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Abstract

Given a set of images acquired from known viewpoints, we
describe a method for synthesizing the image which would
be seen from a new viewpoint. In contrast to existing tech-
niques, which explicitly reconstruct the 3D geometry of the
scene, we transform the problem to the reconstruction of
colour rather than depth. This retains the benefits of geo-
metric constraints, but projects out the ambiguities in depth
estimation which occur in textureless regions.

On the other hand, regularization is still needed in or-
der to generate high-quality images. The paper’s second
contribution is to constrain the generated views to lie in the
space of images whose texture statistics are those of the in-
put images. This amounts toimage-basegrior on the
reconstruction which regularizes the solution, yielding re-
alistic synthetic views. Examples are given of new view (c) (d)
generation for cameras interpolated between the acquisi-
tion viewpoints—which enables synthetic steadicam stabi-

Figure 1: View synthesis. (a,b): Two from a set of 39
images taken by a hand-held camera. (c): Detail from a new

lization of a sequence with a high level of realism. view generated using state-of-the-art view synthesis. The
new view is about 20° displaced from the closest view in
1. Introduction the original sequence. Note the spurious echo of the ear.

(d): The same detail, but constrained to only generate views

Given a small number of photographs of the same scenewhich have similar local statistics to the input images.
from several viewing positions, we want to synthesize the
image which would be seen from a new viewpoint. This
“view synthesis” problem has been widely researched in re-of stereo reconstructions [11, 19, 20], volumetric tech-
cent years. However, even the best methods do not yet proniques such as space carving [3, 13, 15, 21, 26], and
duce images which look truly real. The primary source of other volumetric approaches [24]. Implicit-geometry tech-
error is in the trade-off between the inherent ambiguity of niques [7, 14, 16, 17] assemble the pixels of the synthe-
the problem, and the loss of high-frequency detail due to Sized view from the rays sampled by the pixels of the input
the regularizations which must be applied to alleviate that images. In a newly emergent class of technique, to which
ambiguity. In this paper, we show how to constrain the gen- this paper is most closely related, view-dependent geome-
erated images to have the same local statistics as naturdry [4, 10, 12, 18] is used to guide the selection of the colour
images, effectively projecting the new view onto the space at each pixel.
of real-world images. As this space is a small subspace of What all these technigues have in common, whether
the space of all images, the result is strongly regularizedbased on lightfields or explicit 3D models, is that there is
synthetic views which preserve high-frequency details. no free lunch: in order to generate a new ray which is not in

Strategies for view synthesis are divided into those which the bundle one is given, one must solve a form of the stereo
explicitly compute a 3D representation of the scene, andcorrespondence problem. This is a difficult inverse prob-
those in which the computation of scene geometry is im- lem, which is poorly conditioned: for a given set of images,
plicit. The first class includes texture-mapped rendering many different solutions will model the image data equally



well. Thus, in order to select between the nearly equivalent 3D Object
solutions the problem must be regularized by incorporating Pixel (x,y) to be
prior knowledge about the likely form of the solution. Pre- gggirf‘\tf&y")"'th
vious work on new-view synthesis or stereo reconstruction

has typically included such prior knowledgeaagriori con-

straints on the (piecewise) smoothness of the 3D geometry,

which results in artifacts at depth boundaries. In this pa-

per, because the problem is expressed in terms of the recon- Input
structedmagerather than the reconstructed depth map, we l’;ﬁ%é@@id "MAgeS £ ipolar lines: Projections of ray X(2)
can impose image-based priors, which can be learnt from The stack of epipolar lines is C(i,2)

natural images [6, 8, 9, 23].
The most relevant previous work is primarily in two ar- Fiqure 2 Geometric confiauration . Th lied infor
eas: view-dependent geometry, and natural image statistics, 9 - beometic configuration . - “he supplied Infor-

Irani et al [10 d . fi th fi Mmation is a set of 2D images I:.., and their camera positions
ran.| et al [10] expressed new view generg lon as the esti- P, ... At each pixel in the view to be synthesized, we wish to
mation of the colour at each generated pixel.

101 the Their repre- giscover the colour which is most likely to be a reprojection
sentation implies, as does ours, a 3D geometry for the scengy 5 3D object point, based on the implied projection into the
which is different for each synthetic viewpoint, and is thus source images.

related to view-dependent visual hull computation [15, 26].
As they note, this greatly improves the fidelity of the re-
constructed image. However, it does not remove the fun- The task of virtual view synthesis is to generate the image
damental ambiguity in the problem, which this paper di- which would be seen by a virtual camera in a position not
rectly addresses. In addition, their technique depends onin the original set. Specifically, we wish to compute, for
the presence of a dominant plane in the scene, where thigach pixelV (z,y) in a virtual image)’ the color which
paper deals with the case of a general 3D scene with genthat pixel would observe if a real camera were placed at
eral camera motion. the new location. We assume we are dealing with diffuse,
The use of image-based priors to regularize hard inverse0Paque objects, and that any deviations from this assump-
problems is inspired by Freeman and Pasztor's work [6] on tion may be considered part of imaging noise. The exten-
learning priors for Bayesian image reconstruction. Our tex- SIons to more general lighting assumptions are exactly those
ture representation, as a library of exemplar image patchesin space carving [13], and will not be dealt with here.
derives from this and from the recent tecture synthesis lit-  The objective of this work is to infer the most likely ren-
erature [5, 25]. In this paper we extend these ideas to deadered view) given the set of input images,, .., Z,. In
with the strongly multimodal data likelihoods present in the & Bayesian framework, we wish to choose the synthesised
image-based rendering task, allowing the generation of newview V which maximizes the posterigi(V | 71, .., Z,.).
views which are locally similar to the input images, but Bayes’rule allows us to write this as
globally consistent with the new viewpoint. T - p(Th, o To | VIp(V)
2. Problem statement Py, Tn)
We are given a collection of 2D image<; to Z,,, in which where p(V) is the prior onV, and the data term
p(Z1,..,Z, | V) measures the likelihood that the observed

I;(z,y) is the color at pixe(z, y) of thei™ image Color is .
expressed as a 3- vector in an appropriate colorspace. ThdNages could have been observelt ifvere the true colours

images are taken by cameras in different positions repre-at the_novel viewpoint. Because we shall maximize this
sented by3 x 4 projection matrice®; to P,,, which are posterior over), we need not compute the denominator

supplied. Figure 1 summarizes the situation. The projec-p(Il’ - Zn), and will instead optimize the function

tion matrix P projects homogeneous 3D poink to ho- .

mogeneous 2D points = A(z,y,1)T linearly: x = PX 4V) =p(T1, - Tn | VIP(V) 3)
where the equality is up to scale. We denote/yX ) the  Thjs quasi-likelihood has two parts: the photoconsistency
pixel in image: to which 3D pointX projects, so likelihood p(Zy,..,Z,, | V) and the priorp(V) which we

L(X)=L(rx(P:X)), =(x,y,w)=(x/wy/w) (1) shall callpiexture( V).

)

INotation guide: calligraphic letters are images or windows fromim- 2.1 Photoconsistency constraint

ages. Uppercase roman lettédrsare RGB (or other colourspace) vectors. . . . .
Bold roman lowercase denotes 2D points, also writtet:, ), and bold The color consistency constraint we employ is standard in

roman uppercase are 3D poit%s. Matrices are in fixed-width font, vi#l the stereo and space-carving literature. We consider each



< 1 “JBOwnu awe.

Increasing depth, z -

- I

Figure 3: Photoconsistency. One image is shown from a sequence of 27 captured by a hand-held camera. The circled
pixel x's photoconsistency with respect to the other 26 images is illustrated on the right. The upper right image shows
the reprojected colours C(:, z) as columns of 26 colour samples, at each of 500 depth samples. The colours are the samples
C'(i, z) where the frame number ¢ varies along the vertical axis, and the depth samples z vary along the horizontal. Equivalently,
row 5 of this image is the intensity along the epipolar line generated by x in image i. Below are shown photoconsistency
likelihoods p(C | V, z) for two values of the colour V' (backgrounds to the plots). As this pixel is a co-location of background
and foreground, these two colours form modes of p(C | V') when z is maximized. This multi-modality is the essence of the
ambiguity in new-view synthesis, which prior knowledge must remove.

pixel V(z,y) in the synthesised view separately, so the like- (z,y), the photoconsistency likelihood further simplifies to

lihood is written as the product of per-pixel likelihoods (writing V for V (z, y))
p(T1, T | V) = [] o0 Ta | Via,y)  (4) Py T | V) =p(C]V) ®
(z.y) Now, by making explicit the dependence on the depaimd

Consider the generation of new-view piXélz,y). This marginalizing, we obtain

is a sample from along the ray emanating from the camera

centre, which we may assume to be the origin. Let the di- p(CIV) = /p(C |V, 2)dz

rection of this ray be denotedl(z, y). It can be computed

easily given the calibration parameters of the virtual cam- = /p(C(:, z) |V, z)dz 9)

era. Let a 3D point along the ray be given by the function _ . . _

X (z) = zd(z,y) wherez ranges between preset values The noise on the input image colout§s, z) will be mod-
Zmin @nd zmax. FOr a given depth;, we can compute us- €lled as being drawn from distributions with density func-
ing (1) the set of pixels to whictX (z) projects in the im-  tions of the formexp(—3p(t)), centred al/, wheref3 is a

agesZ; ,,. Denote the colors of those pixels by the function constant specifying the width of the distribution. Thus the
likelihood is of the form

C(i,z) = Ii( X (2))- ©) n
. . p(C(2) |V,2) = [[exp—Bo(IV — C(i.2)Il)  (10)
Let the set of all colours at a givervalue be written =1
C(:,2) = {Cli,z)} |, (6) The functionp is a ropust kernel, and in this Work_is gen-
erally the absolute distang€x) = |z|, corresponding to
and the set(, of all samples—at locatiofi, y)—be an exponential distribution on the pixel intensities. In situa-

tions (discussed later) where a Gaussian distribution is more
2

C={C(i,2) |1 <i<n,zmin< 2z < zZmax}- (7) appropriate, the kernel becomes) = z*.
In order to choose the colour, we shall be comput-
Figure 3 shows an example & at one pixel in a real  ing (in §3.1) the modes of the functigC(:, z) | V(x,y)).
sequence. Because the input-image pixels whose colourd\s defined above, this requires the computation of the inte-

form C are the only pixels which influence new-view pixel gral (9), which is computationally undemanding. However,



because the value ¢fis difficult to know, and because the
function is sensitive to its value, the integral must also be
over a hyperprior or, rendering it much more challeng-
ing. Approximating the marginal by the maximum gives us
an approximation, denotegnoto,

PonotV (2, y)) = maxp(C(;,2) | V,z)  (11)

which avoids both of these problems. In the implementa-
tion, the maximum ovet is computed by explicitly sam-
pling, typically using 500 values. Figure 2.2 shows a plot
of p(C(:,2) | V, z) for grayscaleC at a typical pixel. Fig-

ure 3.1 shows isosurface plots @fiowo(V) in RGB space )
for the same pixel. Figure 4: The function p(C(:, z)|V, z) plotted for the pixel

studied in figure 3, with grayscale images, so V' is a scalar,

. . and p(z) = |z|. The projected graphs show the marginals
2.2. Incorporatlng the texture prior (blue) and the maxima (red). The marginalization over

The functionpphoto(V') Will generally be multimodal, due  colour (V) has fewer minima than that over z, and the two
firstly to physical factors such as occlusion and partial pixel modes corresponding to foreground and background are
effects and secondly to deficiencies in the image-formation clearly seen.

model, such as not modelling specular reflections or hav-
ing an inaccurate model of imaging noise. Thus the data
likelihood at the true colour may often be lower than the
likelihood at other, spurious values. Consequently, select-
ing the maximum-likelihood” at each pixel yields images
with significant artefacts, such as those shown in figure 1c.
We would like to constrain the generated views to lie in . .
the space of real images by imposing a prior on the pos-2'3' Combining photoconsistency and texture
sible generated images. Defining such a prior is in the do-Finally, combining the data and prior terms, we have the
main of the analysis of natural image statistics, an active expression for the quasi-likelihood

area of recent neurophysiological and machine learning re-

search [8, 9, 23]. Because it has been observed that cor- g(V) = [ poroteV (2, 9)) prexturd N (2, 1))

relation between pixels falls off quickly as a function of Ty

distance, we can make the assumption that the probability

density can be written as a product of functions operating
on small neighborhoods. Let the generated imddeave
pixelsV (z,y). Then the prior has the form

Prexture V) = Hptexture(-/v(z) Y)) (12)

z,y

where is a tuning parameter. This is a closest-point prob-
lem in the set of 75-d pointst) = 5 x 5 x 3) in T and
may be efficiently solved using a variety of algorithms, for
example vector quantization and BSP tree indexing [25].

In the implementation, we minimize the negative loggof
yielding the energy formulation

E(V) = Z Epnot V (,y)) + Z Eexturd N (2, 9))
x,y z,y
(14)
whereEynoto measures the deviation from photoconsistency
at pixel (z, y) and Eiexure measures the a-priori likelihood
of the texture patch surroundirig, y). From (11), the def-

N(zy)={V@+iy+j)| —2<i,j<2}. (13) inition of Egnoto at a pixel(z, y) with 3D ray X (z) is

where the functionV'(z, y) is the set of colours of neigh-
bours of(x, y). Here we usé x 5 neighbourhoods, so

As the form of piexre is typically very difficult to repre- n
sent analytically [9], we follow [5, 6] and represent our tex-  Epho(V) = min > p(|V = L(X(2))]))  (15)

Zmin<z<Zmax <

ture prior as a library of texture patches. The likelihood i=1
of a particular neighbourhood is measured by computing Th - : -

e texture energy is the negative lo n
its distance to the closest database patch. Thus, we are X 9y gative logkure giVINg
given a texture database bfx 5 image patches, denoted Broxurd N (2,y)) = Amin |7 — N(z,y)|? (16)
T = {71,....,7n} where N is typically extremely large. TeT

The definition Ofprextureis then The view synthesis problem is now one of minimization of

) E over the space of images. This is a difficult global opti-

_ _ _ 2

Prexurd N (2, y)) = exp < Amin |7 Nz, )l > mization problem, and making it tractable is the subject of
the next section.



3. Implementation

The optimization of the energy defined above could be di-
rectly attempted using a global optimization strategy such
as simulated annealing. However, both the prior and the
data termEpnoto are expensive to evaluate, with multiple lo-
cal minima at each pixel, meaning that attaining a global
optimum will be difficult, and certainly time consuming.
To render the optimization tractable, we exploit the sim-
plification of the energy function conferred by estimating
colour rather than depth. That is, we compute the set of
modes of the photo-consistency term for each pixel, and re-
strict the solution for that pixel to this set. Then the tex-
ture prior is used to select the values from this set. This
reduces the problem from a search over a high-dimensional
space to an enumeration of the possible combinations. Al-
though the data likelihoog(C|V') is multimodal, there  Figure 5: Minima of Epnow . (a) Isosurfaces in RGB space
are typically many fewer modes than there are maxima of of the photoconsistency function Epnoo (V) at the pixel stud-
p(C(:, z) | V,2) over depth, so we can hope to explicitly ied in figure 3. Minima are computed by gradient descent
compute the modes @{C|V) as the first step. This means from random starting positions, of which twelve are shown
that the optimization becomes a discrete labelling problem, (black circles), with the gradient descent trajectories plotted

which although still complex, can be analysed much more in black. Four modes were retained after clustering; their lo-
efficiently. cations are marked by white 3D “axes” lines in (a), and their

RGB colours are shown in (b).

(b)

3.1. Enumerating the minima of Epneto(V)

The goal then is to generate a list of plausible colours for onto natural images, a large database of images of natural
each rendered pixédf (z, y). One option would be to sam-  scenes would be the ideal choice. In this case, however, we
ple from ppnoto(V) using MCMC, but this is computation- ~ are operating in a limited problem domain. We expect that
ally unattractive. A more practical alternative is to fiall ~ the newly synthesized views will be similacally to the in-

local minimaof the energy funCtiO[Ephoto(V)- On the face put views with which the algorithm is provided. Therefore,

of it, this seems a tall order, but as figure 3.1 indicates, therethe texture library is built of patches from the input images.
are typically few minima in a generally well-behaved space. This provides excellent performance with a small library,
Inspection of several such plots on a number of scenes sugand the photoconsistency term means that the system cannot
gests that this behaviour is typical. Finding all local minima “overlearn” by simply copying large patches from the near-
of such functions is task for which several strategies have€st source image to the newly rendered view. For speed, we
emerged from the Computationa| Chemistry Community’ andcan also use the knowzrrange to limit the search for match-
have been introduced to computer vision by Sminchisescuing texture windows in source imageto the bounding box

and Triggs [22]. The most expensive is to densely sampleOf {Pi X (2) | zmin < 2 < zmax}-

the space o/ (here 3D RGB space), and this is the strat-

egy used to obtain the isosurface plot shown in figure 3.1. A 3.3. Optimization

more efficient strategy to isolate the minima is to start gra-
dient descent from several randomly chosen starting points
and iterate until local minima are found. Finally clustering

on the locations of the minima produces a set of distinct ; \° '\ hich indicates which mode of the distribution will

colours which are likely at that pixel. On the images we . . )

. be used to colour that pixel, with a corresponding photo-
have tested, 12 steps of gradient descent on each of 20 faMonsistency cost which is precomputed. This significant!
dom starting colour¥” takes a total of about 0.1 seconds in y P P ) 9 y

. reduces the cost of function evaluations, but the optimiza-
Matlab, and produces between four and six colour hypothe-.”~ =" "~ . . )
) tion is still a computationally challenging problem. For
ses at each pixel.

this work, we have implemented a variant of the iterated
e - conditional modes (ICM) algorithm [2], alternately opti-

3.2. Texture reference and rectification mizing the photoconsistency and texture priors. The algo-
The second implementation issue is the source of referenceithm begins by selecting, for each pixel, the most likely
textures. To build a general tool for projection of images mode of the photoconsistency function, yielding an initial

Given the modes of the photoconsistency distribution at
'each pixel, the optimization of (14) becomes a labelling
problem. Each pixel is associated with an integer label



estimateV?. Then, at each ICM iteration, each pixel is Input: Imaged; to I,,,

varied until the5 x 5 window surrounding it minimizes Camera positionB; to P,,
the SUMEphoto + Etexture @t that pixel. This optimization Texture libraryT ¢ R
is potentially extremely expensive, implying the evaluation | Output: New view)

of Epnoto(V') for the valueV' in the centre of each texture

patch 7. However, because the minima Bfhoto are avail- Preprocessing:

able, a fast approximation is obtained simply by writing for each pixe{z, )

Epno(V) &~ ||V — V™12, whereV"~! is the colour ob- Compute ray directiod(z, y).

tained at the previous iteration. It can be shown that this Choosem depths to sampléz; = zmin + jAz}jL,
amounts to setting the centre pixel to a linear combination Computen x m x 3 array of pixel colours

Cij = I; (Pi * z;d(x,y))

ComputeK local minima, denoted:. x (z,y), of
Ephoto(V) = min; ZZ p(HC” — V”)

Sort s0 thatFpnoto( Vi) < Ephoto( Vit1)Vk

Set initial estimate of new view °(z, y) = Vi(z, y)

of (a) the photoconsistency mode, and (b) the value that
would be predicted by sampling-based texture synthesis. If
Vr—1lis the value predicted by photoconsistency at the pre-
vious iteration, and” is the value at the centre pixel of the

best matching texture patch, then the pixel should be re-

placed by ed
VTl 4AT Update at iteration:
Vi= T 11 (17) for each pixel(z, y)

Extract window
N={V" e +iy+j)|-2<ij<2}h
Find closest texture patch

Finally, replacingV’” by the closest mode at each iteration
ensures that the synthesized colour is always a subset of
the photoconsistency minima. Note that this does not undo T = argming p [MA — T)]?

the good work of the robust kernel in computing the modes Mis a mask vTvli;Ich ignores the centre pixel.
of Ephote, but allows the texture prior to efficiently select SetV"(z,y) to the modeVi(z, y) nearest the value
between the robustly-computed colour candidates at each computed by (17).
pixel. This also prevents the algorithm from copying large
sections of the texture source. Figure 3.3 summarizes the
steps in the algorithm.

end

Figure 6: Pseudocode for iterative computation of new view

3.4. Choice of robust kernels V. The preprocessing is expensive (about 0.1sec/pixel), the

. . iterations cost as much as patch-based texture synthesis.
In the preceding, the choice of robust kernels for the photo- P y

consistency likelihood has been mentioned several times.

In practice, there is a significant tradeoff between speed ially availabl mera trackin ftware M1 A num

and accuracy implied by choosing other than the squared—g ary ? axamel ca ?"’;h acl %itz?n aﬁ [rn]1 N \l,Jv r

error kernelp(x) = 2% kernel, as the mode computation er of eéxamples of the algo periormance -were
produced. Single still frames are reproduced here,

can be significantly optimized for the squared-error case. q lete MPEG be found at
The problem arises when there is significant occlusion in and complete séquences may be found &
http://www.robots.ox.ac.uk/ ~awflibr

the sequence, as on the example pixel in figure 3, and it be-
comes necessary to produce a VieW Wh|Ch |00ks “behind" The firSt eXpeI’iment iS a IeaVe'One'Out test, SO that the
the foreground pixel. Using the squared-error kernel, the recovered images can be compared against ground truth.
true colour (in this case, black) is not a minimumshoto, Each frame of the 27-frame “monkey” sequence was re-
because the columé(:, z) at the depth corresponding to constructed based on the other 26 frames. Figure 4 shows
the background contains some white pixels which are sig-the results for a typical frame, comparing the ground truth
nificant outliers to the Gaussian distributierp(—p(-)). image first to the synthesized view using photoconsistency
The true colouiis a minimum using the absolute distance @lone, and then to the result guided by the texture prior. Vi-
p(x) — |1'| or Huber kerne'S, which are less sensitive to Sua”y, the f|del|ty is h|gh, and the image is free of the h|gh'
such outliers. To provide a rule of thumb, the squared-error frequency artifacts which the photoconsistency-maximizing
kernel is fast, and works well for interpolation, but the ab- View exhibits. Artifacts do occur in the background visi-

solute distance kernel is needed for extrapolation. ble under the monkey’s arm, where few of the source views
have observed the background, meaning it does not appear
4. Examples as a mode of the photoconsistency distribution. The differ-

ence image in figure 4d is simply the length of the RGB dif-
Image sequences were captured using a hand-held camference vector at each pixel, but shows that the texture prior
era, and the sequences were calibrated using commerdoes not bias the generated view, for example by copying
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Figure 7: Leave-one-out test . Using 26 views to render a missing view allows comparison to be made between the rendered
view and ground truth. (a) Maximum-likelihood view, in which each pixel is coloured according to the highest mode of the
photoconsistency function. High-frequency artifacts are visible throughout the scene. (b) View synthesized using texture prior.
The artifacts are significantly reduced. (c) Ground-truth view. (d) Difference image between (b) and (c).

Figure 8: Steadicam test . Three novel views of the monkey scene from viewpoints not in the original sequence. The
complete sequence may be found at http://www.robots.ox.ac.uk/ ~awf/ibr

(@) (b)

Figure 9: (a) 3D composite from 2D images . The camera motion from the live-action background plate is applied to the
head sequence, rendering new views of the face. (b) Tsukuba . Fine details such as the lamp arm are retained, but some
ghosting is evident around the top of the lamp.



