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Abstract

A general classification framework, called boosting
chain, is proposed for learning boosting cascade. In this
framework, a “ chain” structure isintroduced to integrate
historical knowedge into successive boosting learning.
Moreover, a linear optimization scheme is proposed to
address the problems of redundancy in boosting learning
and threshold adjusting in cascade coupling. By this
means, the resulting classifier consists of fewer weak
classifiers yet achieves lower error rates than boosting
cascade in both training and test. Experimental
comparisons of boosting chain and boosting cascade are
provided through a face detection problem. The
promising results clearly demonstrate the effectiveness
made by boosting chain.

1. Introduction

called SNoW learning architecture, which is specifically
tailored for learning in the presence of a very large
number of features. Schneidermgad] used naive
Bayesian classifier on multi-resolution feature from
different levels of wavelet transform.

Although, some works, such as [2] and [4] have
achieved the best detection accuracy in the literature, both
of them are too slow to be applied in realtime
applications due to the computation complexity. Thereby,
hierarchy classification framework is wildly adopted to
build rapid detector. Serra [11] implemented a two-layer
detector. The first layer consists of a fast linear SVM that
removes large parts of the background. The second layer
consists of a more accurate polynomial SVM performs
the final face detection. Viola and Jones [7] built a
cascade of boosting classifiers on an over-complete set of
Haar-like features. In each layer of the cascade, AdaBoost
[13] is adapted to integrate the feature selection and
classifier design in one boosting procedure. By adopting
simple-to-complex strategy, most non-face candidates are

Different from the traditional pattern classification > : : o .
problem where decision is made between well-defineg€iected in earlier layer of cascade with little computation

classes, the detection problem requires discriminateOsts- This structure results in extremely rapid object

analysis between the object class and the rest of the worlgletector. However, AdaBoost 'S a seque ntial forward
As a result, the detection algorithm must accommodate>©2rch procedure using the greedy selection strategy. lts

the intra-class variance without compromising the euristic assumption is the monotonicity. The premise

discriminability of locating object within cluttered scenes. offered by the sequential procedure can be broken-down

On the other hand, typical negative samples are usuaII%ZZ?thoitaS;;?rﬂﬂog 'Eyv'?rl]itgrdp'orsgfi‘:g LItkEi] ?(;Zgos(;afd

unavailable for building a training set due to large

variance of negative class. Moreover, as the location anfrloating Search into AdaBoost. Based on FloatBoost, a

scale of target class are unknown, the computation coS etector for multi-view face detection [9] is implemented.
lthough the new detector achieves the better

for exhaustive search can be hardly avoided. To concludé, ; ith f : he FloatB X
there are three issues which are critical for a detectiorP€" orgllance dW't ewer features, the foat IOOSt_ IS
system: training strategy for negative sample collection,Unstable ~and computation extensive for learning

robust learning algorithm, and computation cost for comphgated problem. . .
evaluation. In this paper, a new framework, called boosting chain,

Sung and Poggio [10] proposed training schema is proposed for object detection. Different from the

called bootstrap, was applied for negative sampleébOOSting cascade, this algorithm integrates the bootstrap

collecting. During bootstrap procedure, false detectionsrining and boosting algorithm into a single learning

are collected iteratively into the training set, and a Very_prfocedu_re, dan_d T)nablc—_zs the “é"'za“,or_‘ o;\lhlstgnca(lj
low false positive rate is achieved after several iterationdNformation during boosting cascade training. Also, base

of learning. on linear recursive feature eliminatidRIFE)[5] strategy,
AlSO, various |earning a|gorithm has been app“ed tothe redundancy of AdaBoost is remOVEd, which avoid the

the detection problem. Papageorgiou [1] built a detectodocal minimum with comparable performance. Moreover,

by training a Support Vector Machine (SVM) [12] on an during the RFE procedure, an optimized threshold

over-complete wavelet representation of object classadjusting for cascade coupling is achieved.

Rowley [3] presented a neural network-based face The rest of the paper is organized as follows: Section 2

detection system. Roth [2] used a network of linear unitspresented in detail the proposed boosting chain



framework. The linear optimization algorithm for the minimal recall requirement. During the threshold
boosting chain is presented in Section 3. Section 4adjustment from valueb to value a, the classifier's
provides the experimental results and conclusion is drawmiscriminability in the rangga,+«] is lost. As the

in Section 5. performance of most weak learner used in the boosting
. . ) algorithm is near to random guess, such disoative
2. Boosting chain learning information discarded between the layers of boost

Boosting cascade proposed by Viola [7] has beencascade is critical to increase the converge speed of
proved to be an effective way to detect faces with highsuccessive classifiers.
speed. Based on a thorough analysis of boosting cascade,
a naive boosting chain is proposed to accelerate th.1.2 Fine tune the boosting cascade. Moreover,
convergence of cascade training. Moreover, inspired bysuppose the positive rate in théh layer is p, the
the similarity between théoosting chain learning and empirical computation cost of each stage classifier can be
AdaBoost algorithm, a boosting analysis for thesedefined as:
phenomena is therefore given. This also derived the c D(rllxi Pt)Dm :(l_l. x )Dm @)

improved training algorithm for boosting chain. . X = »
Since target objects are extremely rare, the positive

rates of most stage classifier are very close to the FP rates.

2.1. Boosting cascade The overall empirical computation cost can be defined as:

During the training procedure, windows which are M 3
falsely detected as faces by the previous classifier are C—Zizlc, (3)
processed by successive classifiers. Therefore, the overall Obviously, given concrete goals féf and D, the
false positive (FP) rat€& and detection rat® on the  detection rated does not affect the overall computation
training set can be defined as: cost, and the smalldr and m are the less computation

F= I—l_M f.D= I—l_M d 1) cost will be required. Therefore, a set of optimifeahd
= = m will directly improve the detection speed of the cascade.

where symboM, i, andd; take the notation in Figure 1. 5 the other hand, fixed FP ratethe overall detection

P positive training sef=|P) rate D can be improved by increasing, which
N, ith negative training sem,=|N;| corresponding to using more featurdtim classifier for a
fi maximum false positive rate ioh layer better detection ratg.
di minimum detection rate ath layer However, for a given detection task, the problem of
w weighting of samplg finding the optimized set of, and m task is a major
F overall false positive rate. challenge for cascade classification. In this section, a
D overall detection rate. new framework, called boosting chain, is proposed to
M number of classifiers used in the cascade. improve the convergence of each stage classifier, and an
@i ith boosting classifier in the cascade optimizing algorithm forf; andm will be discussed in the
h;  jth weak learner iith layer next section.
a;j  parameter for weak learnis 0.2 = : |
by threshold for the boosting classifiéy ? Line 1 Line 2:
m the number of weak learner dh o5 § en : i x=b
Figure 1: Notation for boosting cascade |
0.1 Non-face : Face
2.1.1 Historical information in cascade training. In !
each layer of the boosting cascade, the classifier is :
adjusted to a very high recall ratio to preserve the overall %0 I
recall ratio. For example, for a 20 layers cascade, to ]
anticipate a overall detection rates at 96% in training set, o , , . Value (x)
the recall rate in each single illw be 99.8% 10 s 0 5 o
(290.96 = 0.998) on the average. Figure 2. Adjusting threshold for layer classifier.

However, such a high recall rate at each layer is
achieved with the penalty of sharply precision decreasing
As shown in Figure 2, valuk is computed for the best
precision, and valua is the best threshold which satisfies

2.2. Naive boosting chain learning
As defined in Figure 1, thigh boosting classifier in the
cascade is:



®, =sign[> "a, . (x)-b] (4 Consequently, under boosting chain structure, previous
cron classifier is a prefix of the later classifier. Such
correspondence can be roughly expressed as:

s = X0, () ©) Py D, L Dy ©
o L The last node classifiepy contains all features used
Then, initialized by the new featurbiio(X), the i, the boosting chain. According to Equation (8), and it's
boosting classifier?;., can be learned from the training yery similar to the standatbosting classifier. The only

In order to utilization historical information ith layer,
define:

setP andN;; . difference is the training strategy. Different from the
@, =sgnya’ h (x)-b,] (6)  Adaboost, boosting chain is learnedNhstep with one
o , o , : positive training set andl different negative training set.
Sela,,,, =@, /a1y @b, =h,/a,,,, combined Actually, such similarity could be simply interpreted
with equation (4), equation (6puld be rewritten as: by the sampling procedure of the Adaboost algorithm.
P, = sign[Z':i t”:lak’t he () = b, @) Given a very large negative training set, the initial training

Therefore, théth classifier is “linked” into thei¢ )th ~ S€t No could be selected by random sampling. After

classifier. Generally, applying this procedure repeatedlyse\./eral step of Iearnlng, classmeﬂs_ _obtalned. At th.'s
fori=1,...M yields: point, most samples N, are classified correctly with

: i m, small weight, and samples which could not be classified

®, = sgn[zk:lztzlak,t h . (x)-b] (8)  correctly will have large weight. By extending this
By this means, the boosting cascade is linked into &onclusion to the whole training set, negative training set
“chain” structure with multiple exits for negative patterns. Nu is collected by random sampling on the samples with
The evaluation of boosting chain could be done inlarge weight. Based on the new negative training set, the

following manner: training procedure is continued, and new classifigis
- - - learned after several step of learning. With the similarly
1. Gl\(/jen an examplg, evaluate the boosting chain with strategy, classifi@b,,@,,...,&y are learned as well.
noae

Therefore, based on the sampling interpreting, naive
boosting chain learning algorithm could be improved with
minor modification on weighting schema and training

2. Initializes= 0
3. Repeat foi = 1 to M:

— m
3 s=s+ 3y lah (X strategy.
b) if (s < by) then exit with negative response. Firstly, the positive sample weights are directly
4. Exit with positive response. introduced into the substantial learning procedure. For

negative samples, collected by bootstrap method, their
weights are adjusted according to the classification errors
of each previous weak classifierimar to the equation

2.3. Boosting chain learning with bootstrap used in boosting training procedure [13], the adjusting
Similar to the boosting cascade, a set of images could be done by:

without target object are regarded as the source of the  ia 0 _ i m,

negative samples. After the training procedure of each W - wWiexpEY; 20,2 () (10)
node classifier, the boosting chain is evaluated over thevherey; is the label of samplg, w/ is the initial weight
whole image set, and any positive predicts, which arefor samplex, andi is the current node index.

considered as FPs, are collected to form the negative Secondly, the initial weak learnéry(X) is no longer
training set to train the next node classifier. The wholerequired, and the successive training is directly based on
training procedure could be illustrated in Figure 4. the previous boosting classifier. The algorithm
description will be shown in Figure 5.

Figure 3: Evaluate the boosting chain

\ Images without target object \

Figure 4: Boosting chain learning with bootstrap



1. Initialize: i=0, Fg=1,0={}

w=1/p for all positive sample;, w=1/n; for all positive 8100
samplex; 2
2. While F>F ® 95

a) i=i+l El e —— Original

b) Taining &; to meet thef; and d; requirements on & 90 ' —-—- LSVM W=1
validation set. - —- LSVMW=15
- Using initial weightsa;, training seP andN;
— Train a node classifie®; 85

¢) Node classifier optimization (in Section 3) !

d) FizFi_l*fi, ¢:¢D{¢|} 80

e) Evaluateboosting chain® on non-face image set, .
and put false detections into the Bit; False alarm rates (%)

f) For eactsample x; in setN.,;, update weighty for 6 10 20 30 20 50

®i1according to Equation (10). Figure 6: The ROC curves comparing the original

Boosting chain algorithm with the LSVM
optimization algorithm with different weights.

Figure 5. The pseudo-code for learning a boosting
chain

According to [12], the solution for finding optimized

Based on thls'strategy, the boostmg chain .COUId .benyperplane can be obtained by resolving the following
regarded as a variant of AdaBoost learning algorithm Wlthquadratic programming problem:

similar generalization performance and efyound S
Maximize:

3. Boosting chain optimization L(B)=> .8 -%Z:jﬂﬂiﬂj y,y; (h(x) Ch(x;)) (12)

In each step of boosting chain, performance at the
current stage involves a tradeoff between accuracy and
speed. The more features used the higher detectioi1,...,n. CoefficientC is set according to the trade-off
accuracy achieved. At the same time, classifiers withconstaniC classification riskv and over the training set:
more features require more time to evaluate. The naive B {WC if x isafacepattern (13)

ubject to the constrainEi"lgi y,=0andC, =3 =0,

optimization method used by Viola is to simply adjust

i . C otherwise
threshold for each classifier to achieve the balance Th lution of this maximization problem is denoted
between the targeted recall and false positive rate € solution ot this ma ation problem IS denote

S - :
However, as mentioned before, this method frequentlyby'g0 =(B..5,.f;) - Then the optimized: will be
results in a sharp increase in false rates. To address thgven bya:Z,”_llgi yh(x) -

issue, a new algorithm based on a linear model for -

boosting opimization is proposed. By adjusting the bias tertm and classification risky,

the optimized result is found. Experimental results in

) ) L Figure 6 illustrated the efficiency of this algorithm.
3.1 Thelinear model for boosting optimization

For simplicity, following abbreviation is used=m, 3.3 Boosting redundancy reduction
h()=hij (x), o=eij, b=bi, anda={a,,... ar}. Then, the As AdaBoost is a sequential forward search procedure
final decision functlonlof AdaBoost in Equation (4) could using the greedy selection strategy, redundancy during the
be regarded as the linear combination of weak Iearner%aming procedure can not be avoided. FloatBoost adopt
{hu(x), ha(x), ..., (X)}. _ _ the backtrack strategy. It deletes unfavorable weak
Each weak learnem(x) will be determined after the  ¢jassifiers from the ensemble when a new weak classifier

boosting training. When it is fixed, the weak leamer js added. Although FloatBoost provides a promising way
maps the samplbe from the original feature spageto a {5 reduce the redundancy during the boosting training,

point such strategy is conflict with the boosting weight schema,
% =h(x) ={h (%), hy(%),....hr (%)} (11)  and the learning procedure is unstable, which will be

in a new spaceF with new dimensionality T. shown in Figure 10.

Consequently, the optimization of parameter can be According to the linear model of the boosting classifier,

regarded as finding an optimal separating hyperplane irthe result classifier could be expressed as:

the new spack'. F)=2 ah(+b (14)

3.2 Classifier Adjusting The gradient direction d{x) overh(x) is:



Oy f()=a (15) rotation within 15 degrees and scaling within 20%

variations.
1. Training a linear SVM classifier over the séf()}, The testing set consists of the standard MIT+CMU
i=1,...,M, and weightv. face database, which composed of 125 grayscale images

2. Sort theclassifier parameterector o by value. Suppose
the new index will bei,is,...iu
3. k=1,...,N, N is the const for feature elimination.
a) remove the featurs,,
b) compute current learning accuragy 4.2 Performance comparisons
c) putback featurdmy,
4. Remove the featurey, with largetpg
5. M=M-1, and Goto 1.

containing 483 labeled frontal faces. And all experiments
are tested over a 1.5Ghz Pentium 4 computer.

Tabel 1 Average number of feature used in face
detection on MIT-CMU Test set

Figure 7.n-level boosting feature reduction Boosting FloatBoost | Boosting Chain
algorithm Cascade Cascade
18.1 18.9 22.5

Therefore, in the most time, the smaleris the less _ _
significant the featuré(x) will be. With this heuristic, Three detectors based on boosting chain, FloatBoost

backtrack the feature selection procedure on each step Eascade and Adaboost cascade are implemented on the
unnecessary. To remove the redundancy in boostingame training set. The FP-Detection rate curve over the
procedure, a top-down schema is more favorable in thidMIT-CMU test is shown in Figure 9. And the average
situation. By incorporating the idea of linear FRE, a newnumber of features used in each detector are listed in the

boosting redundancy reduction algorithm is proposed, andable 1.

reduction algorithm is shown in Figure 7. 0.94 §
. 0.92 5

4. Experimental Results 0ol %
0.88¢ e

In this Section, a face detector based on boosting chain
is implemented, and performance comparisons are made o.s6}

- -»— Boosting chair}
to AdaBoost cascade and FloatBoost cascade, which are | ‘/ -+ AdaBoost

two most relevant face detector in the literature. & FloatBoost

0.82
. [
4.1 Experimental Setup 08,
0.78+C False positives
0 50 100 150 200

Figure 9: Detection rates for various numbers of
false positives on the MIT+CMU test set. All
detectors are constructed in 11 layer cascade.

In order to sidestep any differences resulting from the
underlying infrastructure systems of detector [6], a
_ J o training set of 18000 images (8000 faces and 10000 non-
: - hEAE F Bl 3 = 4 faces) and a test set of 15000 images ( 5000 faces, and
Figure 8: Some samples in the face training data. 10000 non-faces) are used to evaluate these algorithms.
The images are 20*20 grayscale and aligned by eye center.
More than 12000 image without faces and 10000 faceBy fixing the detection rate to 95%, the FP rates under
images were collected by cropping from various sourcesgdifferent features are shown in Figure 10.
such as AR, Rockfeller, FERET, BiolD and from WEB.
Most faces in the training set have the variation of both
in-plane and out-of-plane rotation within the range of [-
30°, 30°]. A total number of about 80000 face training
samples with size of 20x20 are generated from the 10000
face images by following random transformation:
mirroring, four-direction shift with 1 pixels, in-plane
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- BoostingiChai n
= Adaboost
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Figure 10: FP rates for various numbers of features
on the testing set. The bOosting chain used here
only contains 1 layer.

In summary, the experimental results from two test set
reveal
framework.

the robustness and efficiency of proposed

5. Conclusions

In this paper, a novel framework for rapid object
detection has been presented. In this framework, boosting
cascade and bootstrap training are integrated into a single
learning procedure, which not only provide a theoretical
foundation for cascade training,
classifier
knowledge of cascade learning. Moreover, based on a
linear analysis model for boosting classifier, a classifier
adjusting and redundancy reduction algorithm is also
proposed.

The experiment results from most testing sets have
shown the robustness and superiority of the proposed
framework. Also, we believe the generic framework
presented

but also improve

performance incorporating historical

by

in this paper can be applied to other

classification problems in computer vision.

4.3 Discussions
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