
Abstract

Neural Networks are commonly used in
classification and decision tasks. In this
paper, we focus on the problem of the local
confidence of their results. We review some
notions from statistical decision theory that
offer an insight on the determination and
use of confidence measures for classifica-
tion with Neural Networks. We then present
an overview of the existing confidence mea-
sures and finally propose a simple measure
which combines the benefits of the probabi-
listic interpretation of network outputs and
the estimation of the quality of the model by
bootstrap error estimation. We discuss
empirical results on a real-world application
and an artificial problem and show that the
simplest measure behaves often better than
more sophisticated ones, but may be dan-
gerous under certain situations.

1 Introduction

Neural Networks (NNs) are commonly used in deci-
sion and regression tasks as non parametric estima-
tors. Although a large number of studies have partly
clarified their behavior as statistical learning tools,
some aspects of their validation are still under ques-
tion. For instance, in various contexts such as diag-
nosis, decision support or prediction, we need to
know how reliable their estimations are. Diagnosis,
for instance, is a classification task where a local cri-
terion is needed to reject decisions that could be dan-
gerous (i.e. costly). Combination methods that take
into account the outputs of a pool of decision systems
is another example where a local measure of confi-
dence is needed. In this paper we focus on a study of
different kinds of local confidence measures for neu-

ral networks for classification.

Review of the literature shows that most of the
approaches devoted to local confidence measures of
neural networks concern mainly the regression
framework [1,9,13]. However, we argue here that the
nature of confidence measures needed for classifica-
tion is different in nature. Indeed, classification con-
fidence measures should not be concerned with the
uncertainty of the data, which is implicit to the prob-
abilistic nature of the problem and is taken into
account by statistical decision theory, but should
focus on the accuracy of the model. We will see that,
for this reason, confidence measures for classifica-
tion can only be heuristic in nature. This does not
mean that we should not use them but, rather, that
they should be used with caution and with knowl-
edge of the measure’s underlying assumptions.

In Section 2, we formalize the problem of neural net-
work classification within the framework of statisti-
cal decision theory. Section 2.1 briefly discusses the
similar problem of confidence measures for regres-
sion and Section 2.2 presents some known conver-
gence results of neural network classifiers that justify
the application of statistical decision theory. In Sec-
tion 3 we discuss classification confidence measures
of two different kinds, those dealing with the proba-
bility of misclassification given the outputs (Section
3.1) and those dealing with the accuracy of the
model’s outputs themselves (Section 3.2). We will
try to explicit, for each measure, the underlying
assumptions and potential pitfalls. We introduce a
novel confidence measure (Section 3.3) which takes
into account the probabilistic nature of the decision
problem and the confidence on our probability esti-
mates. In Section 4, we test the different measures on
a real-world application and an artificial problem.
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Confidence measures in regression arise from the
need to know more than just the expectation of the
random variable, E(Y|X). Higher order moments,
such as the variance, may be used as confidence mea-
sures. Considering that the function h provides an
approximation of E(Y|X), the local probability of
error P(|h(x) - y(x) | < e), can be modelled by the
variance of Y given X, assuming a gaussian distribu-
tion of errors [1], or modelled by a second regressor
[9].

Classification differs from regression in the nature of
the random variable Y. The underlying posterior
class probability distributions P(Y|X) are continuous
valued functions as in the regression problem, and
are also equal to E(Y|X), if we code appropriately
classes as binary vectors. class vectors. However,
probabilities themselves are not uncertain or noisy,
and furthermore they are subject to the constraints
proper to probability functions (they are positive and
sum to one). In this case variance is not an issue;
since there is no «noise» in the labels, variance of Y
is implicit in its probability distribution, and taken
into account in the decision step.

2.2 The Bayes Classifier and Neural Networks

Choosing the most probable class for every object
corresponds to the Bayes decision rule:

where  is the decision (the chosen class), k is the
index of classes, x the input pattern to be classified,
D is the doubt or rejection class and d is the rejection
threshold. The Bayes classifier is optimal in the sense
that it leads to the smallest probability of misclassifi-
cation. This classifier is correct with probability

 and  inco r rec t  w i th  p robab i l i t y
.  N o t e  t h a t  w h e n

 the classifier rejects the input pat-
tern, this classification not being considered either
correct or incorrect.

We may interpret  as a confidence value
and d as a confidence threshold. Since this leads to
the Bayes classifier, which is optimal with respect to
misclassification, we obtain an optimal classification
rule, an optimal confidence measure and an optimal
rejection criterion. These are of course only useful if
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2 Confidence Measures for Neural Net-
work Classifiers

Classification can be best described within the statis-
tical decision framework. Patterns are realizations of
a random vector X. Classes are realizations of a ran-
dom variable Y with K discrete unordered possible
values. There exists a (fixed but unknown) joint
probability law F(X,Y) linking the pattern space to
the classes. A classifier is a function h from the pat-
tern space to the set of classes {1,...,K}. We will see
that the optimal local confidence measure is the prob-
ability that the class assigned to object x by our clas-
sifier, h(x), be different from the true class, c, of the
object, . Since this probability cannot
be exactly computed, we are interested in measures
that are correlated to or give us some indication on
this probability.

We see in Section 2.1 that, under such a framework,
classification confidence is similar to its regression
counterpart. However we consider here neural net-
work classifiers and, more generally, classifiers
which implement the function h by the composition
of: i) an estimation of posterior class probabilities
(the estimation step) and ii) the application of the
Bayes decision rule (the decision step). Under this
framework, the decision itself is done by an «opti-
mal» deterministic function, but the quality of the
result depends on the estimation step (see Section
2.2).

2.1 Local error probability in classification
and regression.

The same framework described for classification is
valid in regression, up to the decision step. Y is now
a random variable with continuous values, the
desired or output values. Output values are assumed
to be the result of the addition of an unknown func-
tion f(x) and some centered Gaussian noise. This
hypothesis implies that the distributions p(Y|X) is
itself gaussian. Applying the maximum likelihood
principle (i.e. minimizing a sum-of-squares error
function), one can determine the parameters of the
researched function h(x), which is an approximation
of the unknown function f(x). Furthermore, f(x) is
equal to the conditional expectation E(Y|X), so h(x)
is an approximation to E(Y|X).

P h x( ) c x≠( )



we know the posterior class probability distributions.

Neural Networks approximate class posterior proba-
bilities under some general conditions [10]. That is,
given a sample {(xn,y0)} where (x,y) are drawn from
the fixed but unknown probability law, x is a real
vector and y is a vector coding the class, the net-
work's outputs (noted ) after training approxi-
mate the posterior class probabilities .
Furthermore, it has been shown [11] that training
minimizes:

,

where F(x,w) is the NN output for input feature vec-
tor x and weight vector w, and g0(x) is the (optimal)
Bayes discriminant function. This means that a NN
trained by back-propagation is the best possible NN
classifier in the sense that it will provide the best
minimum squared error approximation to the Bayes
optimal discriminant function. This is why it makes
sense to choose the most activated output as the
(most probable) class of an input pattern (note how-
ever that the local accuracy of this approximation is
weighted by the data density p(x)).

Now, let  and  be the classes with highest true proba-
bility and highest estimated probability

respectively. In other words,  is the class
assigned by the Bayes classifier to input pattern x,
and  is the class assigned by our neural network clas-
sifier (NNC). If these two classes are the same the
probability of misclassification of the NNC will be
the Bayes error , regardless of the quality of the esti-
mation. This value is unknown, but we may use  as
an approximation. On the other hand, if  is different
from , this approximation will be biased. This is why
output activations (unlike true posterior probabili-
ties) are not sufficient to compute or even to estimate
the probability of misclassification.

In the 2-class problem, the probability of misclassifi-
cation when  and  are different is (see [4] for a dis-
cussion on 2-class problems):

,

This analysis is however difficult to extend to more
than 2 classes. The accuracy of the approximated
class posterior probabilities will depend on many
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factors, such as the size and fitness of the data or the
model's complexity1, and if there are more than two
classes it seems difficult to estimate the error proba-
bility of misclassifed examples.

3 Measures of Confidence

3.1 Heuristic Measures of Confidence

A common measure of confidence used in NN classi-
fication is the strength of the most activated output
unit. In doing so we assume that our model is reason-
ably good in approximating the real class posterior
probabilities:

Note that the network output‘s, , are not how-
ever true probabilities, since there is no guarantee
that their sum be one. A probability distribution may
be trivially obtained by normalizing the outputs. A
more statistically meaningful measure would there-
fore be the normalized version of D0:

, where

These two measures suffer from the same problem
discussed in the previous section: the true object
class ,  and the predicted class

 may not be the same. In this case
the two previous measures are not reliable. In fact,
these measures are an approximation of the true
probability of good classification when the class cho-
sen is most probably correct, but not otherwise. They
do not tell us the confidence on the choice of class.
When output activations are close, small errors may
easily change the class mostly activated without
changing the value of the previously defined confi-
dence measures. A confidence measure that takes
this fact into account is the (negative) entropy of the

1.[Tumer & Ghosh 96] have shown that it is possible to
estimate the probability of Bayesian error together with
the approximation error using a combination of NNs or
other approximators of Bayesian classifiers. However,
their method cannot be applied to approximate the local
probability of error.
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normalized network's output [14]:

This measure is zero when only one class is acti-
vated, and minimal when all classes are equally
probable. Implicit to this measure is the belief that as
approximated posterior class probabilities get closer,
misclassifications are more probable, as explained
before; note however that if a classifier strongly mis-
classifed a pattern, this confidence measure will be
misleadingly high. This is not very probable, but may
occur, for example, when classifying outliers, or for
heavily under-parametrized networks.

Normalizing outputs may be dangerous if network
outputs are not close to a true probability distribu-
tion. If, for example, the sum of the outputs of a net-
work is close to 0, the outputs are far from a true
probabilistic distribution, and it seems wrong to clas-
sify such patterns even if entropy is low (which could
be the case after normalization). Since outputs
should sum up to one for posterior class probabili-
ties, a measure of distance between one and this sum
may be used to test the validity of the network output
as a probability distribution.

A different type of measure was proposed in [10];
prior class probabilities P(Y=k) may be obtained
marginalizing the posterior class probabilities
P(Y=k|x), and may at the same time be estimated by
counting on a labeled set. The relative entropic dis-
tance of these two variables may be then used as a
confidence measure:

,

where yi is the class assigned by the classifier. This
measure however is local to the class but indepen-
dent of the input vector x (for this reason, it will not
be considered further).

3.2 Error Estimates

Error estimates differ from the previous confidence
measures in that they measure the accuracy of the
output values, independently of the classification
problem behind. They are a measure of the validity
of the models, not of the difficulty of classification.

D2 x( ) H P k̂ x( )( )–= P l̂ x( ) P l̂ x( )log
l 1=
K∑=

D3 Ci( ) Freq Cl( )
Freq Cl( )
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--------------------------log
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K

∑=

There exist several robust methods of error estima-
tion with Neural Networks (see for example [3]
Chapter 21). A comparative study of some of them is
presented in [13]. We use here the Bootstrap pairs
sampling algorithm [3] to determine if it improves on
the previous heuristic methods.

The bootstrap estimate of the standard error of the
prediction  is:

where  is the estimate of the b-th bootstrap
ensemble, B is the total number of bootstrap ensem-
bles and  is the mean of their estimate:

. Since we are not interested in the
true error estimate but only on the relative values, we
define our measure more simply as the variance of
the ensemble:

This measure has been used as a measure of confi-
dence in classification problems with bootstrapped
ensembles [12]. The variance of an ensemble of net-
works built by crossvalidation has also been utilized
as the figure of merit to choose input patterns for
active learning in [6]. In [7], on the other hand, the
minimal and maximal output values of the ensemble
to display confidence intervals for human interaction.

3.3 Combining Classification Heuristics and
Error Estimates

Error estimates are independent of the probabilistic
interpretation we make of the network‘s output.
Unlike their probabilistic counterparts, they do not
take into account the classification decision that
needs to be carried on the outputs. Using D4, for
example, low variance indicates high confidence on
the accuracy of the output. On the other hand, using
D1, an output value near 1 indicates high confidence
on the class assignment, taking the output activation
at face value. These two types of measures are there-
fore complementary. That is the reason why we pro-
pose to combine them into a unique measure of the
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type:

where f is some simple function which combines the
risk of misclassificarion and the probability error
estimate, may be used effectively. In particular, we
try the simplest combination of these two quantities,
their difference: . This is an heuristic
measure with no probabilistic interpretation. Intu-
itively, the activation (that is, the confidence, if pos-
terior probabilities were correctly approximated) is
moderated by the variance (interpreted as the quality
of the approximation). Note that the variance is nec-
essarily in the [0, l2/4] range, where l is the differ-
ence between minimal  and maximal  output
activations (usually 1).

3.4 Observations on 2-class Problems

There are many applications where classifiers are
trained to detect a particular class of objects. In many
problems, for example, classes are not necessarily
exclusive (that is, an object may belong to several
classes simultaneously). It is typical in these cases to
model each class independently, with a single NN of
one output. The output of the network models the
posterior probability of the class , and

 is then the posterior probability of the
object not belonging to the class.We note that, for
such cases, the confidence measures available are
greatly reduced. The sum of the output probabilities
is 1 by definition, rendering D3 useless. Entropic
measures, as well as normalization, become unneces-
sary since the probability of one class becomes com-
pletely determined by the probability of the other.
Consequently, measures D2 and D1, in the two class
problem, become equivalent to D0 (up to a scaling
function). Similarly, D2 becomes equivalent to com-
puting the difference between the real and the esti-
mated class frequencies.

4 Results

We have seen that confidence measures introduced in
this paper make some strong assumptions and are
heuristic in nature; no single measure portrays com-
pletely the confidence (that is, the true probability of
error, taking into account all factors). In this section
we apply the measures introduced in Section 3 to a

D5 f D0 D4,( )=

D5 D0 D4–=

P̂ k x( )
1 P̂ k x( )–

real-world application and an artificial classification
problem, and discuss their behavior with respect to
several figures of merit.

The real-world application discussed here is an auto-
matic truck-motor failure diagnosis system. Trucks
are represented by pattern-vectors of 35 real valued
variables which define the state of a truck motor. Dif-
ferent types of failures must be identified; some fail-
ure subsets are exclusive but most are not. The most
common class by large is the «No Failure» class. We
will study two different problems within this applica-
tion: a 2-class diagnosis problem and a n-class classi-
fication problem. In the first case, only one failure is
considered; a truck must be classified as either «Fail-
ure A» (FA) or «No Failure A» (NF). The number of
FA examples is one third of the number of NF exam-
ples. In the second case the are four exclusive fail-
ures (B, C and D) roughly equally represented

The reason we test these two different settings is the
following. We noted that only D0 and ensemble mea-
sures are applicable to 2-class problems (the rest
being either equivalent or meaningless). Diagnosis is
a typical 2-class application, were one of the classes
is under-represented (in our example, the class A
with respect to NF). Unfortunately, output activation
measures of the D0 type introduce a strong bias in the
rejection procedure, since under-represented classes
tend to have lower output activations. This leads to
the systematic rejection of the under-represented
class, which is optimal with respect to overall perfor-
mance, but highly undesirable in cases were missing
true failures is more dangerous than detecting false
ones (i.e. when the risk of false alarms is low). We
use a training and test set of 1500 and 500 patterns
respectively for both experiments.

For the artificial classification problem we used the
Breiman Waves [2]. It is a symmetrical three-class
classification problem in 21 dimensions. Class prior
probabilities are equal. We used a data-set of 1000
points for training and 3000 for testing. There are no
under-represented classes in this problem, so there is
no «privileged» class a priori; we monitor neverthe-
less both overall performance and the performance
for one of the classes independently, as in the real-
world problem.

In all experiments we use Multi Layer Perceptrons
with sigmoidal hidden and output units [5] (the most



common neural network classifier architecture). All
networks have 5 hidden units and are trained with the
batch conjugated gradient algorithm (training is
stopped when the learning quadratic error gradient
decreases under 0.01).

In the following we will discuss results on the real
world-problem and compare these with the artificial
problem. Results will be presented as performance
versus rejection ratio curves. In these curves, as we
go from the left to the right we move from low rejec-
tion (were only highly unconfident patterns are
rejected) to high rejection (were only highly confi-
dent patterns are classified). If confidence measures
are adequately correlated with the probability of mis-
classification of patterns, the slope of the curves
should be positive; a negative slope means that more
hits than errors are being rejected. A horizontal line,
on the other hand, indicates a non correlated confi-
dence measure, equivalent to a random rejection
scheme. The dotted line represents the performance
of an «oracle» confidence rule which would assign a
confidence of 1 to well-classified examples and 0 to
wrongly-classified ones.

In the first experiment (Figure 1) we apply ensemble
confidence measures to the 2-class real-world prob-
lem. The overall test classification rate is 72%, but
note that performance on the FA class is only of 49%.
With respect to overall performance (top graph) the
two best confidence measures are clearly D0 and D5.
With respect to class FA however (bottom graph) we
see that D0 is a dangerous confidence measure: its
slope is negative. D4, on the other hand, is a good
rejection criterion for FA examples but, overall, is
only useful in the low rejection range (or, alterna-
tively, for high variances). The proposed measure D5
effectively combines the strengths of both previous
measures, yielding an overall performance gain,
without penalizing the under-represented class. The
same experiences were carried out with the artificial
problem (Figure 2). For this problem all classes are
equally represented so there is no «privileged» class,
as it was the case in the previous experience. We see
in fact that overall and single-class behaviors are
quite similar. The ensemble variance (D4) is clearly
inadequate in this case, while D0 and D5 perform
similarly. This is important since it shows that the
proposed measure D5 performs as well as output acti-
vation even in situations when variance is a poor
indicator of confidence.

In Figure 3 we present the three heuristic confidence
measures applicable to single classifiers in a multi-
class classification problem. We can observe that D0,
which is simply the activation strength of the output
(bounded by the sigmoidal activation function, but
otherwise not normalized) proofs to be as good a
confidence measure as the normalized output entropy
D2. Both of these are clearly superior to the normal-
ized output D1. With respect to the artificial problem,
the only reasonable confidence measure is the output
activation, the other two measures leading to surpris-
ingly poor results.

Finally, in Figure 4, we compare the D0 measure
computed with a single network (SINGLE), the same
measure computed by the average of the boot-
strapped ensembles (BTSP), and the proposed D5
measure, on the 2-class real-world problem and the
artificial problem. For the 2-class problem (Figure 4
top) we have plotted both overall performance (top
curves) and performance relative the under-repre-
sented class (bottom curves). For the artificial prob-
l em (F igu re  4  bo t tom)  we  p lo t t ed  ove ra l l
performance (top curves) and percentage of points
from one of the classes (bottom curves). We see that
the quality of the three measures for overall classifi-
cation is very similar. In the artificial problem SIN-
GLE is not as good as BTSP or D5 at high rejection
rates; this may be due to the uneven rejection rate for
one of the classes (as seen in the bottom D0 curve).
In the real-world problem, bootstrapped performance
is slightly superior to single network performance
(.03% overall and.09% with respect to the under-rep-
resented class) but confidence measures overall are
similar (the slope of the curves being the same). In
the 2-class problem, we see however that the quality
of the three different measures is quite different with
respect to the under-represented class. As seen
already in Figure 1, the bootstrap mean output mea-
sure (BTSP), rejects on average more good classifi-
cations than misclassifications (relative to the under-
represented class). The single network D0 measure is
a better confidence measure with respect to the
under-represented class, although it leads to lower
performances. Finally, the proposed measure D5 pro-
duces the highest overall performance as well as the
highest performance with respect to the under-repre-
sented class; it is therefore the only confidence mea-
sure in our experiences that leads to a consistent
rejection criterion for both 2-class and multi-class
neural network classification.



Figure 1: Ensemble Confidence Measures (Real World 2-
class problem). Overall performance (top), should be con-
trasted with performance with respect to the under-repre-

sented class (bottom).

Figure 2: Ensemble Confidence Measures (Artificial prob-
lem). Overall performance (top graph) should be con-

trasted with performance with respect to a single (the most
difficult) class (bottom graph).
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Figure 3: Heuristic Confidence Measures: output activation
(D0), normalized (D1) and normalized output entropy (D2).
Results are presented on the real-world 3-class problem

(top) and the artificial problem (bottom).

Figure 4: Comparison of Heuristic and Error Confidence
Measures. SINGLE and BTSP are D0 measures computed

by a single network and an ensemble respectively. For
each of the two problems (top graph: real world 2-class

problem, bottom graph: artificial problem) curves indicate
overall performance (top curves) and class A performance

(bottom curves).
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5 Conclusions

We reviewed some notions from statistical decision
theory that offer an insight on the determination and
use of confidence measures for classification with
Neural Networks. We have argued why an «optimal»
confidence measure is not possible in most practical
situations, and we have presented several heuristic
measures for the determination of confidence values.
We then proposed a simple measure which combines
the benefits of the probabilistic interpretation of net-
work outputs and the estimation of the quality of the
model by bootstrap. A real-world application and an
artificial problem were used to compare the different
confidence measures for 2-class and n-class classifi-
cation. Results show that the simplest confidence
measure, output activation, is as good (and often bet-
ter) as the rest of confidence measures proposed in
the literature. One exception are 2-class problems
with one under-represented class, in which output
activation is in fact quite dangerous. The measure we
have proposed was the only one which showed good
behavior both for n-class and 2-class problems.
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