
Static Analysis Tools as Early Indicators of
Pre-Release Defect Density

Nachiappan Nagappan+

Department of Computer Science
North Carolina State University

Raleigh, NC 27606
nnagapp@ncsu.edu

Thomas Ball

Microsoft Research
Redmond, WA 98052

tball@microsoft.com

ABSTRACT
During software development it is helpful to obtain early
estimates of the defect density of software components. Such
estimates identify fault-prone areas of code requiring further
testing. We present an empirical approach for the early prediction
of pre-release defect density based on the defects found using
static analysis tools. The defects identified by two different static
analysis tools are used to fit and predict the actual pre-release
defect density for Windows Server 2003. We show that there
exists a strong positive correlation between the static analysis
defect density and the pre-release defect density determined by
testing. Further, the predicted pre-release defect density and the
actual pre-release defect density are strongly correlated at a high
degree of statistical significance. Discriminant analysis shows that
the results of static analysis tools can be used to separate high and
low quality components with an overall classification rate of
82.91%.

Categories and Subject Descriptors
D.2.5 [Software Engineering]: Testing and Debugging –
Symbolic execution, Testing tools. D.2.8 [Software Engineering]:
Metrics – Performance measures, Process metrics, Product
metrics.

General Terms
Measurement, Reliability, Languages.

Keywords
Static analysis tools, Defect density, Statistical methods, Fault-
proneness.

1. INTRODUCTION
Static analysis explores all possible execution paths in a program
at compile time. Static analysis tools for finding low-level
programming errors are becoming more commonplace [6, 10, 11].
Such tools identify errors such as buffer overflows, null pointer
dereferences, the use of uninitialized variables, etc. Static analysis

can find errors that occur on paths uncovered by testing.
However, static analysis may produce false errors.

Testing, on the other hand, has the ability to discover not only the
“shallow” errors exposed by static analysis tools but also to
expose deep functional and design errors. We cannot expect static
analysis tools to find such errors. Said another way, programmers
make many different kinds of errors. Static analysis tools find
certain classes of these errors while testing must be used to find
the other classes of errors.

It is beneficial to obtain early estimates of system reliability or
fault-proneness to help inform decisions on testing, code
inspections, design rework, as well as financial costs associated
with a delayed release, etc. In industry, estimates of system
reliability (or pre-release defect density) are often available too
late to affordably guide corrective actions to the quality of the
software. Several studies have been performed to build models
that predict system reliability and fault-proneness.

Static analysis tools are deployed early in the software
development process, either on the developer’s desktop computer
or during nightly builds of the product. Typically, static analysis
tools inspect the code before it is ever tested by a human. Let the
static analysis defect density of a software component be the
number of defects found by static analysis tools per KLOC
(thousand lines of code). Let the pre-release defect density of a
software component be the number of defects per KLOC found by
other methods, before the component is released.

Our basic question is whether or not we can use static analysis
defect density as a predictor of pre-release defect density. That is,
are static analysis tools leading indicators of faulty code? The
hypotheses that we address in this paper are:

• static analysis defect density can be used as an early
indicator of pre-release defect density;

• static analysis defect density can be used to predict pre-
release defect density at statistically significant levels;

• static analysis defect density can be used to discriminate
between components of high and low quality (fault and
not fault-prone components)

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
ICSE ’05, May 15–21, 2005, St. Louis, MO, USA.
Copyright 2005 ACM 1-58113-963-2/05/0005...$5.00.
.

__

+ Nachiappan Nagappan was an intern with the Testing, Verification and
Measurement Group, Microsoft Research in the summer of 2004 when
this work was carried out.

We analyze these hypotheses inside Microsoft, where the PREfix
and PREfast static analysis tools have been widely deployed. The
PREfix tool finds common programming errors using symbolic
execution, applied bottom-up over the call graph of a program.
PREfix is run regularly over the entire Windows source code and
the defects it finds are automatically entered into a defect database
and assigned to programmers to fix. PREfix typically runs as part
of the centralized build of Windows. PREfast is a lightweight
version of PREfix that can be run by developers on their desktop
machines. It performs a local dataflow analysis on each function
to find common programming errors.

Because of the wide and automated use of PREfix and PREfast
within the Windows organization, as well as the use of defect
tracking databases, we are in an excellent position to assess the
above hypotheses on a large amount of data.

Our results show that the static analysis defect density is
correlated at statistically significant levels to the pre-release defect
density determined by various testing activities. Further, the static
analysis defect density can be used to predict the pre-release
defect density with a high degree of sensitivity. Discriminant
analysis performed using static analysis defect density as the
dependent variable results in an overall classification rate of 82.91
% with respect to identifying fault and not fault-prone
components.

The organization of the paper is as follows. Section 2 reviews
related work. Section 3 introduces the PREfix and PREfast static
analysis tools and explains how these tools fit into the
development process at Microsoft. Section 4 presents our case
study. Section 5 concludes and discusses future work.

2. RELATED WORK
Fault-proneness is defined as the probability of the presence of
faults in the software [8]. Research on fault-proneness has
focused on two areas: (1) the definition of metrics to capture
software complexity and testing thoroughness and (2) the
identification of and experimentation with models that relate
software metrics to fault-proneness [8]. Fault-proneness can be
estimated based on directly-measurable software attributes if
associations can be established between these attributes and the
system fault-proneness [21].

Structural object-oriented (O-O) measurements, such as those in
the CK O-O metric suite [7], have been used to evaluate and
predict fault-proneness [1, 4, 5]. These metrics can be a useful
early internal indicators of externally-visible product quality [1,
25, 26].

A number of techniques have been used for the analysis of
software quality. For example, multiple linear regression analysis
was used to model the dependence of quality on software metrics
[18, 22]. The multiple coefficient of determination, R2, provides a
quantification of how much variability in the quality can be
explained by the regression model. One difficulty associated with
multiple linear regression is multicollinearity among the metrics,
which can lead to inflated variance in the estimation of reliability.

One approach which has been used to overcome this is Principal
Component Analysis (PCA) [12]. In PCA a smaller number of
uncorrelated linear combinations of metrics, which account for as
much sample variance as possible, are selected for use in

regression (linear or logistic). PCA can be used to select a subset
of the metrics (principal components) that maximize variance of
the controlling (independent) variable, such as reliability. PCA
can also be used to remove metrics that are highly correlated with
other metrics, thus simplifying data collection with minimal
impact on the accuracy of the information provided. A
multivariate logistic regression equation [9] can be built to model
the data, using the principal components as the variables. Denaro
et al. [9] calculated 38 different software metrics for the open
source Apache 1.3 and 2.0 projects. Using PCA, they selected a
subset of nine of these metrics which explained 95% of the total
data variance.

Also, optimized set reduction (OSR) techniques and logistic
regression techniques are used for modeling risk and fault data.
OSR [3] attempts to determine which subsets of observations from
historical data provide the best characterization of the programs
being assessed. Each of these optimal subsets is characterized by a
set of predicates (a pattern), which can be applied to classify new
programs. OSR is sometimes better than logistic regression
analysis for multivariate empirical modeling since pattern-based
classification is more accurate than logistic regression equations
[3].

Discriminant analysis, a statistical technique used to categorize
programs into groups based on the metric values, has been used as
a tool for the detection of fault-prone programs [14, 17, 21].
Munson et al. [21] used discriminant analysis for classifying
programs as fault-prone within a large medical-imaging software
system. In their analysis, they also employed the data-splitting
technique, where subsets of programs are selected at random and
used to train or build a model. The remaining programs are used
to quantify the error in estimation of the number of faults. The
data splitting technique is employed to get an independent
assessment of how well the reliability can be estimated from a
random population sample. The classification resulting from
Munson’s use of discriminant analysis/data splitting was fairly
accurate; there were 10% false positives among the high quality
programs (incorrectly classified as fault-prone) and 13% false
negatives (incorrectly classified as not fault-prone) among the
fault-prone programs. In this paper we use discriminant analysis to
classify components as fault-prone or not based on the static
analysis tool found defects.

Regression trees and classification trees [19] have also been used
to identify fault and not-fault prone modules. Case studies
performed using regression trees on a large scale industrial system
[13] and classification trees[16] on multiple releases of a large
scale legacy telecommunications system indicate the efficacy of
regression and classification trees towards identification of fault-
prone components. Other such techniques include utilizing neural
networks for identifying fault-prone modules for extra attention
early in software development [15]. A comprehensive evaluation
of fault prediction modeling is discussed by Khoshgoftaar and
Seliya. [19]

These studies have used structural and complexity metrics of the
source code to act as predictors of system defect density and fault-
proneness. Instead, we leverage the subset of defects found by
static analysis tools to estimate pre-release system defect density.
While static analysis tools find only a subset of all the actual
defects, it is highly likely that these defects would be indicative of
the overall code quality. Our basic hypothesis is that the more

static analysis defects found, the higher the probability of other
defects being present.

A similar approach was used in a study carried out at Nortel
Networks on an 800 KLOC commercial software system [23].
Automatic inspection defects found by static analysis tools along
with code churn was found to be a statistically significant
indicator of field failures and is effective in identifying fault-prone
modules.

3. PREfix AND PREfast AT MICROSOFT
We give a brief overview of the PREfix and PREfast tools used
within Microsoft. Over 12.5 percent of the defects fixed in
Windows Server 2003 before it was released were found with the
PREfix and PREfast tools [20]. They represent the state-of-the-art
in industrial static analysis tools.

3.1 PREfix
The PREfix tool symbolically executes select paths through a
C/C++ program. During this symbolic execution it looks for a
multitude of common low-level programming errors, including
NULL pointer dereferences, the use of uninitialized memory,
double freeing of resources, etc.

PREfix starts with the leaf procedures (such as “foo”) in the call
graph of a program. It selects a set of paths to cover the statements
in procedure foo and symbolically executes these paths. Based

upon this analysis, it creates a partial symbolic summary of
procedure foo’s behavior. It then performs the same sort of
analysis the next level up in the call graph. When PREfix
encounters a call to procedure foo, it does not reanalyze the body
of the procedure foo but uses the symbolic summary in its place.
PREfix uses various heuristics to rule out infeasible execution
paths.

The PREfix tool has been applied to the Windows code base for
the past six years. Its usefulness can be measured by the fact that
the errors PREfix detects are automatically entered into a defect
database to be fixed by programmers. The PREfix analysis is not
inexpensive, requiring a server-side solution for effective
deployment on as massive a code base as Windows.

3.2 PREfast
The PREfast tool is a “fast” version of the PREfix tool. Its
development was independent of the PREfix tool but aimed at
desktop deployment. As a result, the PREfast analyses are
inexpensive, accounting for negligible percentage of compile
time. Certain PREfast analyses are based on pattern matching in
the abstract syntax tree of the C/C++ program to find simple
programming mistakes. Other analyses are based on local
dataflow analyses to find uninitialized use of variables, NULL
pointer dereferences, etc.

Figure 1: Software Development Process involving PREfast and PREfix

Code Development
by developers

Code Development
by developers

PRE
fast

Comprehensive
Code build

PRE
fix

PRE
fast

Bug
Database

PRE
fast

May (or)
may not be
recorded

Feedback

3.3 The Development Process
As mentioned above, PREfast’s main use is on the
developers’ desktops. In this usage scenario, defects found
may or may not be recorded by the developer depending on
their severity. We expect that many PREfast errors will not
be recorded in the defect database. Figure 1 below explains
the deployment of PREfast and PREfix in the development
process in Microsoft.

At specific points in time all the code from the developers is
integrated into a single build that is run through a PREfast
run in order to catch all the remaining PREfast errors, as well
as a PREfix run. The results of these runs are then
automatically entered into a defect tracking database.

4. CASE STUDY
The case study below details the analysis that was performed
to evaluate our hypotheses. The experiment was carried out
using 199 components of Windows Server 2003. These
components had a collective size of 22M LOC (22,000
KLOC). The PREfix and PREfast defects for these
components were extracted on a component basis from the
defect database. The other “pre-release” defects extracted
from the defect database are a comprehensive collection
coming from testing teams, integration teams, build results,
external teams, third party testers etc. These defects do not
include customer defects which are found only in a post-
release scenario. The PREfast defects per component,
normalized per KLOC, is denoted by “PREfast defect
density”. We similarly define PREfix and pre-release defect
density.

4.1 Correlations
Table 1 shows the correlation results of a Spearman rank
correlation between the defect densities of PREfast and
PREfix found defects with the pre-release defect densities.
Spearman rank correlation is a commonly used robust
correlation technique [8] because it can be applied even when
the association between elements is non-linear. Table 1
shows a statistically significant1 positive correlation between
the PREfast, PREfix and pre-release defect densities. That is,
an increase in the defect densities of PREfast and PREfix
found defects is accompanied by an increase in the pre-
release defect density. This indicates the promise of using
PREfix and PREfast defects as early indicators of pre-release
defect density.

1 SPSS® was used for the purpose of statistical analysis.
Through the rest of the paper we assume statistical
significance at 99% confidence.

Table 1. Correlation results of Pre-release
defects/KLOC (All correlations are significant at the 0.01

level (2-tailed))

Prefast
defects/
KLOC

Prefix defects
/ KLOC

Pre-release
defects/
KLOC

Prefast defects
/KLOC (ρ)

1.000

Prefix defects
/KLOC (ρ)

.380 1.000

Pre-release
defects/KLOC

(ρ)
.368 .577 1.000

4.2 Model Building
We use statistical regression techniques to build models to
predict the ability of PREfast and PREfix defect densities to
estimate the pre-release defect density. We initially fit
several models to the PREfast and PREfix data separately as
predictors and the pre-release defect density as the dependent
variable. The models fit include linear, logarithmic, inverse,
quadratic, cubic, power, compound, logistic, growth and
exponential models. We then used the PREfast
defects/KLOC and the PREfix defects/KLOC together as
predictors in a multiple regression model with the pre-release
defects as the dependent variable. Table 2 shows the results
of the best fits measured by the R2 value. R2 is a measure of
the fit for the given data set. R2 measures the variance in the
dependant variable that is accounted for by the model built
using the predictors [2].

Table 2. Regression Fits

Predictors Linear
(R2)

Better fits ? (R2)

PREfast alone 0.566 Yes. Cubic (0.604)
PREfix alone 0.495 Yes. Cubic (0.514)

Both PREfast and
PREfix

0.627 N/A

Table 2 shows that when PREfast defect density is used
independently, the best fit is obtained by a cubic equation
with R2= 0.604. The best fit for the PREfix defect density is
also obtained using a cubic equation with R2= 0.514. When
PREfast and PREfix are combined together as predictors, the
R2 value increases to 0.627 providing the best fit of the
available dataset. Hence, we conclude that using PREfast and
PREfix defect densities simultaneously is more beneficial
than using them independently to explain pre-release defect
density. We do not present the regression equations in order
to protect proprietary data.

4.3 Data Splitting
In order to explore the efficacy of using the PREfast and
PREfix defect density as predictors of pre-release defect
density we use the technique of data splitting [21]. The data
splitting technique assesses how well the defect density can
be estimated from a random population sample. We used a
random sample of 132 components (two-thirds) to build a

multiple regression model and the remaining 67 components
to check the predictive ability of the built model. The R2 for
the built equation was 0.806, (F=266.603, p<0.0005). Figure
2 shows the graph of the predicted and actual pre-release
defect density. Due to the proprietary nature of the data the
axis on the graphs are removed.

In order to quantify the sensitivity of the results we ran a
Spearman correlation between the actual and estimated
defect densities. The result was a positive correlation of
0.564, (p<0.0005). This indicates that an increase in the
predicted value of the PREfast/PREfix defect density is
accompanied by an increase in the pre-release defect density
at a statistically significant level. The Pearson correlation
coefficient is 0.669 (p<0.0005) indicating a similar
relationship between the actual and estimated pre-release
defect density.

Despite some fluctuations in the observations between the
estimated and the actual values, we note that the Y axis is
defect density expressed in KLOC, so even a slight change in
prediction is reflected by a huge magnitude in the graph.

Analyses that are based on a single dataset that use the same
data to both estimate the model and to assess its performance
can lead to unreasonably negative biased estimates of
sampling variability. In order to address the fact that these
results were not by chance we repeated the data splitting
experiment. Figure 3 shows three additional predictions of
the pre-release defect density using three different random
samples. Table 3 shows the results of the Spearman
correlation results between the actual and estimated values of
pre-release defect density.

Figure 2. Actual vs. estimated pre-release defect

density

Figure 3 and Table 3 confirm that our results were not by
chance. The results are similar to Figure 1, where the

prediction follows a similar trend as the actual value though
there are fluctuations in the prediction.

Figure 3. Estimated vs. Actual Defect Pre-Release

Defect Density (3 random samples)

Table 3. Fit and Correlation results of random
model splitting

S.No R2 F-Test (sig) Correlation Results
(Spearman)

1. 0.870 429.79,p<0.0005 0.496, p<0.0005
2. 0.656 339.95,p<0.0005 0.536, p<0.0005
3. 0.841 122.83,p<0.0005 0.526, p<0.0005

4.4 Discriminant Analysis
Discriminant analysis is a statistical technique used to
categorize elements into groups based on metric values
which has been used to detect fault-prone programs [17, 21].
We use discriminant analysis to identify fault-prone and not
fault-prone components using the PREfast and PREfix defect
densities as predictors.

Fault-prone and not fault-prone components are calculated
from the pre-release defect density of the 199 components
using a conservative normal statistical upper cut-off (UCO)
formula given in equation 1:

UCO = �
x+ [(z� /2*Standard deviation of pre-release

defect density) / n]

where

• UCO is the upper bound on the pre-release defect
density;

• �
x is the mean of the pre-release defect density;

• Z � /2 is the upper � /2 quantile of the standard normal
distribution;

• n is the number of observations.

Based on the above classification, a discriminant function
(eigenvalue of 0.135) and a Wilks lambda (0.869) with χ2 =
24.847, (p<0.0005) indicates that the null hypothesis (the
value of the discriminant function is the same for both fault-
prone and not fault-prone components) can be rejected.
These results indicate that the discriminant function built
using the predictors adapts itself according to the
components.

The overall classification obtained by discriminant analysis is
82.91 % (165 of the 199 components are correctly identified
as fault or not fault-prone). The type I and type II
misclassifications are not separately reported to protect
proprietary information. The overall classification rate
indicates the efficacy of identifying fault and not fault-prone
components that would lead to appropriate allocation of
testing resources, inspections etc.

4.5 Preliminary Validation
Using a metric validation scheme as proposed by
Schneidewind [24], we examine our results of using PREfast
and PREfix defect density to estimate pre-release defect
density. Under Schneidewind’s validation scheme, the
indicator of quality is the pre-release defect density (F) and
the metric suite (M) is comprised of the PREfix and PREfast
defect density:

• Association tests if there is a sufficient linear
association between the F and M to warrant using
M as an indirect measure of F. A linear correlation
between the pre-release defect density and the
PREfast and PREfix defect density results in a
statistically significant result demonstrating the
association between F and M.

• Consistency assesses whether there is sufficient
consistency between the ranks of F and M to
warrant using M as an indirect measure of F. This
is satisfied based on the results obtained in Table 2.

• Discriminative Power tests if the metric(s) are able
to discriminate between high quality and low
quality software components. As we have shown,
discriminant analysis effectively separates faulty
and not fault-prone components.

• Tracking assesses if M is capable of tracking
changes in F, i.e. are changes in M reflected by
appropriate changes in F. Figure 2, Figure 3 and
Table 3 establish the ability of M to track F.

• Predictability assesses the predictability of F by M.
The correlation between the actual and the
estimated results provide evidence for the
predictability of F by M.

• Repeatability assesses whether the experiment is
repeatable. This was demonstrated by using three
random splitting samples. One limitation with
respect to repeatability is that all the data points are
from one software system.

4.6 Limitations of Study
It is possible that PREfix and PREfast might have missed
defects that should have been caught during the development
process. These defects would be found by testing, thus
increasing the pre-release defect density which might skew
the correlation. Our results are specific to the PREfix and
PREfast tools. The PREfix tool’s usefulness can be measured
by the fact that the errors PREfix detects are automatically
entered into a defect database to be fixed by programmers.
Programmers might find some of the entered defects to be
false positives. This is alleviated to some extent by the fact
that in the absence of manual intervention (“programmers”)
the static analysis found defects are indicative of pre-release
defect density. Further, these results are heavily dependent on
the quality of the static analysis tool and might not be
repeatable with the same degree of strength for other tools.

5. LESSONS LEARNED AND FUTURE
WORK
Based on our results, we find that:

• Static analysis defect density can be used as early
indicators of pre-release defect density;

• Static analysis defect density can be used to predict
pre-release defect density at statistically significant
levels;

• Static analysis defect density can be used to
discriminate between components of high and low
quality.

The above results allow us to identify areas that are likely to
have high pre-release defects that can help inform decisions
on testing, code inspections, design rework etc. We further

observe that using both PREfast and PREfix found defects as
predictors of pre-release defect density is better than using
them separately.

We plan to further validate the system by deploying it so that
developers can immediately get feedback on their pre-release
defect density. We also plan to include standards for the
maximum allowable defects that can be found by these tools
for enforcing acceptable code during check-ins. We also are
building these models across several software systems in
Microsoft to make the prediction models more robust.

ACKNOWLEDGEMENTS
We would like to thank Madan Musuvathi of the Testing,
Verification and Measurement group for several discussions
and reviews of initial drafts of this paper. We acknowledge,
Pankaj Jalote, Visiting Researcher at Microsoft Research
from IIT Kanpur, Rajesh Munshi and Naveen Sethuraman
from the Windows Team for providing access to their
datasets. We would like to thank Jim Larus, Jon Pincus and
Manuvir Das of Microsoft Research for their discussions and
feedback on PREfix and PREfast, and Bojan Cukic of West
Virginia University and the anonymous referees for their
thoughtful comments on earlier drafts of this paper.

REFERENCES

[1] Basili, V., Briand, L., Melo, W., "A Validation of

Object Oriented Design Metrics as Quality
Indicators," IEEE Transactions on Software
Engineering, vol. Vol. 22, pp. 751 - 761, 1996.

[2] Brace, N., Kemp, R., Snelgar, R., SPSS for
Psychologists: Palgrave Macmillan, 2003.

[3] Briand, L. C., Thomas, W.M., Hetmanski, C.J.,
"Modeling and managing risk early in software
development," Proceedings of International
Conference on Software Engineering 2003, 1993.pp
55-65.

[4] Briand, L. C., Wuest, J., Daly, J.W., Porter, D.V.,
"Exploring the Relationship between Design
Measures and Software Quality in Object Oriented
Systems," Journal of Systems and Software, vol. Vol.
51, pp. 245-273, 2000.

[5] Briand, L. C., Wuest, J., Ikonomovski, S., Lounis, H.,
"Investigating quality factors in object-oriented
designs: an industrial case study," Proceedings of
ICSE, 1999.pp 345-354.

[6] Bush, W. R., Pincus, J.D., Sielaff, D.J., "A Static
Analyzer for Finding Dynamic Programming Errors,"
Software-Practice and Experience, vol. 20, pp. 775-
802, 2000.

[7] Chidamber, S. R. and C. F. Kemerer, "A Metrics Suite
for Object Oriented Design," IEEE Transactions on
Software Engineering, vol. 20, 1994.

[8] Denaro, G., Morasca, S., Pezze, M., "Deriving Models
of Software Fault-Proneness," Proceedings of SEKE
2002, 2002.pp 361-368.

[9] Denaro, G., Pezze, M., "An empirical evaluation of
fault-proneness models," Proceedings of International

Conference on Software Engineering, 2002.pp 241 -
251.

[10] Engler, D., Chelf, B., Chou, A., Hallem, S., "Checking
System Rules Using System-Specific, Programmer-
Written Compiler Extensions," Proceedings of OSDI
2000, 2000.pp

[11] Evans, D., Guttag, J., Horning, J., Tan, Y., M.,,
"LCLint: A Tool for Using Cpecifications to Check
Code," Proceedings of ACM-SIGSOFT Foundations
in Software Engineering, 1994.pp 87-96.

[12] Fenton, N. E., Pfleeger, S.L., Software Metrics.
Boston, MA: International Thompson Publishing,
1997.

[13] Khoshgoftaar, T. M., Allen, E.B., Deng,J., "Using
Regression Trees to Classify Fault-Prone Software
Modules," IEEE Transactions on Reliability, vol. 51,
pp. 455-462, 2002.

[14] Khoshgoftaar, T. M., Allen, E.B., Goel, N., Nandi, A.,
McMullan, J., "Detection of Software Modules with
high Debug Code Churn in a very large Legacy
System," Proceedings of International Symposium on
Software Reliability Engineering, 1996.pp 364-371.

[15] Khoshgoftaar, T. M., Allen, E.B., Hudepohl, J.P.,
Aud, S.J., "Application of neural networks to software
quality modeling of a very large telecommunications
system," IEEE Transactions on Neural Networks, vol.
8, pp. 902-909, 1997.

[16] Khoshgoftaar, T. M., Allen, E.B., Jones,W.D.,
Hudepohl, J.P., "Classification-Tree Models of
Software Quality Over Multiple Releases," IEEE
Transactions on Reliability, vol. 49, pp. 4-11, 2000.

[17] Khoshgoftaar, T. M., Allen, E.B., Kalaichelvan, K.S.,
Goel, N., Hudepohl, J.P., Mayrand, J., "Detection of
fault-prone program modules in a very large
telecommunications system," Proceedings of
International Symposium Software Reliability
Engineering, 1995.pp 24-33.

[18] Khoshgoftaar, T. M., Munson, J.C., Lanning, D.L., "A
Comparative Study of Predictive Models for Program
Changes During System Testing and Maintenance,"
Proceedings of, International Conference on Software
Maintenance, 1993.pp 72-79.

[19] Khoshgoftaar, T. M., Seliya, N., "Fault Prediction
Modeling for Software Quality Estimation :
Comparing Commonly Used Techniques," Empirical
Software Engineering, vol. 8, pp. 255-283, 2003.

[20] Larus, J. R., Ball, T., Das, M., DeLine, R., Fahndrich,
M., Pincus, J., Rajamani, S.K., Venkatapathy, R.,
"Righting Software," in IEEE Software, vol. 21, 2004,
pp. 92-100.

[21] Munson, J. C., Khoshgoftaar, T.M., "The Detection of
Fault-Prone Programs," IEEE Transactions on
Software Engineering, vol. 18, pp. 423-433, 1992.

[22] Munson, J. C., Khoshgoftaar,T.M.,, "Regression
Modeling of Software quality : Empirical
Investigation," Information and Software Technology,
pp. 106-114, 1990.

[23] Nagappan, N., Williams, L., Hudepohl, J., Snipes, W.,
Vouk, M., "Preliminary Results On Using Static
Analysis Tools For Software Inspection," Proceedings
of Fifteenth IEEE International Symposium on

Software Reliability Engineering, St. Malo, France,
2004.pp 429-439.

[24] Schneidewind, N. F., "Methodology for Validating
Software Metrics," IEEE Transactions on Software
Engineering, vol. 18, pp. 410-422, 1992.

[25] Subramanyam, R., Krishnan, M.S., "Empirical
Analysis of CK Metrics for Object-Oriented Design

Complexity: Implications for Software Defects,"
IEEE Transactions on Software Engineering, vol.
Vol. 29, pp. 297 - 310, 2003.

[26] Tang, M.-H., Kao, M-H., Chen, M-H., "An
empirical study on object-oriented metrics,"
Proceedings of Sixth International Software Metrics
Symposium, 1999.pp 242-249.

