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1 Overview

This paper presents a nonlinear, non-stationary, stochas-
tic model for estimating and removing the effects of
background noise on speech cepstra. The model is
the union of dynamic system equations for speech and
noise, and a model describing how speech and noise are
mixed.

We replace the Gaussian mixture model (GMM) or hid-
den Markov model (HMM) for speech commonly found
in standard model based feature enhancement tech-
niques with a switching linear dynamic model (LDM).
The main advantages of using a LDM are:
•Linear dynamics capture the smooth time evolution.
• Switching states capture piecewise stationarity.
This paper show how substantial word error rate im-

provement can be achieved with a relatively small
model sizes under reasonable computational require-
ments.

2 Modeling Equations

2.1 Linear Dynamic Model
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A standard LDM obeys equations,

p(xt|xt−1) = N(xt; Axt−1 + b, C)

p(xT
1 ) = p(x1)

T∏
t=2

p(xt|xt−1)

Here, A and b describe how the process evolves over
time, and the covariance C is induced by the zero-mean
Gaussian noise source which drives the system. The
LDM parameters are time-invariant, and are useful in
describing signals such as colored Gaussian noise.

2.2 Switching LDM
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In a switching LDM, the A and b are dependent on a
hidden variable at each time t.

p(xt, st|xt−1) = N(xt; Ast
xt−1 + bst

, Cst
)p(st)

p(xT
1 , sT

1 ) = p(x1, s1)

T∏
t=2

p(xt, st|xt−1)

Every unique state sequence sT
1 describes a non-

stationary LDM. As a result, it is appropriate for de-
scribing a number of time-varying systems, including
the evolution of speech and noise features over time.

2.3 Observation Model
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p(r|x, n) = δ(x − n − r)
p(y|x, n) = δ(ln(ex + en) − y)

p(r, y) = N(y − ln(er + 1) + r; µx, σx)
N(y − ln(er + 1); µn, σn)

⎫⎪⎪⎬
⎪⎪⎭

⇒ p(y|x)

The observation model relates the noisy observation to
the hidden speech and noise features. The model used
in this paper is the zero variance model with SNR infer-
ence[Droppo2003]. It is similar to several related tech-
niques including those by Moreno, Frey, and Stouten.

3 System Behavior

The system, like other model based feature enhancement
systems, produces clean cepstral estimates from noisy
cepstra.

But, when we replace the more traditional GMM with
a switching LDM, it causes the enhancement problem to
become intractable.

•Enhancement running time under a GMM is propor-
tional to the length of the utterance.

•An exact implementation of the switching LDM is ex-
ponential in the length of the utterance.

To overcome this drawback, the standard generalized
pseudo-Bayesian technique is used to provide an ap-
proximate solution of the enhancement problem.
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Figure 1: The GPB(1) approximation.

A Obtain the posterior for frame t − 1, p(xt−1|st−1, y
t−1
1 ).

B Use moment matching to approximate [A] as a single
component, p(xt−1|yt−1

1 ).
C Combine [B] with the switching linear dynamic model

to create a new multi-component prior for the current
frame, p(xt|st, y

t−1
1 ).

D Combine [C] with the observation model to produce a
posterior for the current frame p(xt|st, y

t
1).
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Figure 2: Estimating x from noisy input.

The prior for x, p(xt|yt−1
1 ), (solid green lines) comes ei-

ther from a linear dynamic model (top) or a static Gaus-
sian model (bottom). The posterior for x, p(xt|yt

1) (solid
blue lines) is created from the prior and the observation
model. The linear dynamic model produces estimates
for x (red circles) that are closer to the true values (red
dots).

4 Experimental Results

Recognition accuracy is measured on the Aurora 2 task
with the “complex” back-end with a clean acoustic

model. Results shown are measured on enhanced data
from test set A, and have been averaged over the 0 dB to
20 dB conditions. Models with up to 128 hidden compo-
nents are evaluated.

Components Subway Babble Car Exhibition Ave.
0 65.8 43.2 57.6 67.8 58.6
1 73.1 61.6 80.1 71.6 71.6
2 74.7 64.2 81.8 73.5 73.6
4 80.4 65.1 85.4 76.9 77.0
8 80.5 66.9 86.1 78.1 77.9

16 80.6 67.5 86.2 77.8 78.0
32 83.2 69.6 87.0 79.2 79.8
64 83.6 68.8 87.4 79.2 79.8

128 83.7 69.7 87.4 79.1 80.0

Table 1: Enhancement is performed in forward direction.

The average results for forward enhancement saturate
at just under 80% digit accuracy, which indicates that a
model with only 16 or 32 mixture components is suffi-
cient.

Components Subway Babble Car Exhibition Ave.
0 65.8 43.2 57.5 67.8 58.6
1 76.5 68.3 83.9 76.2 76.2
2 77.0 70.0 84.5 76.5 77.0
4 80.9 69.4 86.5 77.6 78.6
8 81.4 71.0 87.2 79.4 79.7

16 81.6 71.3 87.5 79.4 80.0
32 83.6 72.4 87.8 80.2 81.0
64 84.1 72.1 88.3 80.3 81.2

128 84.1 73.1 88.3 80.3 81.5

Table 2: Forward and backward enhancement are
combined.

5 Summary

These preliminary results indicate that this model can re-
duce digit error rate, even with relatively small number
of mixture components.

To expand upon this initial result, future work should
include:
• Increasing the history length of GPB to more closely

approximate the true posterior distribution.

•Modeling the linear dynamics of noise in addition to
speech.

•Augmenting the switching LDM with discrete state
transition probabilities.

•Exploring other approximation strategies for this sys-
tem.


