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ABSTRACT

With location-based services gaining popularity among mobile user-
s, researchers are exploring the way using the phone-captured im-
age for localization as it contains more context information than
the embedded sensory GPS coordinates. We present in this paper
a novel mobile image geotagging approach to accurately sense the
actual geo-context of a mobile user. The proposed approach, named
AMIGO (Accurate Mobile Image GeOtagging), is able to provide
a comprehensive set of accurate geo-context based on the current
image and its associated scene in the database. The geo-context in-
cludes the real locations of a mobile user and the scene, the viewing
angle, and the distance between the user and the scene. Specifically,
we first perform partial duplicate image retrieval to select crowd-
sourced images capturing the same scene as the query image. We
then employ the structure-from-motion technique to reconstruct a
sparse 3D point cloud of the scene. Finally, by projecting the re-
constructed scene onto the horizontal plane, we can derive user’s
location, viewing angle, and distance. The effectiveness of AMI-
GO has been validated by experimental results.

Categories and Subject Descriptors

1.4.8 [Computing Methodologies]: Image Processing and Com-
puter Vision—Scene Analysis

General Terms

Algorithms, Performance, Experimentation.

Keywords

Geotagged image, mobile image localization, scene reconstruction,
location-based services.

1. INTRODUCTION

With the development of mobile communication technologies
and the popularity of mobile Internet, people have increasingly
tended to use portable mobile devices such as mobile phones, dig-
ital cameras, personal digital assistants (PDAs) for entertainment
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and communication. The recent development of location-based ser-
vices (LBS) is an important manifestation of this trend. Examples
include searching for nearby social events and friends, location-
based advertising, mobile recommendation for nearby foods and
restaurants, and so on [14]. Localization is the key problem of LB-
S. Only when the accurate location of a mobile device is found, all
other LBS applications can be applicable.

However, the traditional methods for localization, such as Cell-
ID based positioning and GPS positioning, etc., are inadequate in
terms of accuracy and reliability. Reports have shown that the av-
erage localization errors of mobile phone GPS sensors are in the
range of 50-100 meters [9]. The errors are caused by the require-
ment of at least four satellites to be visible at the same time, as
well as the multipath effects which are severe in urban areas with
crowded tall buildings. High-end smart phones may also carry a
digital compass to detect user’s viewing angle, but it is sensitive
to motion and magnetic disturbances. On the other hand, with the
popularity of photo-sharing communities on the Internet in recen-
t years, a huge number of geo-tagged images are available on the
Internet (e.g., Flickr). In particular, we are interested in utilizing
these crowdsourced geo-tagged images to facilitate the inference
of accurate knowledge about geo-context (such as position, view-
ing angle, distance, etc.) for LBS applications.

We develop an approach called AMIGO for accurate mobile im-
age localization. AMIGO only requires a query image taken by the
mobile user as input. The challenges of AMIGO originate from
the following aspects: 1) query images taken by mobile users may
be subject to occlusions, overlaps, various lighting conditions, and
motion blur, which makes it difficult to match the query image a-
gainst the images in the database; 2) GPS tags of the reference
images collected from photo-sharing community may be inaccu-
rate and inconsistent; and 3) dynamic objects and weather changes
require the selection of robust features for both query image and
reference images. AMIGO can provide the accurate estimation of
a comprehensive set of geo-context, such as user location, viewing
angle, and scene location, which is different from most existing ap-
proaches to mobile image localization capable to predict a subset
of them [2, 3, 5, 7, 8].

The remainder of this paper is organized as follows. Section 2
provides a brief review of the related work. Our proposed AMIGO
is described in Section 3. Section 4 presents experiments, followed
by conclusions in Section 6.

2. RELATED WORK

More and more researchers are trying to utilize the massive geo-
tagged images shared on the Internet to infer location related prop-
erties for new images. In this section we present some representa-
tive works.
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Figure 1: Overview of the AMIGO system: a) a photo taken by the user is used to retrieve partial duplicate images from the database;
b) the candidate images are used to reconstruct a sparse 3D point cloud of the scene, and the query image is then aligned to the scene
model; c¢) the estimated locations and viewing angle are projected onto the horizontal plane and mapped to real-world coordinate
through a similarity transform, after which the results are displayed on a bird’s eye view 3D map.

Image location estimation: Hays er al. estimated a probabil-
ity distribution of the image location by mean-shift clustering of
visual descriptors [3]. They made it to locate 25% of the images
to within 750 km. Gallagher et al. further improved the predic-
tion accuracy by taking into account the textual tags of images [2].
Schindler et al. studied the repetitive patterns of textured build-
ing facades in a city and built a GPS-tagged database to facilitate
repeated pattern matching and recovery of camera orientation and
location [8]. Their method relies on a pre-existing database of geo-
located planar facades covering the whole area which is hard to
build. Moreover, their method needs input images containing mul-
tiple buildings that exhibit highly repetitive structure.

Viewing angle estimation: Luo ef al. proposed a method to find
photos with viewing angles pointing to the user-indicated region
[5]. They retrieved photos within a range of certain radius to the
given geo-location, and clustered the retrieved photos into a set of
subsets representing different scenes. Then they used normalized 8-
point algorithm to estimate the camera pose of the scenes expressed
by those subsets. A creative solution was proposed by Park et al. in
[7], where they took advantage of Google Street View and Google
Earth satellite images to estimate viewing angle for potentially all
images above the earth. However, all this work of viewing angle
estimation requires a given geo-location as input and has not dealt
with the estimation of GPS locations.

In contrast, our proposed method is designed to accurately lo-
cate the phone-captured photos in urban areas and does not need
any initial geo-locations as input. The contribution of our work is
two-fold: 1) we propose a novel geotagging approach called AMI-
GO which can accurately sense the real geo-context of a mobile
user; 2) we propose a practical method for registering the sparse
3D point cloud of the scene on the real map by robustly calculating
a similarity matrix. We perform experiments to show the effective-
ness of the proposed approach.

3. AMIGO

As shown in Fig.1, our proposed AMIGO consists of three stages:
candidate images retrieval, scene reconstruction and query image
alignment, and mapping to real geo-context. First, a photo taken
by the user is used to retrieve partial duplicate images from the
database. Then the candidate images are used to reconstruct a s-
parse 3D point cloud of the scene and the query image is aligned to
the scene model. Finally, the estimated location and viewing angle
are projected onto the horizontal plane and mapped to real world G-
PS location through a similarity transform, after which the results
are displayed on a bird’s eye view 3D map.

3.1 Candidate Images Retrieval

To effectively retrieve partial duplicate geo-tagged images from
the massive database, we need an efficient and robust indexing and
retrieving scheme. A commonly adopted scheme extracts local
image features, quantizes their descriptors into visual words, and
applies methods from text search for image retrieval. In our ex-
periments, we use the vocabulary tree proposed by Nister et al.
to quantize and index scale-invariant feature transform (SIFT) fea-
tures extracted from the database images [4, 6]. SIFT feature is the
state-of-the-art local descriptor, it is widely used in content-based
image retrieval (CBIR) systems due to its distinctiveness, robust-
ness, being abundant and computationally efficient.

Typically, an image can have thousands of features. It is a huge
amount when searching from a large database. Vocabulary tree can
significantly reduce the searching time by adopting a hierarchical
quantization structure to quantize each feature into a visual word.
After quantizing and representing the images by visual words, we
can utilize the inverted file indexing technology and TF-IDF model
in text retrieval to evaluate the similarity and retrieve visually simi-
lar images efficiently. In practice, we use the method recommended
in [6] to implement this process.

The retrieved images from the above process are visually similar
images, but what we specifically want is partial duplicate images.
Due to the sampling and quantization which are lossy processes
during the construction of the vocabulary tree, the retrieved images
sometimes can vary significantly. To single out those true partial
duplicate images, other features of the images can be imposed on
the retrieved images. In particular, repetitive patterns of textured
building facades are common in street view images which makes
it indispensable to enforce spatial constraints between the input
image and the retrieved images, as multiple descriptors of simi-
lar repetitive patterns may be quantized into the same visual word.
Spatial constraints are taken into account in our system through s-
patial coding method proposed by Zhou et al. [13].

By encoding spatial relationships among local features, we can
reject false matches between images and re-rank the retrieved sim-
ilar images. After re-ranking, we examine the top 20 results. These
results are then clustered according to their GPS metadata and a
distance-based similarity metric: any two images located within
500 meters to each other belong to the same cluster. If there are
more than five reference images in the largest cluster, they are ac-
cepted as the candidate images.

3.2 Scene Reconstruction

After the candidate images are found, we utilize them along with
their geo-tags to estimate the location of our input image. It would



be good if we can recover the relative position of the cameras which
photographed these images because the geo-tags related to the can-
didate images is actually the position of the cameras. Then we can
utilize the relative position to obtain the actual geo-location of the
input image.

The task of accurately calculating the pose of cameras and scene
structure is referred to as the structure from motion (SfM) problem.
Although the theory of SfM problem has been mature for a long
time, the reconstruction of scene structure from unordered image
set is not feasible in practice until recently. Moreover, Snavely et al.
demonstrated the power of SfM techniques by reconstruction from
a large set of Internet images [10]. We use the bundler package
developed by Snavely to obtain sparse 3D points of the scene and
camera pose from the candidate images retrieved in Section 3.1.

The reconstructed scene may not be positioned “upright” as we
expected. So we calculate the upright vector of the scene accord-
ing to the method proposed by Szeliski [11]. Observing that people
usually take photographs with the horizontal edge of their cameras
parallel to the ground plane, we can assume that all cameras’ hori-
zontal axis is perpendicular to the scene’s vertical axis along which
the upright vector lies. By enforcing this constraint on every can-
didate image we can formulate the estimation of upright vector as
a least squares problem. After the upright vector is calculated, we
rotate the reconstructed scene such that the upright vector is posi-
tioned along the vertical direction. Then we align the input image
to the 3D scene model by adding it into the reconstruction.

3.3 Location and Viewing Angle Estimation

Calculating the Similarity Matrix. The relationship of the re-
constructed scene model and the real world scene can be approxi-
mately described by a similarity transform. Since we have already
obtained the upright vector of the scene, only the horizontal projec-
tion of the scene needs to be considered. If we denote the horizontal
projection of camera location in the model as (z,y), and the cor-
responding GPS coordinates of the camera (i.e. the geo-tag of the
image that the camera captures) as (G'°™, G'*), then the transfor-
mation is uniquely determined by a similarity matrix:
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where the similarity transform matrix is composed of the scale fac-
tor s, the rotation angle 6 and the translation vector (¢s,t,). But
we do not need to calculate them, so we rewrite the equation as:
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This equation will generate two linear constraints on the similarity
matrix. Since the matrix has four degrees of freedom, we need at
least two similarity correspondences to determine it. That means
ideally two candidate images from Section 3.1 are required. And
the solution is simply:
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When there exists more than two candidate images, we can use

linear least-squares technique to compute the similarity matrix.
Besides, the GPS information of images may be noisy. To avoid

the influence of images with potentially incorrect GPS locations,
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Figure 2: Visual results for each step in AMIGO.

we apply the classical RANSAC method to estimate the similarity
transform such that the outliers would be rejected to obtain more
accurate results. After the RANSAC procedure, the transform is
re-estimated using all the inliers.

Registering Images on the Map. The image location and view-
ing angle can be obtained by simply transforming the camera loca-
tion and viewing angle in the model using the similarity matrix we
just calculated.

For camera locations, by simply using Eq.(1) we can get the lo-
cation of input image and refine the location of candidate images in
the database.

Under the pin hole camera model, the viewing angle of each
camera under the reconstructed coordinate can be obtained using
the following formula:

V,=R' x[0 0 -1] (©)

where V), is the viewing angle of a camera, R is the rotation matrix
of this camera estimated by the bundler package. As the similar
transform would not change the angles between the cameras, we
can also map the viewing angle of the camera to the real world
coordinate using the same similarity matrix. It should be noted
that we first project this 3D vector of the viewing angle to the 2D
horizontal plane that is perpendicular to the upright vector.

Furthermore, we find that under our AMIGO framework, we can
also get some useful information about the scene. By analyzing the
relation of 3D points of reconstructed scene and the cameras, the
location of the scene captured by each camera and the distance from
the location where the user stood to the scene of the photo could be
estimated. In our experiment, we calculate the scene location as the
center of all feature matches’ locations.

4. EXPERIMENTS

4.1 Dataset

We used the San Francisco dataset provided by Chen et al. [1] in
our experiment. This is a publicly available city-scale dataset with
two types of images, perspective central images (PCls) and per-
spective frontal images (PFIs). There are 1.06M PCIs and 638K
PFIs in total. We only used the PCIs considering that the PFIs
contain distortion that may cause errors in the reconstruction stage.
The San Francisco dataset also provides a set of queries (803 in
total) with ground truth or simulated GPS locations. These query
images are taken from a pedestrian’s perspective at street level us-
ing several different camera phones by various people, so they are
suitable for our purpose. However, the GPS locations provided for
the query images are noisy and thus cannot be used directly as the



Figure 3: Example results of our system on the San Francisco dataset. The arrow represents the estimated viewing angle, and the
circle at the starting point of the arrow indicates the estimated user location. The pushpin shows the location of the related scene.
The bottom row shows the query images and their associated reference images used in the scene reconstruction.

Table 1: Error statistics of geo-context sensed by AMIGO

User Scene Viewing | GPS sensor
location | location angle location
Error | 10.536m | 14.050m | 21.442° 38.632m
Std. | 14.806m | 19.883m | 34.381° | 49.554m

ground truth. Moreover, the scene location and viewing angle are
not provided. In order to evaluate AMIGO, we manually labeled
all the query images using Google Street View '.

4.2 Examples

For each query image, the candidate images are first retrieved by
the CBIR system with fast spatial verification. Then, we cluster the
top 20 retrieved images to gather those images located within 500
meters with each other into a cluster. If there are more than five ref-
erence images in the largest cluster, the bundler package is called to
reconstruct the scene and camera parameters. The similarity trans-
form is estimated using RANSAC. Finally the user location, view-
ing angle and location of the related scene are shown on a bird’s
eye view map. We show a real-world example in Fig.2 illustrating
each step in our AMIGO system. We also present several typical
results in Fig.3. It can be easily seen that our system is robust under
occlusion, overlap, and various lighting conditions.

4.3 Evaluations

We find that among the 803 query images, there are 457 queries
that could find more than five images in the largest cluster. We test
these 457 images for the subsequent pipeline of the proposed algo-
rithm and find that 282 of them are not aligned to the reconstructed
scene. The error distribution of the 175 query images that can suc-
cessfully sense the geo-context is shown in Fig.4. The result shows
that 93.7% of the user locations can be accurately sensed with an
error less than 20 meters. Table 1 presents the prediction accuracy
of each geo-context sensed by AMIGO. The error statistics of cor-
responding locations obtained from the phone GPS sensors are also
shown. For these query images, our AMIGO system outperforms
the GPS sensors built in the phones.

5. CONCLUSIONS

We have proposed a novel approach named AMIGO for accu-
rately sensing the geo-context of mobile users by utilizing the mas-
sive unordered geo-tagged pictures from crowd sources. Although
our experiments have shown promising results, we observe that for
most places in the world, the geo-tagged pictures cannot form a
dense coverage. Our future work includes more practical solutions
for speeding up the 3D scene reconstruction in the cloud and sug-
gesting the best view for scene recognition like [12].

! http://www.google.com/streetview
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Figure 4: Error distribution of estimated geo-context.
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