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Abstract

Given a set of images acquired from known viewpoints, we
describe a method for synthesizing the image which would
be seen from a new viewpoint. In contrast to existing tech-
niques, which explicitly reconstruct the 3D geometry of the
scene, we transform the problem to the reconstruction of
colour rather than depth. This retains the benefits of geo-
metric constraints, but projects out the ambiguities in depth
estimation which occur in textureless regions.

On the other hand, regularization is still needed in or-
der to generate high-quality images. The paper’s second
contribution is to constrain the generated views to lie in the
space of images whose texture statistics are those of the in-
put images. This amounts to aimage-basedprior on the
reconstruction which regularizes the solution, yielding re-
alistic synthetic views. Examples are given of new view
generation for cameras interpolated between the acquisi-
tion viewpoints—which enables synthetic steadicam stabi-
lization of a sequence with a high level of realism.

1. Introduction
Given a small number of photographs of the same scene
from several viewing positions, we want to synthesize the
image which would be seen from a new viewpoint. This
“view synthesis” problem has been widely researched in re-
cent years. However, even the best methods do not yet pro-
duce images which look truly real. The primary source of
error is in the trade-off between the inherent ambiguity of
the problem, and the loss of high-frequency detail due to
the regularizations which must be applied to alleviate that
ambiguity. In this paper, we show how to constrain the gen-
erated images to have the same local statistics as natural
images, effectively projecting the new view onto the space
of real-world images. As this space is a small subspace of
the space of all images, the result is strongly regularized
synthetic views which preserve high-frequency details.

Strategies for view synthesis are divided into those which
explicitly compute a 3D representation of the scene, and
those in which the computation of scene geometry is im-
plicit. The first class includes texture-mapped rendering
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Figure 1: View synthesis. (a,b): Two from a set of 39
images taken by a hand-held camera. (c): Detail from a new
view generated using state-of-the-art view synthesis. The
new view is about 20◦ displaced from the closest view in
the original sequence. Note the spurious echo of the ear.
(d): The same detail, but constrained to only generate views
which have similar local statistics to the input images.

of stereo reconstructions [11, 19, 20], volumetric tech-
niques such as space carving [3, 13, 15, 21, 26], and
other volumetric approaches [24]. Implicit-geometry tech-
niques [7, 14, 16, 17] assemble the pixels of the synthe-
sized view from the rays sampled by the pixels of the input
images. In a newly emergent class of technique, to which
this paper is most closely related, view-dependent geome-
try [4, 10, 12, 18] is used to guide the selection of the colour
at each pixel.

What all these techniques have in common, whether
based on lightfields or explicit 3D models, is that there is
no free lunch: in order to generate a new ray which is not in
the bundle one is given, one must solve a form of the stereo
correspondence problem. This is a difficult inverse prob-
lem, which is poorly conditioned: for a given set of images,
many different solutions will model the image data equally
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well. Thus, in order to select between the nearly equivalent
solutions the problem must be regularized by incorporating
prior knowledge about the likely form of the solution. Pre-
vious work on new-view synthesis or stereo reconstruction
has typically included such prior knowledge asa priori con-
straints on the (piecewise) smoothness of the 3D geometry,
which results in artifacts at depth boundaries. In this pa-
per, because the problem is expressed in terms of the recon-
structedimagerather than the reconstructed depth map, we
can impose image-based priors, which can be learnt from
natural images [6, 8, 9, 23].

The most relevant previous work is primarily in two ar-
eas: view-dependent geometry, and natural image statistics.
Irani et al [10] expressed new view generation as the esti-
mation of the colour at each generated pixel. Their repre-
sentation implies, as does ours, a 3D geometry for the scene
which is different for each synthetic viewpoint, and is thus
related to view-dependent visual hull computation [15, 26].
As they note, this greatly improves the fidelity of the re-
constructed image. However, it does not remove the fun-
damental ambiguity in the problem, which this paper di-
rectly addresses. In addition, their technique depends on
the presence of a dominant plane in the scene, where this
paper deals with the case of a general 3D scene with gen-
eral camera motion.

The use of image-based priors to regularize hard inverse
problems is inspired by Freeman and Pasztor’s work [6] on
learning priors for Bayesian image reconstruction. Our tex-
ture representation, as a library of exemplar image patches,
derives from this and from the recent tecture synthesis lit-
erature [5, 25]. In this paper we extend these ideas to deal
with the strongly multimodal data likelihoods present in the
image-based rendering task, allowing the generation of new
views which are locally similar to the input images, but
globally consistent with the new viewpoint.

2. Problem statement
We are given a collection ofn 2D imagesI1 toIn, in which
Ii(x, y) is the color at pixel(x, y) of theith image.1 Color is
expressed as a 3- vector in an appropriate colorspace. The
images are taken by cameras in different positions repre-
sented by3 × 4 projection matricesP1 to Pn, which are
supplied. Figure 1 summarizes the situation. The projec-
tion matrix P projects homogeneous 3D pointsX to ho-
mogeneous 2D pointsx = λ(x, y, 1)> linearly: x = PX
where the equality is up to scale. We denote byIi(X) the
pixel in imagei to which 3D pointX projects, so

Ii(X) = Ii(π(PiX)), π(x, y, w) = (x/w, y/w) (1)

1Notation guide: calligraphic lettersL are images or windows from im-
ages. Uppercase roman lettersL are RGB (or other colourspace) vectors.
Bold roman lowercasex denotes 2D points, also written(x, y), and bold
roman uppercase are 3D pointsX. Matrices are in fixed-width font, vizM.

Epipolar lines: Projections of ray X(z)
The stack of epipolar lines is C(i,z)

Input
images

I1
I2

I3

3D Object

View to be
synthesized

Pixel (x,y) to be
generated, with
colour V(x,y)

3D Ray X(z)

Figure 2: Geometric configuration . The supplied infor-
mation is a set of 2D images I1..n and their camera positions
P1..n. At each pixel in the view to be synthesized, we wish to
discover the colour which is most likely to be a reprojection
of a 3D object point, based on the implied projection into the
source images.

The task of virtual view synthesis is to generate the image
which would be seen by a virtual camera in a position not
in the original set. Specifically, we wish to compute, for
each pixelV (x, y) in a virtual imageV the color which
that pixel would observe if a real camera were placed at
the new location. We assume we are dealing with diffuse,
opaque objects, and that any deviations from this assump-
tion may be considered part of imaging noise. The exten-
sions to more general lighting assumptions are exactly those
in space carving [13], and will not be dealt with here.

The objective of this work is to infer the most likely ren-
dered viewV given the set of input imagesI1, .., In. In
a Bayesian framework, we wish to choose the synthesised
view V which maximizes the posteriorp(V | I1, .., In).
Bayes’ rule allows us to write this as

p(V | I1, .., In) =
p(I1, .., In | V)p(V)

p(I1, .., In)
(2)

where p(V) is the prior on V, and the data term
p(I1, .., In | V) measures the likelihood that the observed
images could have been observed ifV were the true colours
at the novel viewpoint. Because we shall maximize this
posterior overV, we need not compute the denominator
p(I1, .., In), and will instead optimize the function

q(V) = p(I1, .., In | V)p(V) (3)

This quasi-likelihood has two parts: the photoconsistency
likelihood p(I1, .., In | V) and the priorp(V) which we
shall callptexture(V).

2.1. Photoconsistency constraint
The color consistency constraint we employ is standard in
the stereo and space-carving literature. We consider each
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Figure 3: Photoconsistency. One image is shown from a sequence of 27 captured by a hand-held camera. The circled
pixel x’s photoconsistency with respect to the other 26 images is illustrated on the right. The upper right image shows
the reprojected colours C(:, z) as columns of 26 colour samples, at each of 500 depth samples. The colours are the samples
C(i, z) where the frame number i varies along the vertical axis, and the depth samples z vary along the horizontal. Equivalently,
row i of this image is the intensity along the epipolar line generated by x in image i. Below are shown photoconsistency
likelihoods p(C | V, z) for two values of the colour V (backgrounds to the plots). As this pixel is a co-location of background
and foreground, these two colours form modes of p(C | V ) when z is maximized. This multi-modality is the essence of the
ambiguity in new-view synthesis, which prior knowledge must remove.

pixel V (x, y) in the synthesised view separately, so the like-
lihood is written as the product of per-pixel likelihoods

p(I1, .., In | V) =
∏
(x,y)

p(I1, .., In | V (x, y)) (4)

Consider the generation of new-view pixelV (x, y). This
is a sample from along the ray emanating from the camera
centre, which we may assume to be the origin. Let the di-
rection of this ray be denotedd(x, y). It can be computed
easily given the calibration parameters of the virtual cam-
era. Let a 3D point along the ray be given by the function
X(z) = zd(x, y) wherez ranges between preset values
zmin and zmax. For a given depthz, we can compute us-
ing (1) the set of pixels to whichX(z) projects in the im-
agesI1..n. Denote the colors of those pixels by the function

C(i, z) = Ii(X(z)). (5)

Let the set of all colours at a givenz value be written

C(:, z) = {C(i, z)}n
i=1 , (6)

and the set,C, of all samples—at location(x, y)—be

C = {C(i, z) | 1 ≤ i ≤ n, zmin < z < zmax}. (7)

Figure 3 shows an example ofC at one pixel in a real
sequence. Because the input-image pixels whose colours
form C are the only pixels which influence new-view pixel

(x, y), the photoconsistency likelihood further simplifies to
(writing V for V (x, y))

p(I1, .., In | V ) = p(C | V ) (8)

Now, by making explicit the dependence on the depthz and
marginalizing, we obtain

p(C|V ) =
∫

p(C | V, z)dz

=
∫

p(C(:, z) | V, z)dz (9)

The noise on the input image coloursC(i, z) will be mod-
elled as being drawn from distributions with density func-
tions of the formexp(−βρ(t)), centred atV , whereβ is a
constant specifying the width of the distribution. Thus the
likelihood is of the form

p(C(:, z) | V, z) =
n∏

i=1

exp−βρ(‖V − C(i, z)‖) (10)

The functionρ is a robust kernel, and in this work is gen-
erally the absolute distanceρ(x) = |x|, corresponding to
an exponential distribution on the pixel intensities. In situa-
tions (discussed later) where a Gaussian distribution is more
appropriate, the kernel becomesρ(x) = x2.

In order to choose the colourV , we shall be comput-
ing (in §3.1) the modes of the functionp(C(:, z) | V (x, y)).
As defined above, this requires the computation of the inte-
gral (9), which is computationally undemanding. However,
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because the value ofβ is difficult to know, and because the
function is sensitive to its value, the integral must also be
over a hyperprior onβ, rendering it much more challeng-
ing. Approximating the marginal by the maximum gives us
an approximation, denotedpphoto,

pphoto(V (x, y)) ≈ max
z

p(C(:, z) | V, z) (11)

which avoids both of these problems. In the implementa-
tion, the maximum overz is computed by explicitly sam-
pling, typically using 500 values. Figure 2.2 shows a plot
of p(C(:, z) | V, z) for grayscaleC at a typical pixel. Fig-
ure 3.1 shows isosurface plots ofpphoto(V ) in RGB space
for the same pixel.

2.2. Incorporating the texture prior
The functionpphoto(V ) will generally be multimodal, due
firstly to physical factors such as occlusion and partial pixel
effects and secondly to deficiencies in the image-formation
model, such as not modelling specular reflections or hav-
ing an inaccurate model of imaging noise. Thus the data
likelihood at the true colour may often be lower than the
likelihood at other, spurious values. Consequently, select-
ing the maximum-likelihoodV at each pixel yields images
with significant artefacts, such as those shown in figure 1c.
We would like to constrain the generated views to lie in
the space of real images by imposing a prior on the pos-
sible generated images. Defining such a prior is in the do-
main of the analysis of natural image statistics, an active
area of recent neurophysiological and machine learning re-
search [8, 9, 23]. Because it has been observed that cor-
relation between pixels falls off quickly as a function of
distance, we can make the assumption that the probability
density can be written as a product of functions operating
on small neighborhoods. Let the generated imageV have
pixelsV (x, y). Then the prior has the form

ptexture(V) =
∏
x,y

ptexture(N (x, y)) (12)

where the functionN (x, y) is the set of colours of neigh-
bours of(x, y). Here we use5× 5 neighbourhoods, so

N (x, y) = {V (x + i, y + j) | − 2 ≤ i, j ≤ 2} . (13)

As the form ofptexture is typically very difficult to repre-
sent analytically [9], we follow [5, 6] and represent our tex-
ture prior as a library of texture patches. The likelihood
of a particular neighbourhood is measured by computing
its distance to the closest database patch. Thus, we are
given a texture database of5 × 5 image patches, denoted
T = {T1, ..., TN} whereN is typically extremely large.
The definition ofptexture is then

ptexture(N (x, y)) = exp
(
−λ min

T ∈T
‖T − N (x, y)‖2

)

Figure 4: The function p(C(:, z)|V, z) plotted for the pixel
studied in figure 3, with grayscale images, so V is a scalar,
and ρ(x) = |x|. The projected graphs show the marginals
(blue) and the maxima (red). The marginalization over
colour (V ) has fewer minima than that over z, and the two
modes corresponding to foreground and background are
clearly seen.

whereλ is a tuning parameter. This is a closest-point prob-
lem in the set of 75-d points (75 = 5 × 5 × 3) in T and
may be efficiently solved using a variety of algorithms, for
example vector quantization and BSP tree indexing [25].

2.3. Combining photoconsistency and texture
Finally, combining the data and prior terms, we have the
expression for the quasi-likelihood

q(V) =
∏
x,y

pphoto(V (x, y)) ptexture(N (x, y)).

In the implementation, we minimize the negative log ofq,
yielding the energy formulation

E(V) =
∑
x,y

Ephoto(V (x, y)) +
∑
x,y

Etexture(N (x, y))

(14)
whereEphoto measures the deviation from photoconsistency
at pixel (x, y) andEtexture measures the a-priori likelihood
of the texture patch surrounding(x, y). From (11), the def-
inition of Ephoto at a pixel(x, y) with 3D rayX(z) is

Ephoto(V ) = min
zmin<z<zmax

n∑
i=1

ρ (‖V − Ii(X(z))‖) (15)

The texture energy is the negative log ofptexture, giving

Etexture(N (x, y)) = λ min
T ∈T

‖T − N (x, y)‖2 (16)

The view synthesis problem is now one of minimization of
E over the space of images. This is a difficult global opti-
mization problem, and making it tractable is the subject of
the next section.
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3. Implementation
The optimization of the energy defined above could be di-
rectly attempted using a global optimization strategy such
as simulated annealing. However, both the prior and the
data termEphoto are expensive to evaluate, with multiple lo-
cal minima at each pixel, meaning that attaining a global
optimum will be difficult, and certainly time consuming.
To render the optimization tractable, we exploit the sim-
plification of the energy function conferred by estimating
colour rather than depth. That is, we compute the set of
modes of the photo-consistency term for each pixel, and re-
strict the solution for that pixel to this set. Then the tex-
ture prior is used to select the values from this set. This
reduces the problem from a search over a high-dimensional
space to an enumeration of the possible combinations. Al-
though the data likelihoodp(C|V ) is multimodal, there
are typically many fewer modes than there are maxima of
p(C(:, z) | V, z) over depth, so we can hope to explicitly
compute the modes ofp(C|V ) as the first step. This means
that the optimization becomes a discrete labelling problem,
which although still complex, can be analysed much more
efficiently.

3.1. Enumerating the minima ofEphoto(V )

The goal then is to generate a list of plausible colours for
each rendered pixelV (x, y). One option would be to sam-
ple from pphoto(V ) using MCMC, but this is computation-
ally unattractive. A more practical alternative is to findall
local minimaof the energy functionEphoto(V ). On the face
of it, this seems a tall order, but as figure 3.1 indicates, there
are typically few minima in a generally well-behaved space.
Inspection of several such plots on a number of scenes sug-
gests that this behaviour is typical. Finding all local minima
of such functions is task for which several strategies have
emerged from the computational chemistry community, and
have been introduced to computer vision by Sminchisescu
and Triggs [22]. The most expensive is to densely sample
the space ofV (here 3D RGB space), and this is the strat-
egy used to obtain the isosurface plot shown in figure 3.1. A
more efficient strategy to isolate the minima is to start gra-
dient descent from several randomly chosen starting points,
and iterate until local minima are found. Finally clustering
on the locations of the minima produces a set of distinct
colours which are likely at that pixel. On the images we
have tested, 12 steps of gradient descent on each of 20 ran-
dom starting coloursV takes a total of about 0.1 seconds in
Matlab, and produces between four and six colour hypothe-
ses at each pixel.

3.2. Texture reference and rectification
The second implementation issue is the source of reference
textures. To build a general tool for projection of images

(a) (b)

Figure 5: Minima of Ephoto . (a) Isosurfaces in RGB space
of the photoconsistency function Ephoto(V ) at the pixel stud-
ied in figure 3. Minima are computed by gradient descent
from random starting positions, of which twelve are shown
(black circles), with the gradient descent trajectories plotted
in black. Four modes were retained after clustering; their lo-
cations are marked by white 3D “axes” lines in (a), and their
RGB colours are shown in (b).

onto natural images, a large database of images of natural
scenes would be the ideal choice. In this case, however, we
are operating in a limited problem domain. We expect that
the newly synthesized views will be similarlocally to the in-
put views with which the algorithm is provided. Therefore,
the texture library is built of patches from the input images.
This provides excellent performance with a small library,
and the photoconsistency term means that the system cannot
“overlearn” by simply copying large patches from the near-
est source image to the newly rendered view. For speed, we
can also use the knownz range to limit the search for match-
ing texture windows in source imageIi to the bounding box
of {PiX(z) | zmin < z < zmax}.

3.3. Optimization
Given the modes of the photoconsistency distribution at
each pixel, the optimization of (14) becomes a labelling
problem. Each pixel is associated with an integer label
l(x, y), which indicates which mode of the distribution will
be used to colour that pixel, with a corresponding photo-
consistency cost which is precomputed. This significantly
reduces the cost of function evaluations, but the optimiza-
tion is still a computationally challenging problem. For
this work, we have implemented a variant of the iterated
conditional modes (ICM) algorithm [2], alternately opti-
mizing the photoconsistency and texture priors. The algo-
rithm begins by selecting, for each pixel, the most likely
mode of the photoconsistency function, yielding an initial
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estimateV 0. Then, at each ICM iteration, each pixel is
varied until the5 × 5 window surrounding it minimizes
the sumEphoto + Etexture at that pixel. This optimization
is potentially extremely expensive, implying the evaluation
of Ephoto(V ) for the valueV in the centre of each texture
patch T . However, because the minima ofEphoto are avail-
able, a fast approximation is obtained simply by writing
Ephoto(V ) ≈ ‖V − V r−1‖2, whereV r−1 is the colour ob-
tained at the previous iteration. It can be shown that this
amounts to setting the centre pixel to a linear combination
of (a) the photoconsistency mode, and (b) the value that
would be predicted by sampling-based texture synthesis. If
V r−1 is the value predicted by photoconsistency at the pre-
vious iteration, andT is the value at the centre pixel of the
best matching texture patch, then the pixel should be re-
placed by

V r =
V r−1 + λT

1 + λ
(17)

Finally, replacingV r by the closest mode at each iteration
ensures that the synthesized colour is always a subset of
the photoconsistency minima. Note that this does not undo
the good work of the robust kernel in computing the modes
of Ephoto, but allows the texture prior to efficiently select
between the robustly-computed colour candidates at each
pixel. This also prevents the algorithm from copying large
sections of the texture source. Figure 3.3 summarizes the
steps in the algorithm.

3.4. Choice of robust kernels
In the preceding, the choice of robust kernels for the photo-
consistency likelihood has been mentioned several times.
In practice, there is a significant tradeoff between speed
and accuracy implied by choosing other than the squared-
error kernelρ(x) = x2 kernel, as the mode computation
can be significantly optimized for the squared-error case.
The problem arises when there is significant occlusion in
the sequence, as on the example pixel in figure 3, and it be-
comes necessary to produce a view which looks “behind”
the foreground pixel. Using the squared-error kernel, the
true colour (in this case, black) is not a minimum ofEphoto,
because the columnC(:, z) at the depth corresponding to
the background contains some white pixels which are sig-
nificant outliers to the Gaussian distributionexp(−ρ(·)).
The true colouris a minimum using the absolute distance
ρ(x) = |x| or Huber kernels, which are less sensitive to
such outliers. To provide a rule of thumb, the squared-error
kernel is fast, and works well for interpolation, but the ab-
solute distance kernel is needed for extrapolation.

4. Examples
Image sequences were captured using a hand-held cam-
era, and the sequences were calibrated using commer-

Input: ImagesI1 to In,
Camera positionsP1 to Pn

Texture libraryT ⊂ R75

Output: New viewV

Preprocessing:

for each pixel(x, y)

Compute ray directiond(x, y).
Choosem depths to sample{zj = zmin + j∆z}m

j=1

Computen×m× 3 array of pixel colours
Cij = Ii (Pi ∗ zjd(x, y))

ComputeK local minima, denotedV1..K(x, y), of
Ephoto(V ) = minj

∑
i ρ(‖Cij − V ‖)

Sort so thatEphoto(Vk) < Ephoto(Vk+1)∀k
Set initial estimate of new viewV 0(x, y) = V1(x, y)

end

Update at iterationr:

for each pixel(x, y)

Extract window
N = {V r−1(x + i, y + j)| − 2 ≤ i, j ≤ 2}.

Find closest texture patch
T = argminT ∈T ‖M(N − T )‖2

Mis a mask which ignores the centre pixel.
SetV r(x, y) to the modeVk(x, y) nearest the value
computed by (17).

end

Figure 6: Pseudocode for iterative computation of new view
V. The preprocessing is expensive (about 0.1sec/pixel), the
iterations cost as much as patch-based texture synthesis.

cially available camera tracking software [1]. A num-
ber of examples of the algorithm performance were
produced. Single still frames are reproduced here,
and complete MPEG sequences may be found at
http://www.robots.ox.ac.uk/ ∼awf/ibr .

The first experiment is a leave-one-out test, so that the
recovered images can be compared against ground truth.
Each frame of the 27-frame “monkey” sequence was re-
constructed based on the other 26 frames. Figure 4 shows
the results for a typical frame, comparing the ground truth
image first to the synthesized view using photoconsistency
alone, and then to the result guided by the texture prior. Vi-
sually, the fidelity is high, and the image is free of the high-
frequency artifacts which the photoconsistency-maximizing
view exhibits. Artifacts do occur in the background visi-
ble under the monkey’s arm, where few of the source views
have observed the background, meaning it does not appear
as a mode of the photoconsistency distribution. The differ-
ence image in figure 4d is simply the length of the RGB dif-
ference vector at each pixel, but shows that the texture prior
does not bias the generated view, for example by copying
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one of the texture sources.
The second example shows performance on a

“steadicam” task, where the scene is re-rendered at a
set of viewpoints which smoothly interpolate the first
and last camera position and orientation. The reader is
encouraged to consult the videos on the webpage above to
confirm the absence of artifacts, and the subtle movements
of the partial occlusions at the boundaries.

Figure 1 shows example images from one sequence and
illustrates the improvement obtained. The erroneous areas
surrounding the ear are removed, while the remainder of the
image retains its (correct) solution. At high magnification,
it is in fact possible to see that the optimized solution has
added back some high-frequency detail in the image. This
is because the local statistics of the texture library are being
applied to the rendered view.

5. Conclusion

This paper has shown that view synthesis problems can
be regularized using texture priors. This is in contrast to
the depth-based priors that previous algorithms have used.
Image-based priors have several advantages over the depth-
based ones. First, depth priors are difficult to learn from
real images, so artificial approximations are used. These ap-
proximations are equivalent to assuming very simple mod-
els of the world—for example, that it is piecewise planar—
and thus introduce artifacts into the generated views. In
contrast, image-based priors are easy to obtain from the
world. If the problem domain is restricted, as it is here,
a small number of images can be used to regularize the so-
lution to a complex inverse problem.

There are many areas for further work: (1) image-based
priors as implemented here are expensive to evaluate. For a
typical depth prior, evaluation of the prior in a pixel neigh-
bourhood requires computation of the order of a few ma-
chine instructions. As image-based priors are stored in large
lookup tables, the cost of evaluating them is many times
higher. (2) In this paper, only one optimization strategy was
investigated. It is hoped that examination of other strategies
will lead to significantly quicker solutions. (3) Occlusion is
handled here by the robust kernelρ. More geometric han-
dling of occlusion, analogous to space carving’s improve-
ment over voxel colouring, ought to yield better results.
(4) When rendering sequences of images, it is valuable to
impose temporal continuity from frame to frame. This pa-
per has not addressed this issue, so the rendered sequences
show some flicker. On the other hand this does allow the
stability of the per-frame solutions to be evaluated.
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(a) (b) (c) (d)

Figure 7: Leave-one-out test . Using 26 views to render a missing view allows comparison to be made between the rendered
view and ground truth. (a) Maximum-likelihood view, in which each pixel is coloured according to the highest mode of the
photoconsistency function. High-frequency artifacts are visible throughout the scene. (b) View synthesized using texture prior.
The artifacts are significantly reduced. (c) Ground-truth view. (d) Difference image between (b) and (c).

Figure 8: Steadicam test . Three novel views of the monkey scene from viewpoints not in the original sequence. The
complete sequence may be found at http://www.robots.ox.ac.uk/ ∼awf/ibr .

(a) (b)

Figure 9: (a) 3D composite from 2D images . The camera motion from the live-action background plate is applied to the
head sequence, rendering new views of the face. (b) Tsukuba . Fine details such as the lamp arm are retained, but some
ghosting is evident around the top of the lamp.
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