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ABSTRACT

A key problem faced by audio identification, classification,
and retrieval systems is the mapping of high-dimensional
audio input data into informative lower-dimensional feature
vectors. This paper explores an automatic dimensionality
reduction algorithm called Distortion Discriminant Analy-
sis (DDA). Each layer of DDA projects its input into di-
rections which maximize the SNR for a given set of dis-
tortions. Multiple layers efficiently extract features over a
wide temporal window. The audio input to DDA undergoes
perceptually-relevant preprocessing and de-equalization, to
further suppress distortions. We apply DDA to the task of
identifying audio clips in an incoming audio stream, based
on matching stored audio fingerprints. We show excellent
test results on matching input fingerprints against 36 hours
of stored audio data.

1. INTRODUCTION

Current audio classification, segmentation and retrieval meth-
ods often use heuristic audio features, such as the mel cep-
stra, the zero crossing rate, energy measures, spectral com-
ponents, and derivatives of these quantities [1, 2, 3]. A sys-
tem designed with heuristic features may not be optimal:
other features may give better performance or may be more
robust to noise.

This paper presents Distortion Discriminant Analysis,
which uses oriented PCA [5] to find a set of projections of
an input space which maximize the SNR, and which then
combines multiple layers to create a linear convolutional
neural network that generates noise-robust features over a
long temporal window.

DDA assumes that distorted versions of a set of training
signals are available. Requiring samples of distorted signals
is less stringent and more general than requiring that the real
noise model be known.

We apply DDA to identify known audio segments in a
stream of audio. We call this application “stream audio fin-
gerprinting” (SAF). In SAF, a fixed-length segment of the
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audio stream is converted into a low-dimensional trace (a
vector). This input trace is then compared against a large
set of stored, pre-computed traces, where each stored trace
has previously been extracted from a particular audio seg-
ment (e.g., a song from a CD).

In this paper, vectors are denoted in bold font and their
components in normal font, and prime denotes transpose.

2. DISTORTION DISCRIMINANT ANALYSIS

DDA automatically extracts features from pre-processed au-
dio using multiple layers. Each layer applies oriented prin-
cipal components analysis (OPCA) [5] to its input, which
attempts to preserve signal while suppressing known distor-
tions. Subsequent layers aggregate outputs of the previous
layers over increasingly wide time windows.

2.1. Oriented PCA

In this section we review OPCA, a version of which is used
to construct a given layer of our DDA system. OPCA learns
a set of L directions vm, given a set of M undistorted train-
ing inputs, T i, and N distorted versions of each training
input vector, D ik. If the input of a DDA layer is Ij , then the
output is Om =

∑
j vmjIj .

We define the signal, si, to be the output of the OPCA
layer for the undistorted training inputs, Om(T i), and the
noise, nik, to be Om(D ik)− Om(T i). Let µm be the aver-
age of sim over i. OPCA chooses the set of directions that
both maximize the signal variance,

∑
i(sim − µm)2, and

minimize the noise power,
∑

i,k n2
ikm (note that the sim,

µm and nikm all depend on the directions vm). Note that
our projection method differs slightly from OPCA in that
we use the correlation matrix of the noise in the denomi-
nator, rather than the covariance matrix, since we wish to
penalize the mean noise signal as well as its variance1.

This simultaneous maximization/minimization can be ac-
complished by maximizing the generalized Rayleigh quo-
tient [4]. Let Q be the mean over i of T i. If C1 is the

1Consider, for example, noise that has zero variance but nonzero mean.
We still wish to find directions that are orthogonal to the mean vector.
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covariance matrix of the undistorted training inputs,

C1 =
1

M

∑

i

(T i − Q )(T i − Q )′ (1)

and if C2 is the correlation matrix of the difference between
distorted and undistorted training inputs,

C2 =
1

NM

∑

i,k

(D ik − T i)(D ik − T i)
′, (2)

then we wish to find v that maximizes

R =
v′C1v

v′C2v
. (3)

The numerator of R is the variance of the signal projected
along v, while the denominator of R is the noise power,
projected along v. Requiring that the gradient of R vanishes
gives

C1v = RC2v. (4)

Equation (4) is a generalized eigenvalue problem2, which
usually has as many unit-length eigenvector solutions as the
dimensionality of the input space. The eigenvalue of each
solution gives R, the output SNR, if the input is projected
along the corresponding eigenvector v. Thus, the OPCA
directions are those L eigenvectors with the largest eigen-
values.

Note that as opposed to PCA, which finds a set of or-
thogonal directions which maximize the signal variance, this
approach yields a set of possibly non-orthogonal directions
which take into account the noise statistics.

OPCA is also related to Multiple Discriminant Analy-
sis (MDA) [4]. MDA is a dimensionality reduction method
for classification which creates projection directions whose
outputs simultaneously maximize inter-class variance and
minimize intra-class variance. MDA also converts this op-
timization into a generalized eigenvalue problem. However
here the denominator of the Rayleigh quotient is generated
by applying distortions to each training point, rather than
averaging all intra-class covariance matrices. Also, the de-
nominator above is not limited to be a covariance matrix:
the distortions need not have zero mean.

2.2. Multiple Layers

The DDA stream audio fingerprinting system has three OPCA
layers, shown in Fig. 1. Every output is offset and scaled so
that the mean of the signal projections is zero and the noise
has unit variance.

In the SAF system, 128 values are generated every 11.6
ms from the audio pre-processing. The first layer operates

2which reduces to an ordinary eigenvalue problem if either C1 or C2 is
invertible.
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Fig. 1. Architecture of the SAF system.

on a single frame of 128 values and generates 10 values.
The second layer aggregates 42 adjacent frames of first-
layer outputs (420 values corresponding to 1/2 s of audio)
and produces 20 values. The second layer is evaluated ev-
ery 243.6 ms. The third and last layer aggegates 40 tempo-
rally adjacent samples of second-layer outputs (800 values
corresponding to 10 seconds of audio) and produces 64 val-
ues every 243.6 ms. This 64-element input trace is then
compared to a database of pre-computed 64 element stored
traces, to identify the audio segment. For simplicity, we use
Euclidean distance to compare the input trace to the stored
traces. A non-Euclidean distance metric may be more ac-
curate, in the likely case that the noise distribution is not
spherical Gaussian.

In principle, the three layers could be replaced by a sin-
gle linear operation, which maps approximately 110K in-
puts onto 64 outputs. However this input size makes the
training computation infeasible. By contrast, DDA is effi-
cient in both train and test phases; C1 and C2 can be com-
puted incrementally, enabling the handling of very large
training sets, and in test phase, the three-layer DDA only
requires 250K multiply-adds per second.

3. EXPERIMENTAL RESULTS

In the following experiments, we evaluate the first layer for
robustness to input signal distortion; we evaluate the full
DDA system for robustness to time misalignment between
the input and the stored trace; and we estimate false positive
and false negative rates on distorted data using very large
test data sets. All results are reported on test sets that are
separate from the DDA training set.

Our SAF system first converts a stereo audio signal to
mono, then downsamples the signal to 11.025 KHz and splits
the signal into 23.2 ms frames, which overlap by 11.6 ms.
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An MCLT [6] is then applied to each frame. A 128-sample
log spectrum is generated by taking the log modulus of each
MCLT coefficient.

Before applying DDA, the SAF system performs two
pre-processing steps that suppress specific easy-to-identify
distortions.

The first pre-processing step removes distortion caused
by frequency equalization and volume adjustment. The de-
equalization step applies a high-pass filter (in frequency) to
the log spectrum, which results in a flatter spectrum. The
high-pass is performed by taking the DCT of the log spec-
trum, multiplying each DCT coefficient by a weight (rang-
ing linearly from 0 for the first component to 1 for the sixth
and higher components), then performing an IDCT.

The second pre-processing step removes distortions in
the signal that cannot be heard by a human listener. This
step exponentiates the log spectrum from the first step, then
generates a frequency-dependent perceptual threshold by an
algorithm described in [7]. The final pre-processed signal is
then the difference in dB between the log spectrum and the
log perceptual threshold, if that difference is positive, zero
otherwise. Thus, imperceptible frequencies are set to zero.

For the SAF system, the training set of the DDA system
comprises 50 20s segments (16.7 minutes of audio) chosen
from the middle portion of randomly chosen clips. For ev-
ery training segment, we constructed 7 distortions using the
CoolEdit software tool [8]: a 3/1 compressor above 30dB,
a compander, a spline boost of the mid frequency range,
a spline notch filter, a ’quick filter’ emulating poor quality
AM radio, and two non-linear amplitude distortions.

3.1. Robustness to Distortion

To evaluate the effectiveness of the first layer, we took 20
s segments from 15 clips from the test set, computed the 7
distorted versions for each, applied the pre-processing, and
then computed 10 projections with two different methods:
OPCA and a hand-designed feature set. The hand-designed
feature set averages the log spectrum over 10 Bark bands
from 510 Hz through 2.7 KHz. These bands were heuristi-
cally chosen to be robust against the 7 distortions.

Fig. 2 shows the measured noise-to-signal ratios for the
10 OPCA projections and 10 Bark projections, when both
sets of projections are given the same pre-processed signals
and distortions. The OPCA projections are ordered from
left to right in order of decreasing generalized eigenvalue
(SNR on the training set). For clarity, we only show the 4
worst performing distortions; the remaining 3 were smaller
by a factor of 100 (although OPCA improved SNR for these
3 as well). In Fig. 3, we plot the sum of all 7 noise-to-
signal ratios for the two kinds of projections. We can sum
the noise-to-signal ratios because a given projection has the
same denominator for each distortion. Note that the low-
est point on the hand-designed Bark projection curve falls

above the highest point on the OPCA curve, which clearly
demonstraces the superiority of OPCA over hand-designed
features.

0 5 10 15 20 25 30
0

0.2

0.4

0.6

0.8

1

1.2

1.4

Light Grunge
Distort Bass
Old Radio
Phone

OPCA Bark

N
oi

se
-t

o-
S

ig
na

l V
ar

ia
nc

e 
R

at
io

Fig. 2. OPCA vs. Bark projections for the worst 4 distor-
tions.
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Fig. 3. Noise-to-signal ratios summed over distortions, for
each of the 10 projections.

3.2. DDA for Robustness to Alignment

A stored trace may not align exactly with an input trace,
since an input trace is generated only every 250 ms. Mis-
alignment may cause the input trace to not match the stored
trace. However, we can train DDA to compensate for mis-
alignment by adding an extra distortion to the training of
the last layer: shifting the audio input window forward and
back by 125ms.

The second experiment takes the same data as the first
experiment and computes an input trace for each of the 15
clips. However, in this experiment, the beginning of the 10
second stored trace is shifted randomly by up to 1 second.
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Fig. 4 shows the results from two different DDA systems:
with and without the extra time-shift training. In Fig. 4,
the y axis is the ratio dt/dn, where dt is the smallest dis-
tance from a given stored trace to all of the input traces
from its corresponding target segment, and dn is the small-
est distance from the stored trace to all other, nontarget, in-
put traces. Fig. 4 shows that DDA is effective at reducing
noise arising from misalignment of input to the stored trace.
We emphasize that this kind of “noise” will be present in
any such system, and thus DDA is ideally suited for dealing
with it.

0 5 10 15
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

No Shift Training
With Shift Training

Clip ID

(d
t/d

n)

Fig. 4. SAF performance for systems trained with and with-
out alignment robustness.

3.3. Results on Larger Test Sets

To estimate the false positive rate, we extracted stored traces
from 500 audio clips and created 36 hours of input traces
from these same 500 audio clips. In this test, each stored
trace is again randomly shifted by up to 1 second. Each
stored trace is then compared to ≈ 500,000input traces,
only one of which should match. We set an “accept” thresh-
old to be twice the largest correct distance. With this thresh-
old, only 6 clips and 128 input traces matched an incorrect
stored trace. Of these 6 false positive clips, 5 resulted from
choosing a stored trace from a quiet, uniform part of the au-
dio clip. Thus, the SAF system has a per clip false positive
rate of 1.2%, and a false positive rate per pair of input/stored
traces of 5.1× 10−7. Note that we could also use several
stored traces for a given clip to further lower the false posi-
tive rate at very little extra computational cost.

Finally, we added the 7 distortions to the first 10 test
clips, in addition to the 1 second misalignment. Of the 70
resulting clips, using the same threshold gave 3 false neg-
atives and no new false positives, yielding a false negative
rate of 4.3%. The distortions corresponding to the 3 false
negatives are quite severe.

4. CONCLUSIONS

We have shown that DDA is an effective method for gener-
ating noise-robust audio features. Each layer of DDA uses
OPCA to maximize the SNR of its output. Multiple layers
are aggregated in order to enforce shift invariance and re-
duce computation time. We have applied DDA to stream
audio fingerprinting (SAF), and have shown that an SAF
system can be constructed to be robust against common au-
dio distortions and misalignment between the input and the
stored trace. We have tested this SAF system on a large
(500,000) set of input traces and shown that it has a low
false positive and false negative rate.

In future work, we will test DDA against noise that is
not in the DDA distortion set, such as time compression.
We will also investigate methods to speed up the database
matching, such as KD-trees. Finally, we will investigate
non-linear versions of DDA, which should further increase
the SNR of the resulting features.

5. ACKNOWLEDGEMENTS

We thank H.S. Malvar for designing the de-equalization and
for supplying the MCLT and perceptual thresholding code.

6. REFERENCES

[1] T. Zhang and C.-C. Jay Kuo, “Hierarchical classifica-
tion of audio data for archiving and retrieving,” in IEEE
Intl. Conf. on ASSP, 1999, vol. 6, pp. 3001–3004.

[2] L. Lu, H. Jiang, and H.-J. Zhang, “A robust audio clas-
sification and segmentation method,” in ACM Conf. on
Multimedia, 2001.

[3] J. T. Foote, “Content-based retrieval of music and au-
dio,” in Proc. SPIE Multimedia Storage and Archiving
Systems II, C. Kuo, Ed., 1997, vol. 3229, pp. 138–147.

[4] R. O. Duda and P. E. Hart, Pattern Classification and
Scene Analysis, John Wiley, 1973.

[5] K.I. Diamantaras and S.Y. Kung, Principal Component
Neural Networks, John Wiley, 1996.

[6] H. S. Malvar, “A modulated complex lapped transform
and its applications to audio processing,” in Proc. IEEE
Conf. on ASSP, 1999, pp. 1421–1424.

[7] H. S. Malvar, “Auditory masking in audio compres-
sion,” in Audio Anecdotes, K. Greenebaum, Ed. A. K.
Peters, Ltd., 2000.

[8] http://www.syntrillium.com/cooledit

I - 1024


