate related kernel
hooks, we correspondingly chose three different utility programs – ls, ps, and netstat.
These three programs are from the default installation of Red Hat Linux Fedora Core
5 that runs as a guest VM (with 512MB memory) on top of our system. Our testing
platform was a modest system, a Dell PowerEdge 2950 server with Xeon 3.16Ghz and
4GB memory running Scientific Linux 4.4. As mentioned earlier, the way to choose
these programs is based on the intuition that to hide a file (, a process, or a network
connection), a persistent kernel rootkit needs to compromise the kernel-side execution
of the ls (, ps, or netstat) program.

In our evaluation, we focus on those portions of collected traces that are related to
the normal functionality of the security program (e.g., the querying of system states of
interest as well as the final result output) and exclude other unrelated ones. For example,
if some traces are part of the loading routine that prepares the process memory layout,
we consider them not related to the normal functionality of the chosen program and
thus simply ignore them. Further, we assume that the chosen security program as well
as those dependent libraries are not compromised. Tables 1, 2, and 3 contain our results,
including those specific execution contexts of related system calls. Encouragingly, for
each encountered HAP instruction, we can always locate the corresponding kernel
hook and our manual analysis on Linux kernel source code further confirms that each
identified kernel hook is indeed from a meaningful kernel object or data structure.

More specifically, these three tables show that most identified kernel hooks are part
of jump tables defined in various kernel objects. In particular, there are three main kernel
objects containing a large collection of function pointers that can be hooked for hiding
purposes: the system call table sys call table, the SELinux-related security operations
table selinux ops, as well as the capability-based operations table capability ops. There
are other kernel hooks that belong to a particular dynamic kernel object. One example
is the function pointer get unmapped area (in the sys mmap2 execution path of Table
2) inside the mm kernel object that manages the process memory layout. Note that this
particular kernel hook cannot be determined by static analysis.

More in-depth analysis also reveals that an HAP instruction executed in different
execution contexts can be associated with different kernel hooks. One example is the
HAP instruction located in the system call dispatcher (Figure 1(a)) where around 300
system call service routines are called by the same HAP instruction. A kernel hook can

8 Different versions of ps invokes different system calls to list files under a directory. In our
evaluation, the 3.2.7 version of ps uses the sys getdents system call while the version 3.2.3
uses another system call – sys getdents64. Both system calls work the same way except one
has a kernel hook sys call table[141] while another has sys call table[220].
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Table 2. Process-hiding kernel hooks obtained by monitoring the ps -ef command in RedHat
Fedora Core 5

execution path # kernel hooks Details
sys read 17 sys call table[3], selinux ops[5], selinux ops[59],

capability ops[5], kern table[336], timer pmtmr[2],
proc info file operations[2], proc file operations[2],

proc sys file operations[2], proc tty drivers operations[2],
tty drivers op[0], tty drivers op[1], tty drivers op[2],

tty drivers op[3], proc inode.op.proc read,
simple ones[1].read proc, simple ones[2].read proc

sys write 11 sys call table[4], selinux ops[59], dummy con[33], tty fops[4],
con ops[2], con ops[3], con ops[4], con ops[5],

vga con[6], vga con[7], tty ldisc N TTY.write chan
sys open 20 sys call table[5], selinux ops[34], selinux ops[46],

selinux ops[47], selinux ops[60], selinux ops[88],
selinux ops[112], capability ops[46], capability ops[47],

pid base dentry operations[0], proc sops[0], proc sops[2],
proc root inode operations[1], proc dir inode operations[1],
proc self inode operations[10], proc sys file operations[12] ,

proc tgid base inode operations[1], proc tty drivers operations[12],
ext3 dir inode operations[13] (ext3.ko), ext3 file operations[12] (ext3.ko)

sys close 10 sys call table[6], selinux ops[35], selinux ops[50],
selinux ops[61], pid dentry operations[3],

proc dentry operations[3], proc tty drivers operations[14],
proc sops[1], proc sops[6], proc sops[7]

sys time 2 sys call table[13], timer pmtmr[2]
sys lseek 2 sys call table[19], proc file operations[1]
sys ioctl 5 sys call table[54], tty fops[8], selinux ops[62],

con ops[7], tty ldisc N TTY.n tty ioctl
sys mprotect 3 sys call table[125], selinux ops[64], capability ops[64]
sys getdents8 3 sys call table[141], selinux ops[59], proc root operations[6]

sys getdents64 3 sys call table[220], selinux ops[59], proc root operations[6]
sys mmap2 8 sys call table[192], selinux ops[63], selinux ops[11],

capability ops[6], capability ops[63], ext3 dir inode operations[3] (ext3.ko),
ext3 file operations[11], mm→get unmapped area

sys stat64 16 sys call table[195], selinux ops[34], selinux ops[46], selinux ops[47],
selinux ops[49], selinux ops[88], selinux ops[112], capability ops[46],

capability ops[47], ext3 dir inode operations[13] (ext3.ko),
pid base dentry operations[0], pid dentry operations[3],

proc root inode operations[1], proc self inode operations[10],
proc sops[0], proc tgid base inode operations[1]

sys fstat64 2 sys call table[197], selinux ops[49]
sys geteuid32 1 sys call table[201]

sys fcntl64 2 sys call table[221], selinux ops[66]
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Table 3. Network-hiding kernel hooks obtained by monitoring the netstat -atp command in
RedHat Fedora Core 5

execution path # kernel hooks Details
sys read 8 sys call table[3], selinux ops[59], seq ops.start, seq ops.show,

seq ops.next, seq ops.stop, proc tty drivers operations[2]
sys write 12 sys call table[4], selinux ops[59], dummy con[33],

con ops[2], con ops[3], con ops[4], con ops[5],
tty fops[4], tty ldisc N TTY.write chan,

vga con[6], vga con[7], vga ops[8]
sys open 19 sys call table[5], selinux ops[34], selinux ops[35],

selinux ops[47], selinux ops[50], selinux ops[60],
selinux ops[61], selinux ops[112], capability ops[47],

ext3 dir inode operations[13] (ext3.ko), pid dentry operations[3],
proc root inode operations[1], proc dir inode operations[1],

proc sops[0], proc sops[1], proc sops[2],
proc sops[6], proc sops[7], tcp4 seq fops[12]

sys close 9 sys call table[6], selinux ops[35], selinux ops[50], selinux ops[61],
proc dentry operations[3], proc tty drivers operations[14],

proc sops[1], proc sops[6], proc sops[7],
sys munmap 2 sys call table[91], mm→unmap area
sys mmap2 6 sys call table[192], selinux ops[11], selinux ops[63], capability ops[6],

capability ops[63], mm→get unmapped area
sys fstat64 2 sys call table[197], selinux ops[49]

also be associated with multiple HAP instructions. This is possible because a function
pointer (contained in a kernel hook) can be invoked at multiple locations in a function.
One such example is selinux ops[47], a kernel hook that is invoked a number of times
in the sys open execution context of the ps command. In addition, we observed many
one-to-one mappings between an HAP instruction and its associated kernel hook. Un-
derstanding the relationship between HAP instructions and kernel hooks is valuable for
real-time accurate enforcement of kernel control-flow integrity [14].

5.2 Case Studies

To empirically evaluate those identified kernel rootkits, we manually analyzed the source
code of eight real-world Linux rootkits (Table 4). For each rootkit, we first identified
what kernel hooks are hijacked to implement a certain hiding feature and then checked
whether they are a part of the results shown in Tables 1, 2, and 3. It is encouraging that
for every identified kernel hook9, there always exists an exact match in our results. In
the following, we explain two rootkit experiments in detail:

9 Our evaluation focuses on those kernel data hooks. As mentioned earlier, for kernel code
hooks, they can be scattered over every kernel instruction in the corresponding system call
execution path.
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Table 4. Kernel hooks used by real-world rootkits (‡ means a code hook)

rootkit kernel hooks based on the hiding features
file-hiding process-hiding network-hiding

adore sys call table[141] sys call table[141] sys call table[4]
sys call table[220] sys call table[220]

adore-ng ext3 dir operations[6] proc root operations[6] tcp4 seq fops[12]
hideme.vfs sys getdents64‡ proc root operations[6] N/A

override sys call table[220] sys call table[220] sys call table[3]
Synapsys-0.4 sys call table[141] sys call table[141] sys call table[4]

Rial sys call table[141] sys call table[141] sys call table[3], sys call table[5]
sys call table[6]

knark sys call table[141] sys call table[141] sys call table[3]
sys call table[220] sys call table[220]

kis-0.9 sys call table[141] sys call table[141] tcp4 seq fops[12]

The adore rootkit This rootkit is distributed in the form of a loadable kernel
module. If activated, the rootkit will implant 15 kernel hooks in the system call table
by replacing them with its own implementations. Among these 15 hooks, only three of
them are responsible for hiding purposes10. More specifically, two system call table en-
tries – sys getdents (sys call table[141]) and sys getdents64 (sys call table[220]) – are
hijacked for hiding files and processes while another one – sys write (sys call table[4])
– is replaced to hide network activities related to backdoor processes protected by
the rootkit. A customized user-space program called ava is provided to send hiding
instructions to the malicious LKM so that certain files or processes of attackers’ choices
can be hidden. All these three kernel hooks are uncovered by our system, as shown in
Tables 1, 2, and 3, respectively.

The adore-ng rootkit As the name indicates, this rootkit is a more advanced suc-
cessor from the previous adore rootkit. Instead of directly manipulating the system call
table, the adore-ng rootkit subverts the jump table of the virtual file system by replacing
the directory listing handler routines with its own ones. Such replacement allows it
to manipulate the information about the root file system as well as the /proc pseudo-
file system to achieve the file-hiding or process-hiding purposes. More specifically, the
readdir function pointer (ext3 dir operations[6]) in the root file system operations table
is hooked for hiding attack files, while the similar function (proc root operations[6])
in the /proc file system operations table is hijacked for hiding attack processes. The
fact that the kernel hook ext3 dir operations[6] is located in the loadable module space
(ext3.ko) indicates that this rootkit is more stealthier and these types of kernel hooks are
much more difficult to uncover than those kernel hooks at static memory locations (e.g.,
the system call table). Once again, our system successfully identified these stealth kernel
hooks, confirming our observation in Section 1. Further, the comparisons between those
10 The other 12 hooks are mainly used to provide hidden backdoor accesses. One example is the

sys call table[6] (sys close), which is hooked to allow the attacker to escalate the privilege to
root without going through the normal authorization process.
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hooks used by rootkits (Table 4) and the list of hooks from our system (Tables 1, 2, and
3) indicate that only a small subset of them have been used.

6 Discussion

Our system leverages the nature of persistent kernel rootkits to systematically discover
those kernel hooks that can potentially be exploited for hiding purposes. However, as
a rootkit may implant other kernel hooks for other non-hiding features as its payload,
our current prototype is ineffective in identifying them. However, the prototype can
be readily re-targeted to those non-hiding features and apply the same techniques to
identify those kernel hooks. Also, our system by design only works for persistent kernel
rootkits but could be potentially extended for other types of rootkits as well (e.g,.
persistent user-level rootkits).

Our current prototype is developed to identify those kernel hooks related to the
execution of a chosen security program, either an anti-rootkit software or a system
utility program. However, with different programs as the input, it is likely that different
running instances will result in different sets of kernel hooks. Fortunately, for the rootkit
author, he faces the challenge in hiding itself from all security programs. As a result, our
defense has a unique advantage in only analyzing a single instantiated execution path
of a rootkit-detection program. In other words, a persistent kernel rootkit cannot evade
its detection if the hijacked kernel hooks are not a part of the corresponding kernel-side
execution path. There may exist some “in-the-wild” rootkits that take chances in only
evading selected security software. However, in response, we can monitor only those
kernel hooks related to an installed security software. As mentioned earlier, to hide
from it, persistent kernel rootkits will hijack at least one of these kernel hooks.

Meanwhile, it may be argued that our results from monitoring a running instance
of a security program could lead to false positives. However, the fact that these kernel
hooks exist in the kernel-side execution path suggest that each one could be equally
exploited for hooking purposes. From another perspective, we point out that the scale
of our results is manageable since it contains tens, not hundreds, of kernel hooks.

Finally, we point out that our current prototype only considers those kernel objects
or variables that may contain kernel hooks of interest to rootkits. However, there also
exist other types of kernel data such as non-control data [9] (e.g., the uid field in
the process control block data structure or the doubly-linked process list), which can
be manipulated to contaminate kernel execution. Though they may not be used to
implement a persistent kernel rootkit for control-flow modifications, how to extend the
current system to effectively address them (e.g., by real-time enforcing kernel control
flow integrity [10]) remains as an interesting topic for future work.

7 Related Work

Hook Identification The first area of related work is the identification of kernel hooks
exploitable by rootkits for hiding purposes. Particularly, HookFinder [23] analyzes a
given rootkit example and reports a list of kernel hooks that are being used by the
malware. However, by design, it does not lead to the identification of other kernel hooks
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that are not being used but could still be potentially exploited for the same hiding
purposes. From another perspective, SBCFI [14] performs static analysis of Linux
kernel source code and aims to build a kernel control-flow graph that will be followed
by a legitimate kernel at run-time. However, the graph is not explicitly associated
with those kernel hooks for rootkit hiding purposes. Furthermore, the lack of run-time
information could greatly limit its accuracy. In comparison, our system complements
them with the unique capability of exhaustively deriving those kernel hooks for a given
security program, which could be potentially hijacked by a persistent rootkit to hide
from it.
Hook-based Rootkit Detection The second area of related work is the detection of
rootkits based on the knowledge of those specific hooking points that may be used by
rootkits. For example, existing anti-rootkit tools such as VICE [8], IceSword [16], Sys-
tem Virginity Verifier [17] examine known memory regions occupied by these specific
hooking points to detect any illegitimate modification. Our system is designed with a
unique focus in uncovering those specific kernel hooks. As a result, they can be naturally
combined together to build an integrated rootkit-defense system.
Other Rootkit Defenses There also exist a number of recent efforts [12, 13, 15,
20–22] that defend against rootkits by detecting certain anomalous symptoms likely
caused by rootkit infection. For example, The Strider GhostBuster system [21] and
VMwatcher [12] apply the notion of cross-view detection to expose any discrepancy
caused by stealth rootkits. CoPilot [15] as well as the follow-up work [13] identify
rootkits by detecting possible violations in kernel code integrity or semantic constraints
among multiple kernel objects. SecVisor [20] aims to prevent unauthorized kernel code
from execution in the kernel space. Limbo [22] characterizes a number of run-time
features that can best distinguish between legitimate and malicious kernel drivers and
then utilizes them to prevent a malicious one from being loaded into the kernel. Our
system is complementary to these systems by pinpointing specific kernel hooks that are
likely to be chosen by stealth rootkits for manipulation.

8 Conclusion

To effectively counter persistent kernel rootkits, we have presented a systematic ap-
proach to uncover those kernel hooks that can be potentially hijacked by them. Our
approach is based on the insight that those rootkits by their nature will tamper with
the execution of deployed rootkit-detection software. By instrumenting and recording
possible control-flow transfer instructions in the kernel-side execution paths related to
the deployed security software, we can reliably derive all related kernel hooks. Our
experience in building a prototype system as well as the experimental results with real-
world rootkits demonstrate the effectiveness of the proposed approach.
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