Static Analysis Tools as Early Indicators of
Pre-Release Defect Density

Nachiappan Nagappan®
Department of Computer Science
North Carolina State University
Raleigh, NC 27606

nnagapp@ncsu.edu

ABSTRACT

During software development it is helpful to obtagarly

estimates of the defect density of software comptmeSuch

estimates identify fault-prone areas of code reéagirfurther

testing. We present an empirical approach for trey grediction

of pre-release defect density based on the defectsd using

static analysis tools. The defects identified by whfferent static

analysis tools are used to fit and predict the acpure-release
defect density for Windows Server 2003. We showt thare

exists a strong positive correlation between ttaticstanalysis

defect density and the pre-release defect densitgrisined by
testing. Further, the predicted pre-release dedeosity and the
actual pre-release defect density are stronglyetaied at a high
degree of statistical significance. Discriminanalgsis shows that
the results of static analysis tools can be usestparate high and
low quality components with an overall classificati rate of

82.91%.

Categories and Subject Descriptors
D.2.5 [Software Engineering]: Testing and Debugging -
Symbolic execution, Testing todls2.8 [Softwar e Engineering]:

Metrics — Performance measures, Process metrics, Product

metrics.

General Terms
Measurement, Reliability, Languages.

Keywords
Static analysis tools, Defect density, Statisticwthods, Fault-
proneness.

1. INTRODUCTION

Static analysis explores all possible executiompat a program
at compile time. Static analysis tools for findidgw-level

programming errors are becoming more commonplac&de11].
Such tools identify errors such as buffer overflowsll pointer
dereferences, the use of uninitialized variablas, ®tatic analysis

Permission to make digital or hard copies of afbart of this work for
personal or classroom use is granted without feeighed that copies are
not made or distributed for profit or commercialadtage and that
copies bear this notice and the full citation om filst page. To copy
otherwise, or republish, to post on servers oetlistribute to lists,
requires prior specific permission and/or a fee.

ICSE '05 May 15-21, 2005, St. Louis, MO, USA.

Copyright 2005 ACM 1-58113-963-2/05/0005...$5.00.

Thomas Ball
Microsoft Research
Redmond, WA 98052

thall@microsoft.com

can find errors that occur on paths uncovered bstintg
However, static analysis may produce false errors.

Testing, on the other hand, has the ability toalisc not only the
“shallow” errors exposed by static analysis tool# lalso to

expose deep functional and design errors. We caxpct static
analysis tools to find such errors. Said anothey,yrogrammers
make many different kinds of errors. Static analyiols find

certain classes of these errors while testing rbastised to find
the other classes of errors.

It is beneficial to obtain early estimates of systeeliability or

fault-proneness to help inform decisions on testimgde

inspections, design rework, as well as financiateassociated
with a delayed release, etc. In industry, estimaiéssystem

reliability (or pre-release defect density) areenftavailable too
late to affordably guide corrective actions to tigality of the

software. Several studies have been performed iid models

that predict system reliability and fault-proneness

Static analysis tools are deployed early in thetwsok
development process, either on the developer'stopstomputer
or during nightly builds of the product. Typicallgtatic analysis
tools inspect the code before it is ever tested hyman. Let the
static analysis defect densityf a software component be the
number of defects found by static analysis tools K&OC
(thousand lines of code). Let the petease defect densitf a
software component be the number of defects per&If@und by
other methods, before the component is released.

Our basic question is whether or not we can usic staalysis
defect density as a predictor of pre-release defecsity. That is,
are static analysis tools leading indicators ofltfagode? The
hypotheses that we address in this paper are:

e static analysis defect density can be used as dp ea
indicator of pre-release defect density;

e static analysis defect density can be used to grredé-
release defect density at statistically signifidantls;

e static analysis defect density can be used toidistate
between components of high and low quality (faald a
not fault-prone components)

* Nachiappan Nagappan was an intern with the Testegfication and
Measurement Group, Microsoft Research in the sunoh@004 when
this work was carried ot

We analyze these hypotheses inside Microsoft, wirerd® REfix
and PREfast static analysis tools have been widiepjoyed. The
PREfix tool finds common programming errors usirygnbolic
execution, applied bottom-up over the call graphagfrogram.
PREfix is run regularly over the entire Windows smucode and
the defects it finds are automatically entered mttefect database
and assigned to programmers to fix. PREfix typicalins as part
of the centralized build of Windows. PREfast isightweight
version of PREfix that can be run by developerstmir desktop
machines. It performs a local dataflow analysiseach function
to find common programming errors.

Because of the wide and automated use of PREfixRREfast

within the Windows organization, as well as the w$edefect

tracking databases, we are in an excellent posttioassess the
above hypotheses on a large amount of data.

Our results show that the static analysis defeatsitle is
correlated at statistically significant levels e tpre-release defect
density determined by various testing activitiesttier, the static
analysis defect density can be used to predictptieerelease
defect density with a high degree of sensitivityisdbiminant
analysis performed using static analysis defectsitieras the
dependent variable results in an overall classificarate of 82.91
% with respect to identifying fault and not fautlbpe
components.

The organization of the paper is as follows. Sectoreviews
related work. Section 3 introduces the PREfix aRREfast static
analysis tools and explains how these tools fito irnthe
development process at Microsoft. Section 4 prasentr case
study. Section 5 concludes and discusses futurk. wor

2. RELATED WORK

Fault-proneness is defined as the probability ef pinesence of
faults in the software [8]. Research on fault-mmess has
focused on two areas: (1) the definition of metrioscapture
software complexity and testing thoroughness ani tfie

identification of and experimentation with modelsat relate

software metrics to fault-proneness [8]. Fault-gmess can be
estimated based on directly-measurable softwanebuits if

associations can be established between theskugdsiand the
system fault-proneness [21].

Structural object-oriented (O-O) measurements, agihose in
the CK O-O metric suite [7], have been used to w@atal and
predict fault-proneness [1, 4, 5]. These metrics ba a useful
early internal indicators of externally-visible pect quality [1,
25, 26].

A number of techniques have been used for the sisalyf

software quality. For example, multiple linearneggion analysis
was used to model the dependence of quality omvacdt metrics
[18, 22]. The multiple coefficient of determinatid®?, provides a
quantification of how much variability in the quslican be

explained by the regression model. One difficukgariated with
multiple linear regression is multicollinearity angbthe metrics,
which can lead to inflated variance in the estioratf reliability.

One approach which has been used to overcomestlfigricipal
Component Analysis (PCA) [12]. In PCA a smaller fnem of
uncorrelated linear combinations of metrics, whacltount for as
much sample variance as possible, are selecteduder in

regression (linear or logistic). PCA can be useddiect a subset
of the metrics (principal components) that maximizeiance of
the controlling (independent) variable, such agbdity. PCA
can also be used to remove metrics that are higirielated with
other metrics, thus simplifying data collection hwiminimal
impact on the accuracy of the information provided.
multivariate logistic regression equation [9] canlilt to model
the data, using the principal components as thiablas. Denaro
et al. [9] calculated 38 different software metrfos the open
source Apache 1.3 and 2.0 projects. Using PCA, Hedgcted a
subset of nine of these metrics which explained @6%e total
data variance.

Also, optimized set reduction (OSR) techniques &dogistic
regression techniques are used for modeling risk faolt data.
OSR [3] attempts to determine which subsets of masens from
historical data provide the best characterizatibthe programs
being assessed. Each of these optimal subsetaractérized by a
set of predicates (a pattern), which can be apptiedassify new
programs. OSR is sometimes better than logisticessipn
analysis for multivariate empirical modeling singattern-based
classification is more accurate than logistic regien equations

[3].

Discriminant analysis, a statistical technique usedategorize
programs into groups based on the metric valuesbban used as
a tool for the detection of fault-prone programdg,[117, 21].
Munson et al. [21] used discriminant analysis fdaissifying
programs as fault-prone within a large medical-imggoftware
system. In their analysis, they also employed th&a-gplitting
technique, where subsets of programs are selettethdom and
used to train or build a model. The remaining paogs are used
to quantify the error in estimation of the numbérfaults. The
data splitting technique is employed to get an prdelent
assessment of how well the reliability can be estan from a
random population sample. The classification rasyltfrom
Munson’s use of discriminant analysis/data splittivas fairly
accurate; there were 10% false positives amonditie quality
programs (incorrectly classified as fault-prone)d al8% false
negatives (incorrectly classified as not fault-mpramong the
fault-prone programs. In this paper we use diserami analysis to
classify components as fault-prone or not basedthen static
analysis tool found defects.

Regression trees and classification trees [19¢ ledso been used
to identify fault and not-fault prone modules. Castidies
performed using regression trees on a large sedisstrial system
[13] and classification trees[16] on multiple @des of a large
scale legacy telecommunications system indicateeffieacy of
regression and classification trees towards ideatibn of fault-
prone components. Other such techniques inclulizng neural
networks for identifying fault-prone modules fortiex attention
early in software development [15]. A comprehensvaluation
of fault prediction modeling is discussed by Khasftaar and
Seliya. [19]

These studies have used structural and complexétyiaa of the
source code to act as predictors of system deéewity and fault-
proneness. Instead, we leverage the subset oftslefmend by
static analysis tools to estimate pre-release sysiefect density.
While static analysis tools find only a subset 8fthe actual
defects, it is highly likely that these defects \bbe indicative of
the overall code quality. Our basic hypothesishiat tthe more

static analysis defects found, the higher the gritiba of other
defects being present.

A similar approach was used in a study carried atutNortel
Networks on an 800 KLOC commercial software sys{@s3].
Automatic inspection defects found by static arialysols along
with code churn was found to be a statisticallyngigant
indicator of field failures and is effective in wt#fying fault-prone
modules.

3. PREfix AND PREfast AT MICROSOFT

We give a brief overview of the PREfix and PREfaxgils used
within Microsoft. Over 12.5 percent of the defediged in

Windows Server 2003 before it was released weradawith the
PREfix and PREfast tools [20]. They representstiage-of-the-art
in industrial static analysis tools.

3.1 PREfix

The PREfix tool symbolically executes select pathough a
C/C++ program. During this symbolic execution ibks for a
multitude of common low-level programming erroracluding
NULL pointer dereferences, the use of uninitializegmory,
double freeing of resources, etc.

PREfix starts with the leaf procedures (such ag™fan the call
graph of a program. It selects a set of paths vercthe statements
in procedure foo and symbolically executes thedbspa Based

upon this analysis, it creates a partial symboliecnmary of
procedure foo’s behavior. It then performs the saspet of
analysis the next level up in the call graph. WHeREfix
encounters a call to procedure foo, it does natalyae the body
of the procedure foo but uses the symbolic sumriraits place.
PREfix uses various heuristics to rule out infelesibxecution
paths.

The PREfix tool has been applied to the Windowsecbdse for
the past six years. Its usefulness can be measyréie fact that
the errors PREfix detects are automatically enténénl a defect
database to be fixed by programmers. The PREfikysisais not
inexpensive, requiring a server-side solution foifeative

deployment on as massive a code base as Windows.

3.2 PREfast

The PREfast tool is a “fast” version of the PREfbol. Its

development was independent of the PREfix tool &ioted at

desktop deployment. As a result, the PREfast aeslyare
inexpensive, accounting for negligible percentagecompile

time. Certain PREfast analyses are based onrpattatching in

the abstract syntax tree of the C/C++ program tal fsimple

programming mistakes. Other analyses are based oocal |
dataflow analyses to find uninitialized use of aates, NULL

pointer dereferences, etc.

May (or)
may not be
recorded

Bug
Database

Comprehensive

Code build

Code Development PRE

by developers fast |
A A

:Code Development PRE

by developers fast

Y i

B \ >
I >
. Feedbac

PRE
fix

»
P
»

Figure 1: Software Development Process involving PREfast and PREfix

3.3 The Development Process

As mentioned above, PREfast's main use

is on the

Table 1. Correlation results of Pre-release
defects/KLOC (All correlations are significant at the 0.01

developers’ desktops. In this usage scenarioctiefeund
may or may not be recorded by the developer depgnaii
their severity. We expect that many PREfast ervalisnot

be recorded in the defect database. Figure 1 belphains
the deployment of PREfast and PREfix in the develemt
process in Microsoft.

At specific points in time all the code from thevepers is

integrated into a single build that is run througPREfast
run in order to catch all the remaining PREfasbrsras well
as a PREfix run. The results of these runs are the

level (2-tailed))
Prefast Pre-release
defects/ | Prefix defects defects/
KLOC / KLOC KLOC
Prefast defects
JKLOC (p) 1.000
Prefix defects
JKLOC (p) .380 1.000
Pre-release
defects/KLOC .368 577 1.000
P

automatically entered into a defect tracking dadaba

4. CASE STUDY

The case study below details the analysis thatpeag®rmed
to evaluate our hypotheses. The experiment waedasut

4.2 Model Building

We use statistical regression techniques to buitdiets to
predict the ability of PREfast and PREfix defechsities to
estimate the pre-release defect density. We ilyitidit

using 199 components of Windows Server 2003. These Several models to the PREfast and PREfix data atgipras
components had a collective size of 22M LOC (22,000 predictors and the pre-release defect densityeadependent

KLOC). The PREfix and PREfast defects for these
components were extracted on a component basis them
defect database. The other “pre-release” defectsac®d
from the defect database are a comprehensive tiohlec
coming from testing teams, integration teams, btaisults,
external teams, third party testers etc. Thesectefdo not
include customer defects which are found only ipoet-

variable. The models fit include linear, logaritieminverse,
quadratic, cubic, power, compound, logistic, grovehd
exponential models. We then used the PREfast
defects/KLOC and the PREfix defects/KLOC together a
predictors in a multiple regression model with pine-release
defects as the dependent variable. Table 2 shosveeults
of the best fits measured by thé Wlue. Ris a measure of

release scenario. The PREfast defects per componentthe fit for the given data set?Reasures the variance in the

normalized per KLOC, is denoted by “PREfast defect
density”. We similarly define PREfix and pre-releagefect
density.

4.1 Correlations

Table 1 shows the correlation results of a Spearmaak
correlation between the defect densities of PRE&au
PREfix found defects with the pre-release defectsiies.

Spearman rank correlation is a commonly used robus

correlation technique [8] because it can be appiezh when
the association between elements is non-linear.leTdb
shows a statistically significanpositive correlation between
the PREfast, PREfix and pre-release defect dessifigat is,
an increase in the defect densities of PREfast RIREfix
found defects is accompanied by an increase inptiee
release defect density. This indicates the prorofsasing
PREfix and PREfast defects as early indicatorsrefrplease
defect density.

! SPsSs® was used for the purpose of statistical asalys

Through the rest of the paper we assume statistical

significance at 99% confidence.

dependant variable that is accounted for by theehbdilt
using the predictors [2].

Table 2. Regression Fits

Predictors Linear Better fits ? (R?)
(R?)
PREfast alone 0.566 Yes. Cubic (0.604)
PREfix alone 0.495 Yes. Cubic (0.514
+ Both PREfast and 0.627 N/A
PREfix

Table 2 shows that when PREfast defect densitysidu
independently, the best fit is obtained by a cuimeiation
with R?= 0.604. The best fit for the PREfix defect denssty
also obtained using a cubic equation witir R.514. When
PREfast and PREfix are combined together as pradicthe
R? value increases to 0.627 providing the best fitthud
available dataset. Hence, we conclude that usirgf&Rand
PREfix defect densities simultaneously is more Keiad
than using them independently to explain pre-relatefect
density. We do not present the regression equatioonsder
to protect proprietary data.

4.3 Data Splitting

In order to explore the efficacy of using the PRfEfand
PREfix defect density as predictors of pre-reledséect
density we use the technique of data splitting .[ZHe data
splitting technique assesses how well the defegsitiecan
be estimated from a random population sample. Vel as
random sample of 132 components (two-thirds) tddbai

multiple regression model and the remaining 67 cuompts
to check the predictive ability of the built mod&he F for
the built equation was 0.806, (F=266.6p30.0005). Figure
2 shows the graph of the predicted and actual glemse
defect density. Due to the proprietary nature ef data the
axis on the graphs are removed.

In order to quantify the sensitivity of the resut® ran a
Spearman correlation between the actual and esiiimat
defect densities. The result was a positive cdicelaof
0.564, (p<0.0005). This indicates that an increaseahe
predicted value of the PREfast/PREfix defect dgnsit
accompanied by an increase in the pre-releasetdidesity
at a statistically significant level. The Pearsarrelation
coefficient is 0.669 (p<0.0005) indicating a simila
relationship between the actual and estimated glease
defect density.

Despite some fluctuations in the observations betwihe
estimated and the actual values, we note that tlei¥ is
defect density expressed in KLOC, so even a stigahge in
prediction is reflected by a huge magnitude ingteph.

Analyses that are based on a single dataset teahassame
data to both estimate the model and to assessritsrmance

can lead to unreasonably negative biased estimates
sampling variability. In order to address the fHwt these
results were not by chance we repeated the daitirgpl
experiment. Figure 3 shows three additional préatist of

the pre-release defect density using three differandom
samples. Table 3 shows the results of the Spearman
correlation results between the actual and estiunzaies of
pre-release defect density.

Defect Density

II'] l ATUAL
| l .

il
LA e Ir'll'l_/" A e e A
1] 17 25 BN 2 5 B5
] 13 El) En 25 = Ll

Estimated

[=1

prediction follows a similar trend as the actudueathough
there are fluctuations in the prediction

H
i
=
&
) _.lmmmtl:n
-l*"-'*w-’k.hur .."Il II'r"“-"'JuF"“J\ Esfrnad e Cafact Din
a L] T = o\ o0 o
Comporant
Randon Sanpling 1

g
I

weh |

hy fH ;‘JJL.*W!\ W
Composent
ERandon Sanpling 2
g
]
{ | ™
|7 t.rW‘-‘thl'v—lllllaJ"*ﬂlUx.fphrﬂ Erlimled
i 3 a1 &% ® = @& & B

3 o ko L -] n

Figure 3. Estimated vs. Actual Defect Pre-Release
Defect Density (3 random samples)

Table 3. Fit and Correlation results of random

model splitting

omoonent
Figure 2. Actual vs. estimated pre-release defect

density

Figure 3 and Table 3 confirm that our results weoé by

S.No R F-Test (sig) Correlation Results
(Spearman)

1. 0.870 | 429.79,p<0.0005 0.496, p<0.0005

2. 0.656 | 339.95,p<0.0005 0.536, p<0.0005

3. 0.841 | 122.83,p<0.0005 0.526, p<0.0005

chance. The results are similar to Figure 1, whire

4.4 Discriminant Analysis

Discriminant analysis is a statistical techniquesdusto
categorize elements into groups based on metricesal
which has been used to detect fault-prone progfaims21].
We use discriminant analysis to identify fault-peoand not
fault-prone components using the PREfast and PRigfiect
densities as predictors.

Fault-prone and not fault-prone components areutzted
from the pre-release defect density of the 199 amapts
using a conservative normal statistical upper ¢uf{dCO)
formula given in equation 1:

UCO =u,+ [(zy2*Standard deviation of pre-release
defect density)/n]

where

UCO is the upper bound on the pre-release defect
density;

uy is the mean of the pre-release defect density;

Z,» is the uppew/2 quantile of the standard normal
distribution;

n is the number of observations.

Based on the above classification, a discriminamtction
(eigenvalue of 0.135) and a Wilks lambda (0.86Fhw? =
24.847, (p<0.0005) indicates that the null hypsihdthe
value of the discriminant function is the sameboth fault-
prone and not fault-prone components) can be mject
These results indicate that the discriminant fuorctbuilt
using the predictors adapts itself according to
components.

the

The overall classification obtained by discriminanglysis is
82.91 % (165 of the 199 components are correctntified
as fault or not fault-prone). The type | and tyge
misclassifications are not separately reported totept
proprietary information. The overall classificatiorate
indicates the efficacy of identifying fault and rfatilt-prone
components that would lead to appropriate allooatid
testing resources, inspections etc.

4.5 Preliminary Validation

Using a metric validation scheme as proposed
Schneidewind [24], we examine our results of ustiREfast
and PREfix defect density to estimate pre-releasteat
density. Under Schneidewind’'s validation schemge t
indicator of quality is the pre-release defect dgng) and
the metric suite (M) is comprised of the PREfix &idEfast
defect density:

by

Association tests if there is a sufficient linear
association between the F and M to warrant using
M as an indirect measure of F. A linear correlation
between the pre-release defect density and the
PREfast and PREfix defect density results in a
statistically significant result demonstrating the
association between F and M.

Consistencyassesses whether there is sufficient
consistency between the ranks of F and M to
warrant using M as an indirect measure of F. This
is satisfied based on the results obtained in T2ble

Discriminative Powetests if the metric(s) are able

to discriminate between high quality and low
quality software components. As we have shown,
discriminant analysis effectively separates faulty
and not fault-prone components.

Tracking assesses if M is capable of tracking
changes in F, i.e. are changes in M reflected by
appropriate changes in F. Figure 2, Figure 3 and
Table 3 establish the ability of M to track F.

Predictabilityassesses the predictability of F by M.
The correlation between the actual and the
estimated results provide evidence for the
predictability of F by M.

Repeatabilityassesses whether the experiment is
repeatable. This was demonstrated by using three
random splitting samples. One limitation with
respect to repeatability is that all the data Eoare
from one software system.

4.6 Limitations of Study

It is possible that PREfix and PREfast might haviesed
defects that should have been caught during thelojgment
process. These defects would be found by testihgs t
increasing the pre-release defect density whichhinggew
the correlation. Our results are specific to theEmRand
PREfast tools. The PREfix tool's usefulness cameasured
by the fact that the errors PREfix detects are raatizally
entered into a defect database to be fixed by progrers.
Programmers might find some of the entered defexctse
false positives. This is alleviated to some extanthe fact
that in the absence of manual intervention (“progreers”)
the static analysis found defects are indicativprefrelease
defect density. Further, these results are hedeipendent on
the quality of the static analysis tool and mightt rbe
repeatable with the same degree of strength faratols.

5. LESSONSLEARNED AND FUTURE
WORK

Based on our results, we find that:

Static analysis defect density can be used as early
indicators of pre-release defect density;

Static analysis defect density can be used to gredi
pre-release defect density at statistically sigaiii
levels;

Static analysis defect density can be used to
discriminate between components of high and low
quality.

The above results allow us to identify areas thatlizely to
have high pre-release defects that can help infienisions
on testing, code inspections, design rework etc. fuviner

observe that using both PREfast and PREfix fourddate as
predictors of pre-release defect density is bdttan using
them separately.

We plan to further validate the system by deployirsp that
developers can immediately get feedback on theirglease
defect density. We also plan to include standaatstiie
maximum allowable defects that can be found byetiesls
for enforcing acceptable code during check-ins. Alée are
building these models across several software msti]
Microsoft to make the prediction models more robust

ACKNOWLEDGEMENTS

We would like to thank Madan Musuvathi of the Tegti
Verification and Measurement group for several uis@ons
and reviews of initial drafts of this paper. We agWwledge,
Pankaj Jalote, Visiting Researcher at Microsoft eResh
from IIT Kanpur, Rajesh Munshi and Naveen Sethurama
from the Windows Team for providing access to their
datasets. We would like to thank Jim Larus, Jorci#smnand
Manuvir Das of Microsoft Research for their diséass and
feedback on PREfix and PREfast, and Bojan CukigVekt
Virginia University and the anonymous referees fioeir
thoughtful comments on earlier drafts of this paper

REFERENCES

[1] Basili, V., Briand, L., Melo, W., "A Validationof
Object Oriented Design Metrics as Quality
Indicators," |IEEE Transactions on Software
Engineering vol. Vol. 22, pp. 751 - 761, 1996.

[2] Brace, N., Kemp, R., Snelgar, R.SPSS for
PsychologistsPalgrave Macmillan, 2003.

[3] Briand, L. C., Thomas, W.M., Hetmanski, C.J.,
"Modeling and managing risk early in software
development,” Proceedings of International

Conference on Software Engineering 2003, 1993.pp

55-65.
[4] Briand, L. C., Wuest, J., Daly, J.W., Porter,VQ)
"Exploring the Relationship between Design

Measures and Software Quality in Object Oriented

Systems,"Journal of Systems and Softwavel. Vol.
51, pp. 245-273, 2000.

[5] Briand, L. C., Wuest, J., Ikonomovski, S., LasirH.,
"Investigating quality factors in object-oriented

designs: an industrial case study," Proceedings of

ICSE, 1999.pp 345-354.

[6] Bush, W. R., Pincus, J.D., Sielaff, D.J., Satic
Analyzer for Finding Dynamic Programming Errors,"
Software-Practice and Experienceol. 20, pp. 775-
802, 2000.

[7] Chidamber, S. R. and C. F. Kemerer, "A Meti$iste
for Object Oriented Design,JEEE Transactions on
Software Engineeringvol. 20, 1994.

[8] Denaro, G., Morasca, S., Pezze, M., "Derivingddls

of Software Fault-Proneness," Proceedings of SEKE

2002, 2002.pp 361-368.
[9] Denaro, G., Pezze, M., "An empirical evaluatioh
fault-proneness models," Proceedings of Internation

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

(18]

[19]

[20]

[21]

[22]

(23]

Conference on Software Engineering, 2002.pp 241 -
251.

Engler, D., Chelf, B., Chou, A., Hallem, SGHecking
System Rules Using System-Specific, Programmer-
Written Compiler Extensions," Proceedings of OSDI
2000, 2000.pp

Evans, D., Guttag, J., Horning, J., Tan, Y.,,,M
"LCLint: A Tool for Using Cpecifications to Check
Code," Proceedings of ACM-SIGSOFT Foundations
in Software Engineering, 1994.pp 87-96.

Fenton, N. E., Pfleeger, S.LSoftware Metrics
Boston, MA: International Thompson Publishing,
1997.

Khoshgoftaar, T. M., Allen, E.B., Deng,J., 'lbg
Regression Trees to Classify Fault-Prone Software
Modules,"|IEEE Transactions on Reliabilityol. 51,

pp. 455-462, 2002.

Khoshgoftaar, T. M., Allen, E.B., Goel, N., M, A.,
McMullan, J., "Detection of Software Modules with
high Debug Code Churn in a very large Legacy
System," Proceedings of International Symposium on
Software Reliability Engineering, 1996.pp 364-371.
Khoshgoftaar, T. M., Allen, E.B., Hudepohl,PJ.
Aud, S.J., "Application of neural networks to saite
quality modeling of a very large telecommunications
system,"IEEE Transactions on Neural Networksl.

8, pp. 902-909, 1997.

Khoshgoftaar, T. M., Allen, E.B., JonesW.D.,
Hudepohl, J.P., "Classification-Tree Models of
Software Quality Over Multiple ReleaseslEEE
Transactions on Reliabilityol. 49, pp. 4-11, 2000.
Khoshgoftaar, T. M., Allen, E.B., Kalaichelval.S.,
Goel, N., Hudepohl, J.P., Mayrand, J., "Detectién o

fault-prone program modules in a very large
telecommunications system," Proceedings of
International Symposium Software Reliability

Engineering, 1995.pp 24-33.

Khoshgoftaar, T. M., Munson, J.C., LanningLD A
Comparative Study of Predictive Models for Program
Changes During System Testing and Maintenance,
Proceedings of, International Conference on Softwar
Maintenance, 1993.pp 72-79.

Khoshgoftaar, T. M., Seliya, N., "Fault Preiba
Modeling for Software Quality Estimation
Comparing Commonly Used TechniqueEthpirical
Software Engineeringrol. 8, pp. 255-283, 2003.

Larus, J. R., Ball, T., Das, M., DeLine, Ratnadrich,
M., Pincus, J., Rajamani, S.K., Venkatapathy, R.,
"Righting Software," iINEEE Softwargvol. 21, 2004,
pp. 92-100.

Munson, J. C., Khoshgoftaar, T.M., "The Dei@ctof
Fault-Prone Programs,"IEEE Transactions on
Software Engineeringsol. 18, pp. 423-433, 1992.
Munson, J. C., Khoshgoftaar,T.M.,, "Regression
Modeling of Software quality Empirical
Investigation,"Information and Software Technolggy
pp. 106-114, 1990.

Nagappan, N., Williams, L., Hudepohl, J., SsspW.,
Vouk, M., "Preliminary Results On Using Static
Analysis Tools For Software Inspection,” Proceeding
of Fifteenth IEEE International Symposium on

Software Reliability Engineering, St.

[24]

[25]

Malo,
2004.pp 429-439.

Schneidewind, N. F., "Methodology for Validagi
Software Metrics,"|EEE Transactions on Software
Engineering vol. 18, pp. 410-422, 1992.
Subramanyam, R., Krishnan, M.S., "Empirical
Analysis of CK Metrics for Object-Oriented Design

France,

[26]

Complexity: Implications for Software Defects,"
IEEE Transactions on Software Engineeringl.
Vol. 29, pp. 297 - 310, 2003.

Tang, M.-H., Kao, M-H., Chen, M-H., "An
empirical study on object-oriented metrics,"
Proceedings of Sixth International Software Metrics
Symposium, 1999.pp 242-249.

