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ABSTRACT 
During software development it is helpful to obtain early 
estimates of the defect density of software components. Such 
estimates identify fault-prone areas of code requiring further 
testing. We present an empirical approach for the early prediction 
of pre-release defect density based on the defects found using 
static analysis tools. The defects identified by two different static 
analysis tools are used to fit and predict the actual pre-release 
defect density for Windows Server 2003. We show that there 
exists a strong positive correlation between the static analysis 
defect density and the pre-release defect density determined by 
testing. Further, the predicted pre-release defect density and the 
actual pre-release defect density are strongly correlated at a high 
degree of statistical significance. Discriminant analysis shows that 
the results of static analysis tools can be used to separate high and 
low quality components with an overall classification rate of 
82.91%. 

Categories and Subject Descriptors 
D.2.5 [Software Engineering]: Testing and Debugging – 
Symbolic execution, Testing tools. D.2.8 [Software Engineering]: 
Metrics – Performance measures, Process metrics, Product 
metrics.  

General Terms 
Measurement, Reliability, Languages.  

Keywords 
Static analysis tools, Defect density, Statistical methods, Fault-
proneness. 

 
1. INTRODUCTION 
Static analysis explores all possible execution paths in a program 
at compile time. Static analysis tools for finding low-level 
programming errors are becoming more commonplace [6, 10, 11].  
Such tools identify errors such as buffer overflows, null pointer 
dereferences, the use of uninitialized variables, etc. Static analysis 

can find errors that occur on paths uncovered by testing.  
However, static analysis may produce false errors. 

Testing, on the other hand, has the ability to discover not only the 
“shallow” errors exposed by static analysis tools but also to 
expose deep functional and design errors. We cannot expect static 
analysis tools to find such errors.  Said another way, programmers 
make many different kinds of errors. Static analysis tools find 
certain classes of these errors while testing must be used to find 
the other classes of errors. 

It is beneficial to obtain early estimates of system reliability or 
fault-proneness to help inform decisions on testing, code 
inspections, design rework, as well as financial costs associated 
with a delayed release, etc. In industry, estimates of system 
reliability (or pre-release defect density) are often available too 
late to affordably guide corrective actions to the quality of the 
software. Several studies have been performed to build models 
that predict system reliability and fault-proneness.  

Static analysis tools are deployed early in the software 
development process, either on the developer’s desktop computer 
or during nightly builds of the product. Typically, static analysis 
tools inspect the code before it is ever tested by a human.  Let the 
static analysis defect density of a software component be the 
number of defects found by static analysis tools per KLOC 
(thousand lines of code).  Let the pre-release defect density of a 
software component be the number of defects per KLOC found by 
other methods, before the component is released.   

Our basic question is whether or not we can use static analysis 
defect density as a predictor of pre-release defect density. That is, 
are static analysis tools leading indicators of faulty code? The 
hypotheses that we address in this paper are: 

• static analysis defect density can be used as an early 
indicator of pre-release defect density; 

• static analysis defect density can be used to predict pre-
release defect density at statistically significant levels; 

• static analysis defect density can be used to discriminate 
between components of high and low quality (fault and 
not fault-prone components) 
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We analyze these hypotheses inside Microsoft, where the PREfix 
and PREfast static analysis tools have been widely deployed. The 
PREfix tool finds common programming errors using symbolic 
execution, applied bottom-up over the call graph of a program. 
PREfix is run regularly over the entire Windows source code and 
the defects it finds are automatically entered into a defect database 
and assigned to programmers to fix. PREfix typically runs as part 
of the centralized build of Windows. PREfast is a lightweight 
version of PREfix that can be run by developers on their desktop 
machines. It performs a local dataflow analysis on each function 
to find common programming errors.   

Because of the wide and automated use of PREfix and PREfast 
within the Windows organization, as well as the use of defect 
tracking databases, we are in an excellent position to assess the 
above hypotheses on a large amount of data. 

Our results show that the static analysis defect density is 
correlated at statistically significant levels to the pre-release defect 
density determined by various testing activities. Further, the static 
analysis defect density can be used to predict the pre-release 
defect density with a high degree of sensitivity. Discriminant 
analysis performed using static analysis defect density as the 
dependent variable results in an overall classification rate of 82.91 
% with respect to identifying fault and not fault-prone 
components. 

The organization of the paper is as follows. Section 2 reviews 
related work. Section 3 introduces the PREfix and PREfast static 
analysis tools and explains how these tools fit into the 
development process at Microsoft. Section 4 presents our case 
study. Section 5 concludes and discusses future work.  

 
2. RELATED WORK 
Fault-proneness is defined as the probability of the presence of 
faults in the software [8]. Research  on fault-proneness has 
focused on two areas: (1) the definition of metrics to capture 
software complexity and testing thoroughness and (2) the 
identification of and experimentation with models that relate 
software metrics to fault-proneness [8]. Fault-proneness can be 
estimated based on directly-measurable software attributes if 
associations can be established between these attributes and the 
system fault-proneness [21].   

Structural object-oriented (O-O) measurements, such as those in 
the CK O-O metric suite [7], have been used to evaluate and 
predict fault-proneness [1, 4, 5]. These metrics can be a useful 
early internal indicators of externally-visible product quality [1, 
25, 26].  

A number of techniques have been used for the analysis of 
software quality.  For example, multiple linear regression analysis 
was used to model the dependence of quality on software metrics 
[18, 22]. The multiple coefficient of determination, R2, provides a 
quantification of how much variability in the quality can be 
explained by the regression model. One difficulty associated with 
multiple linear regression is multicollinearity among the metrics, 
which can lead to inflated variance in the estimation of reliability. 

One approach which has been used to overcome this is Principal 
Component Analysis (PCA) [12]. In PCA a smaller number of 
uncorrelated linear combinations of metrics, which account for as 
much sample variance as possible, are selected for use in 

regression (linear or logistic). PCA can be used to select a subset 
of the metrics (principal components) that maximize variance of 
the controlling (independent) variable, such as reliability.  PCA 
can also be used to remove metrics that are highly correlated with 
other metrics, thus simplifying data collection with minimal 
impact on the accuracy of the information provided. A 
multivariate logistic regression equation [9] can be built to model 
the data, using the principal components as the variables. Denaro 
et al. [9] calculated 38 different software metrics for the open 
source Apache 1.3 and 2.0 projects. Using PCA, they selected a 
subset of nine of these metrics which explained 95% of the total 
data variance. 

Also, optimized set reduction (OSR) techniques and logistic 
regression techniques are used for modeling risk and fault data. 
OSR [3] attempts to determine which subsets of observations from 
historical data provide the best characterization of the programs 
being assessed. Each of these optimal subsets is characterized by a 
set of predicates (a pattern), which can be applied to classify new 
programs. OSR is sometimes better than logistic regression 
analysis for multivariate empirical modeling since pattern-based 
classification is more accurate than logistic regression equations 
[3].  

Discriminant analysis, a statistical technique used to categorize 
programs into groups based on the metric values, has been used as 
a tool for the detection of fault-prone programs [14, 17, 21]. 
Munson et al. [21] used discriminant analysis for classifying 
programs as fault-prone within a large medical-imaging software 
system. In their analysis, they also employed the data-splitting 
technique, where subsets of programs are selected at random and 
used to train or build a model. The remaining programs are used 
to quantify the error in estimation of the number of faults. The 
data splitting technique is employed to get an independent 
assessment of how well the reliability can be estimated from a 
random population sample. The classification resulting from 
Munson’s use of discriminant analysis/data splitting was fairly 
accurate; there were 10% false positives among the high quality 
programs (incorrectly classified as fault-prone) and 13% false 
negatives (incorrectly classified as not fault-prone) among the 
fault-prone programs. In this paper we use discriminant analysis to 
classify components as fault-prone or not based on the static 
analysis tool found defects. 

Regression trees  and classification trees [19] have also been used 
to identify fault and not-fault prone modules. Case studies 
performed using regression trees on a large scale industrial system 
[13] and classification trees[16]  on multiple releases of a large 
scale legacy telecommunications system indicate the efficacy of 
regression and classification trees towards identification of fault-
prone components.  Other such techniques include utilizing neural 
networks for identifying fault-prone modules for extra attention 
early in software development [15]. A comprehensive evaluation 
of fault prediction modeling is discussed by Khoshgoftaar and 
Seliya. [19] 

These studies have used structural and complexity metrics of the 
source code to act as predictors of system defect density and fault-
proneness. Instead, we leverage the subset of defects found by 
static analysis tools to estimate pre-release system defect density. 
While static analysis tools find only a subset of all the actual 
defects, it is highly likely that these defects would be indicative of 
the overall code quality. Our basic hypothesis is that the more 



static analysis defects found, the higher the probability of other 
defects being present.  

A similar approach was used in a study carried out at Nortel 
Networks on an 800 KLOC commercial software system [23]. 
Automatic inspection defects found by static analysis tools along 
with code churn was found to be a statistically significant 
indicator of field failures and is effective in identifying fault-prone 
modules. 

 
3. PREfix AND PREfast AT MICROSOFT 
We give a brief overview of the PREfix and PREfast tools used 
within Microsoft. Over 12.5 percent of the defects fixed in 
Windows Server 2003 before it was released were found with the 
PREfix and PREfast tools [20].  They represent the state-of-the-art 
in industrial static analysis tools. 

3.1 PREfix 
The PREfix tool symbolically executes select paths through a 
C/C++ program. During this symbolic execution it looks for a 
multitude of common low-level programming errors, including 
NULL pointer dereferences, the use of uninitialized memory, 
double freeing of resources, etc.   

PREfix starts with the leaf procedures (such as “foo”) in the call 
graph of a program. It selects a set of paths to cover the statements 
in procedure foo and symbolically executes these paths.  Based 

upon this analysis, it creates a partial symbolic summary of 
procedure foo’s behavior. It then performs the same sort of 
analysis the next level up in the call graph. When PREfix 
encounters a call to procedure foo, it does not reanalyze the body 
of the procedure foo but uses the symbolic summary in its place.  
PREfix uses various heuristics to rule out infeasible execution 
paths. 

The PREfix tool has been applied to the Windows code base for 
the past six years. Its usefulness can be measured by the fact that 
the errors PREfix detects are automatically entered into a defect 
database to be fixed by programmers. The PREfix analysis is not 
inexpensive, requiring a server-side solution for effective 
deployment on as massive a code base as Windows. 

3.2 PREfast 
The PREfast tool is a “fast” version of the PREfix tool. Its 
development was independent of the PREfix tool but aimed at 
desktop deployment. As a result, the PREfast analyses are 
inexpensive, accounting for negligible percentage of compile 
time.   Certain PREfast analyses are based on pattern matching in 
the abstract syntax tree of the C/C++ program to find simple 
programming mistakes. Other analyses are based on local 
dataflow analyses to find uninitialized use of variables, NULL 
pointer dereferences, etc. 

 

 

Figure 1: Software Development Process involving PREfast and PREfix 
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3.3 The Development Process  
As mentioned above, PREfast’s main use is on the 
developers’ desktops.  In this usage scenario, defects found 
may or may not be recorded by the developer depending on 
their severity. We expect that many PREfast errors will not 
be recorded in the defect database. Figure 1 below explains 
the deployment of PREfast and PREfix in the development 
process in Microsoft. 

At specific points in time all the code from the developers is 
integrated into a single build that is run through a PREfast 
run in order to catch all the remaining PREfast errors, as well 
as a PREfix run. The results of these runs are then 
automatically entered into a defect tracking database. 

 
4. CASE STUDY 
The case study below details the analysis that was performed 
to evaluate our hypotheses.  The experiment was carried out 
using 199 components of Windows Server 2003. These 
components had a collective size of 22M LOC (22,000 
KLOC). The PREfix and PREfast defects for these 
components were extracted on a component basis from the 
defect database. The other “pre-release” defects extracted 
from the defect database are a comprehensive collection 
coming from testing teams, integration teams, build results, 
external teams, third party testers etc. These defects do not 
include customer defects which are found only in a post-
release scenario. The PREfast defects per component, 
normalized per KLOC, is denoted by “PREfast defect 
density”. We similarly define PREfix and pre-release defect 
density.  

4.1 Correlations 
Table 1 shows the correlation results of a Spearman rank 
correlation between the defect densities of PREfast and 
PREfix found defects with the pre-release defect densities. 
Spearman rank correlation is a commonly used robust 
correlation technique [8] because it can be applied even when 
the association between elements is non-linear. Table 1 
shows a statistically significant1 positive correlation between 
the PREfast, PREfix and pre-release defect densities. That is, 
an increase in the defect densities of PREfast and PREfix 
found defects is accompanied by an increase in the pre-
release defect density. This indicates the promise of using 
PREfix and PREfast defects as early indicators of pre-release 
defect density. 

 

 

 

                                                 
1 SPSS® was used for the purpose of statistical analysis. 
Through the rest of the paper we assume statistical 
significance at 99% confidence. 

Table 1. Correlation results of Pre-release 
defects/KLOC (All correlations are significant at the 0.01 

level (2-tailed)) 
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4.2 Model Building  
We use statistical regression techniques to build models to 
predict the ability of PREfast and PREfix defect densities to 
estimate the pre-release defect density. We initially fit 
several models to the PREfast and PREfix data separately as 
predictors and the pre-release defect density as the dependent 
variable. The models fit include linear, logarithmic, inverse, 
quadratic, cubic, power, compound, logistic, growth and 
exponential models. We then used the PREfast 
defects/KLOC and the PREfix defects/KLOC together as 
predictors in a multiple regression model with the pre-release 
defects as the dependent variable. Table 2 shows the results 
of the best fits measured by the R2 value. R2 is a measure of 
the fit for the given data set. R2 measures the variance in the 
dependant variable that is accounted for by the model built 
using the predictors [2].  

Table 2. Regression Fits 

Predictors Linear 
(R2) 

Better fits ? (R2) 

PREfast alone 0.566 Yes. Cubic (0.604) 
PREfix alone 0.495 Yes. Cubic (0.514) 

Both PREfast and 
PREfix 

0.627 N/A 

Table 2 shows that when PREfast defect density is used 
independently, the best fit is obtained by a cubic equation 
with R2= 0.604. The best fit for the PREfix defect density is 
also obtained using a cubic equation with R2= 0.514.  When 
PREfast and PREfix are combined together as predictors, the 
R2 value increases to 0.627 providing the best fit of the 
available dataset. Hence, we conclude that using PREfast and 
PREfix defect densities simultaneously is more beneficial 
than using them independently to explain pre-release defect 
density. We do not present the regression equations in order 
to protect proprietary data. 

4.3 Data Splitting  
In order to explore the efficacy of using the PREfast and 
PREfix defect density as predictors of pre-release defect 
density we use the technique of data splitting [21]. The data 
splitting technique assesses how well the defect density can 
be estimated from a random population sample. We used a 
random sample of 132 components (two-thirds) to build a 



multiple regression model and the remaining 67 components 
to check the predictive ability of the built model. The R2 for 
the built equation was 0.806, (F=266.603, p<0.0005). Figure 
2 shows the graph of the predicted and actual pre-release 
defect density. Due to the proprietary nature of the data the 
axis on the graphs are removed.  

In order to quantify the sensitivity of the results we ran a 
Spearman correlation between the actual and estimated 
defect densities. The result was a positive correlation of 
0.564, (p<0.0005). This indicates that an increase in the 
predicted value of the PREfast/PREfix defect density is 
accompanied by an increase in the pre-release defect density 
at a statistically significant level. The Pearson correlation 
coefficient is 0.669 (p<0.0005) indicating a similar 
relationship between the actual and estimated pre-release 
defect density.  

Despite some fluctuations in the observations between the 
estimated and the actual values, we note that the Y axis is 
defect density expressed in KLOC, so even a slight change in 
prediction is reflected by a huge magnitude in the graph. 

Analyses that are based on a single dataset that use the same 
data to both estimate the model and to assess its performance 
can lead to unreasonably negative biased estimates of 
sampling variability. In order to address the fact that these 
results were not by chance we repeated the data splitting 
experiment. Figure 3 shows three additional predictions of 
the pre-release defect density using three different random 
samples. Table 3 shows the results of the Spearman 
correlation results between the actual and estimated values of 
pre-release defect density. 

 

 
Figure 2. Actual vs. estimated pre-release defect 

density 
 
Figure 3 and Table 3 confirm that our results were not by 
chance. The results are similar to Figure 1, where the 

prediction follows a similar trend as the actual value though 
there are fluctuations in the prediction. 
 

 
Figure 3. Estimated vs. Actual Defect Pre-Release 

Defect Density (3 random samples) 

Table 3. Fit and Correlation results of random 
model splitting 

S.No R2 F-Test (sig) Correlation Results 
(Spearman) 

1. 0.870 429.79,p<0.0005 0.496, p<0.0005 
2. 0.656 339.95,p<0.0005 0.536, p<0.0005 
3. 0.841 122.83,p<0.0005 0.526, p<0.0005 

 
 



4.4 Discriminant Analysis 
Discriminant analysis is a statistical technique used to 
categorize elements into groups based on metric values 
which has been used to detect fault-prone programs [17, 21]. 
We use discriminant analysis to identify fault-prone and not 
fault-prone components using the PREfast and PREfix defect 
densities as predictors. 

Fault-prone and not fault-prone components are calculated 
from the pre-release defect density of the 199 components 
using a conservative normal statistical upper cut-off (UCO) 
formula given in equation 1: 

UCO = �
x+ [(z� /2*Standard deviation of pre-release 

defect  density) / n ]    

where  

• UCO is the upper bound on the pre-release defect 
density;  

• �
x is the mean of the pre-release defect density;  

• Z � /2 is the upper � /2 quantile of the standard normal 
distribution;  

• n is the number of observations.  

Based on the above classification, a discriminant function 
(eigenvalue of 0.135) and a Wilks lambda (0.869) with χ2 = 
24.847, ( p<0.0005) indicates that the null hypothesis (the 
value of the discriminant function is the same for both fault-
prone and not fault-prone components) can be rejected. 
These results indicate that the discriminant function built 
using the predictors adapts itself according to the 
components.  

The overall classification obtained by discriminant analysis is 
82.91 % (165 of the 199 components are correctly identified 
as fault or not fault-prone).  The type I and type II 
misclassifications are not separately reported to protect 
proprietary information. The overall classification rate 
indicates the efficacy of identifying fault and not fault-prone 
components that would lead to appropriate allocation of 
testing resources, inspections etc. 

4.5 Preliminary Validation  
Using a metric validation scheme as proposed by 
Schneidewind [24], we examine our results of using PREfast 
and PREfix defect density to estimate pre-release defect 
density.  Under Schneidewind’s validation scheme, the 
indicator of quality is the pre-release defect density (F) and 
the metric suite (M) is comprised of the PREfix and PREfast 
defect density:  

• Association tests if there is a sufficient linear 
association between the F and M to warrant using 
M as an indirect measure of F. A linear correlation 
between the pre-release defect density and the 
PREfast and PREfix defect density results in a 
statistically significant result demonstrating the 
association between F and M. 

• Consistency assesses whether there is sufficient 
consistency between the ranks of F and M to 
warrant using M as an indirect measure of F. This 
is satisfied based on the results obtained in Table 2. 

• Discriminative Power tests if the metric(s) are able 
to discriminate between high quality and low 
quality software components. As we have shown, 
discriminant analysis effectively separates faulty 
and not fault-prone components.   

• Tracking assesses if M is capable of tracking 
changes in F, i.e. are changes in M reflected by 
appropriate changes in F. Figure 2, Figure 3 and 
Table 3 establish the ability of M to track F.  

• Predictability assesses the predictability of F by M. 
The correlation between the actual and the 
estimated results provide evidence for the 
predictability of F by M. 

• Repeatability assesses whether the experiment is 
repeatable. This was demonstrated by using three 
random splitting samples. One limitation with 
respect to repeatability is that all the data points are 
from one software system.  

4.6 Limitations of Study 
It is possible that PREfix and PREfast might have missed 
defects that should have been caught during the development 
process. These defects would be found by testing, thus 
increasing the pre-release defect density which might skew 
the correlation. Our results are specific to the PREfix and 
PREfast tools. The PREfix tool’s usefulness can be measured 
by the fact that the errors PREfix detects are automatically 
entered into a defect database to be fixed by programmers. 
Programmers might find some of the entered defects to be 
false positives. This is alleviated to some extent by the fact 
that in the absence of manual intervention (“programmers”) 
the static analysis found defects are indicative of pre-release 
defect density. Further, these results are heavily dependent on 
the quality of the static analysis tool and might not be 
repeatable with the same degree of strength for other tools. 

5. LESSONS LEARNED AND FUTURE 
WORK  
Based on our results, we find that: 

• Static analysis defect density can be used as early 
indicators of pre-release defect density; 

• Static analysis defect density can be used to predict 
pre-release defect density at statistically significant 
levels; 

• Static analysis defect density can be used to 
discriminate between components of high and low 
quality. 

The above results allow us to identify areas that are likely to 
have high pre-release defects that can help inform decisions 
on testing, code inspections, design rework etc. We further 



observe that using both PREfast and PREfix found defects as 
predictors of pre-release defect density is better than using 
them separately. 

We plan to further validate the system by deploying it so that 
developers can immediately get feedback on their pre-release 
defect density. We also plan to include standards for the 
maximum allowable defects that can be found by these tools 
for enforcing acceptable code during check-ins. We also are 
building these models across several software systems in 
Microsoft to make the prediction models more robust.  
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