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ABSTRACT
The simplicity of MapReduce introduces unique subtleties that cause
hard-to-detect bugs; in particular, the unfixed order of reduce func-
tion input is a source of nondeterminism that is harmful if the reduce
function is not commutative and sensitive to input order. Our exten-
sive study of production MapReduce programs reveals interesting
findings on commutativity, nondeterminism, and correctness. Al-
though non-commutative reduce functions lead to five bugs in our
sample of well-tested production programs, we surprisingly have
found that many non-commutative reduce functions are mostly harm-
less due to, for example, implicit data properties. These findings
are instrumental in advancing our understanding of MapReduce
program correctness.

Categories and Subject Descriptors
D.2.5 [Software Engineering]: Testing and Debugging; D.1.3
[Programming Techniques]: Concurrent Programming

General Terms
Languages, Reliability

Keywords
MapReduce, nondeterminism, commutativity, bug

1. INTRODUCTION
MapReduce [5] has emerged as the main programming model for
data-parallel computation given its simple programming model of
mappers and reducers that enable parallel failure-resilient execution
on many machines. There is however a significant gulf between a
static MapReduce program and its execution when we reason about
correctness. For example, it is well-known that nondeterministic
user-defined mappers and reducers will produce different results
when re-executed in response to failures [5].

Another subtlety important to the correctness of MapReduce
programs is nondeterminism in data shuffling that occurs between
map and reduce stages. When a MapReduce program executes on
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a cluster of machines, mappers execute concurrently on a set of
machines over their data partitions. Keyed data entries produced
by mappers are exchanged via data shuffling to machines where
reducers run so that data items with the same key are aggregated in
a sequence to the same reducer. Due to uncertainties in the number
of mappers/reducers, network latency, and scheduling decisions, the
order of each sequence is nondeterministic. A reduce function that
is not commutative might produce different results depending on
different sequence orders, which can lead to correctness violations.

This problem has not gone unnoticed by the software engineering
research community. For example, Csallner et al. [3] proposes that
non-commutative reducers are bugs that can be detected through
symbolic execution. In practice, programmers that write reduc-
ers are usually not aware of commutativity, and it remains largely
unknown if non-commutative reducers are a serious issue to correct-
ness. We have therefore conducted the first ever empirical study on
the commutativity of real-world user-defined reducers in production
MapReduce-style programs to answer the following questions:

• How pervasive are non-commutative reducers in real-world
MapReduce programs?

• How does the output of a non-commutative reducer depend
on input order? Are there any common patterns?

• Are non-commutative reducers always harmful? Is it appro-
priate to flag them as bugs?

• Are there real bugs caused by non-commutative reducers? If
so, what do they look like and what is their impact?

Our study has collected 507 distinct custom user-defined reducers
found in 13,311 real-world MapReduce-style jobs in our production
cluster. We studied reducer code manually to identify those that
are non-commutative with findings, summarized in Table 1, that
are quite surprising. Non-commutative reducers not only exist, but
are pervasive: 58% of the reducers examined are non-commutative.
More importantly, our investigation indicates that most of those non-
commutative reducers do not lead to correctness issues. Flagging
non-commutative reducers as bugs, as proposed in [3], is then likely
to create many false positives that will frustrate programmers.

Our further investigation reveals that surprisingly most (88%)
of the non-commutative reducers can be categorized into five sim-
ple patterns even though they encode a wide variety of algorithms
in different coding styles. For some patterns, non-commutative
reducers lead to nondeterministic results, but the nondeterminism
appears known and tolerated by programmers. For other patterns,
non-commutative reducers are guaranteed to produce deterministic
results as long as the data they operate on has certain properties.



Table 1: Major findings and their implications.
Findings Implications

1 Over half of user-defined reducers (58%) are non-commutative.
Many of them are found in well-tested recurring jobs.

It is unnecessarily restrictive to mark all non-commutative
reducers as incorrect.

2 Most non-commutative reducers (88%) can be classified into five
simple patterns according to how their output depends on input order.

Most non-commutative reducers can be automatically recog-
nized and understood well by a pattern matching approach.

3 48% of the non-commutative reducers would yield deterministic
results if certain implicit data properties are satisfied. In most cases,
the properties are satisfied by real data.

Non-commutative reducers are harmless if data satisfies certain
implicit properties, whose violations can indicate a bug as
programmer assumptions are inconsistent with data.

4 26% of the non-commutative reducers have certain patterns such that
nondeterminism in their output is very likely to be tolerable.

Non-commutativity is harmless if users are aware of and can
tolerate nondeterminism in the results.

5 15% of the non-commutative reducers concatenate input items in an
nondeterministic order. However, their results are often treated as a
set of items in an order-insensitive way.

Non-commutativity is also harmless if the nondeterministic out-
put of a reducer is processed in such a way in succeeding stages
that the final output of the whole program is deterministic.

6 We find five bugs in well-tested production programs caused by non-
commutative reducers. Their root causes include wrong assumptions
on implicit data properties, data corruption, and various semantic
errors leading to non-commutativity.

Non-commutativity remains a source of bugs that can go unde-
tected for a long period of time. Checking implicit properties
on real data is an effective way to detect this kind of bugs.

Judging from the structure of those reducer programs, programmers
probably assume such properties hold.

We further conducted experiments to study real input data of
some non-commutative reducers in order to verify if assumed data
properties actually held. We successfully used violation of those
data properties to find real bugs in code where reducers produce
nondeterministic results that are likely to be unexpected by the pro-
grammers; we suggest that this is an effective approach to detecting
correctness issues. Finally, we present five real bugs found in non-
commutative reducers that manifest undesirable nondeterministic
results. All have run in production for over three months before we
reported them, showing the subtlety of such nondeterministic bugs
and their impact on real production systems.

This paper makes the following contributions:

• We present the first comprehensive study on non-commutative
reducers for real-world data-parallel programs. Our study re-
veals surprising results that are instrumental to understanding
the significance of this issue, as well as helping to develop
effective detection mechanisms that avoid false positives.

• We discover that programmers often rely on certain implicit
data properties to ensure determinism in the output of their
non-commutative reducers. Our study on real data shows that
such data properties can be wrong and lead to real bugs.

• We present five bugs caused by non-commutative reducers.

The rest part of the paper is organized as follows. Section 2 demon-
strates nondeterminism in MapReduce with examples. Section 3
describes our study methodology. Reducer classification with re-
spect to commutativity and common non-commutativity patterns are
discussed in Section 4, followed by our data property verification
results on real data in Section 5. Section 6 presents five real bugs
found in production jobs that produce undesirable nondeterministic
results. Section 8 surveys related work and Section 9 concludes.

2. BACKGROUND
A generalized MapReduce program processes data as sets of rows,
each row consisting of multiple columns. A simple MapReduce
program has a map stage followed by a reduce stage (Figure 1) that
are automatically split into mappers and reducers, which are sched-
uled to run in parallel. Computation on mappers and reducers is
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Figure 1: The nondeterminism in MapReduce. The rows with
the same reduce key ‘a’ (the first column) are shown. In the
data shuffling stage, these rows can be grouped and passed to a
reducer in different orders.

1 IEnumerable<Row> reduce(IEnumerable<Row> input, Row output) {
2 int sum = 0;
3 foreach (Row row in input) {
4 output[0].Set(row[0].String);
5 sum += row[1].Integer;
6 }
7 output[1].Set(sum);
8 yield return output;
9 }

Figure 2: An example reduce function that sums up the second
column in all rows in a group.

usually given by user-defined functions map and reduce. Mappers
filter and transform the input data into a row set, some columns of
which are specified as the reduce key. Between the mappers and
reducers is a data shuffling stage where rows with the same reduce
key are grouped together into a sequence by a merge-sort. Reducers
are invoked to aggregate each of these groups. An example reduce
function written in C#, shown in Figure 2, accepts a sequence of
input rows from an iterator (IEnumerable<Row> input) and sums
up values in the second column (row[1].Integer) of rows that
are grouped by the first column and passed through the parameter
input. A single row is emitted for each group on line 8.

The implementation of data shuffling introduces uncertainty in
group row order. In Figure 1, rows with the reduce key ‘a’ are
initially generated by multiple mappers, and are grouped together



1 IEnumerable<Row> reduce(IEnumerable<Row> input, Row output) {
2 int last = 0;
3 foreach (Row row in input) {
4 output[0].Set(row[0].String);
5 last = row[1].Integer;
6 }
7 output[1].Set(last);
8 yield return output;
9 }

Figure 3: An example reduce function that is sensitive to its
input order.

in an arbitrary order. For reducers doing commutative aggregation,
such as in Figure 2, divergence of input order does not matter.
However, some reducers are sensitive to the order of their input
rows. Figure 3 gives an example simplified from real reducers that
returns the last value of the second column in each group so input
order is critical to the final result. The author of this reducer may
assume that all values in that column for each group are the same
where nondeterministic output results if this assumption is wrong.

A reducer is commutative if its output remains the same when its
input rows are reordered, which is formalized as follows.

DEFINITION 1. A commutative reducer R is a pure function
and, for any sequence of input rows X and any of its permutation,
X ′, R(X) = R(X ′) holds.

A commutative reducer is a pure function [11] that does not depend
on any hidden information or state, nor does have side effects. In
practice, a reducer can be impure if it calls a random number gener-
ator, reads environment variables on the local machine, or maintains
stateful variables in class members whose lifecycle spans multiple
invocations on different input groups. Impure reducers might pro-
duce different results in different runs. We do not consider impure
reducers in this study, using non-commutative reducer to describe a
reducer that is pure but not commutative.

2.1 The SCOPE Language
SCOPE [15] is a SQL-like declarative language with C# user-defined
functions, similar to Pig [10] and Hive [12], that is used by many pro-
duction teams in Microsoft to write MapReduce programs. SCOPE
makes it easy to build a MapReduce pipeline through a single script.
We briefly describe the SCOPE language through the example in
Figure 4. The EXTRACT statement (lines 1 to 2) reads the input file
on the distributed file system into a row set called R, each row of
which consists of two columns: Url of default type string and
Score of type int. The REDUCE statement (lines 4 to 6) specifies a
reduce stage that invokes a user-defined reducer MyReducer, like
those defined in Figure 2 and Figure 3, to aggregate the row set on
the reduce key column Url. The resulting row set S is then written
to the output file by the OUTPUT statement (line 8). The reducer
can access columns in a row by either indices (row[1]) or names
(row["SomeColumnName"]).

3. METHODOLOGY
We take user-defined reducers in real SCOPE jobs of a production
cluster as our study subjects. Many jobs are submitted to this cluster
every day, most of which complete successfully. Jobs are developed
and submitted by various production teams, including the Bing
engineering team, the advertisement team, and several data mining
teams. We randomly sampled 13,311 successful jobs from the
cluster within two weeks as our sample job set and collected all

SCOPE script
1 R = EXTRACT Url, Score:int FROM "path/input"
2 USING DefaultTextExtractor;
3

4 S = REDUCE Data ON Url
5 PRODUCE Url, ScoreSum:int
6 USING MyReducer;
7

8 OUTPUT S TO "path/output";

Figure 4: An example SCOPE program.

user-defined reducers from these jobs. Because a large part of our
sample job set are recurring jobs that run periodically (mostly daily
or hourly), a job and its reducers can be sampled multiple times. To
reduce manual work in studying these reducers, we approximately
identify duplicates by name. We also exclude reducers that are
invoked with a secondary sort. For a REDUCE statement with a
secondary sort, the runtime engine sorts the rows in each input
group on specified non-key columns before invoking the reducer.
Though the secondary sort eliminates the uncertainty in input row
order partially or completely (depending on whether all columns
are specified for sorting), it introduces significant overhead. In our
sample job set, we find that the majority of user-defined reducers
are invoked without a secondary sort. Finally, we find 507 unique
user-defined reducers as our study subjects.

We manually studied all 507 user-defined reducers to understand
whether or not each of them was non-commutative. For reducers in
pre-compiled dynamic-link libraries, we decompiled them using the
open-sourced decompiler ILSpy [7] that can recover source code for
most reducers. Although local variable names cannot be recovered,
ILSpy has a feature to highlight all appearances of the variable under
cursor, greatly helping us track reducer data dependencies.

3.1 Threats to Validity
As an empirical study, our study is subject to several validity issues:

Representativeness of applications. The applications in our sam-
ple job set are developed by engineers from many different produc-
tion teams. The reducers also implement a wide variety of algo-
rithms, ranging from simple summation and counting to complex
data mining and face recognition algorithms. However, all appli-
cations are commercial and differ from open-sourced applications.
The major difference we have noticed is that data processed by our
jobs usually consists of a much larger number of columns compared
to that in open-sourced MapReduce programs such as Mahout [2],
probably due to the complexity of large-scale production systems
like Bing. As a result, the data processed by our jobs are more
likely to include implicit relationships between columns that lead
to various non-commutativity patterns as described in Section 4.1.
Therefore, we believe that our sample job set represents MapReduce
programs for large-scale commercial systems, but may not reflect
the characteristics of those working on simpler data.

Threats in framework and language. We conduct our study on ap-
plications written solely in SCOPE with C# user-defined functions.
However, nondeterminism is a general issue in the MapReduce
programming model and also exists in other popular MapReduce
implementations such as Hadoop [1], and its high-level abstractions
such as Pig and Hive. We do not see any special influence of the C#
language in user-defined reducers. All five non-commutativity pat-
terns discussed in Section 4.1 are implemented in straight-forward
ways without using any special C# or SCOPE features. However, in
contrast to low-level MapReduce implementations such as Hadoop



Unknown
29 (6%)Impure

19 (4%)

Commutative
167 (33%)

Non−commutative
292 (58%)

Figure 5: Reducer classification according to Definition 1.

where users must implement every reducer themselves, high-level
languages, such as SCOPE, Pig and Hive, provide a number of
built-in aggregating reducers, e.g. SUM, COUNT and MAX, that
users often reuse in lieu of writing their own. As most built-in aggre-
gators are commutative, the percentage of commutative user-defined
reducers would increase for jobs written in low-level frameworks.

Subjectivity in manual study. Manual study is indispensable, in-
cluding reducer classification with respect to commutativity and
recognition of non-commutativity patterns. We minimize subjec-
tivity by being conservative. In both classifications (Figure 5 and
Figure 6), we have an “Unknown” or “Other” category for reducers
that we do not fully understand or are not sure about. We also use
double verification to minimize subjective errors.

4. REDUCER CODE AUDITING
This section presents our study results of 507 user-defined reduc-
ers, including reducer classification with respect to commutativity
and five patterns that we recognized in non-commutative reducers.
Non-commutative reducers are first identified in our sample set,
classifying 507 reducers as impure, pure commutative, and pure
non-commutative. Figure 5 shows the number of reducers in each
category along with an “Unknown” category for reducers that we
failed to understand. Each category is described as follows.

Non-commutative. Surprisingly, we find that 58% of the reducers
in the sample set are non-commutative. Because many of these
reducers are found in recurring jobs that have been well-tested and
periodically running for a long time, it is hard to believe that they
are all buggy. This finding motivates our further study to understand
the intention of programmers in writing non-commutative reducers
and how these reducers work with real data.

Finding 1: Over half of user-defined reducers (58%) are non-
commutative. Many of them are found in well-tested recurring
jobs.
Implication: It is unnecessarily restrictive to mark all non-
commutative reducers as incorrect.

Commutative. We find that 167 reducers (33%) in the sample set
are commutative. Over a half of these 167 reducers perform simple
aggregations on their input, including 51 SUMs, 24 COUNTs, 8
MAXs, 4 logical ANDs and some custom computations such as
finding top ten and computing the median. The other reducers in
this category also access their input in an order-independent way.
For example, 7 reducers store input into Lists and sort them before
further processing while 22 reducers store the input into hash tables
and only test for existence. There are also 19 reducers that process
each input row independently just like a mapper. It is unclear why
they were implemented as reducers rather than mappers.

Other
34 (12%)

StrConcat
43 (15%)

FirstN
37 (13%)

MaxRow
39 (13%)

IndexValuePair
34 (12%)

SingleItem
105 (36%)

Figure 6: Patterns in 292 non-commutative reducers.

Type 1
1 int x = 0;
2 foreach (Row row in input) {
3 x = row["x"].Integer;
4 // ...
5 }

Type 2
6 bool flag = true;
7 int x = 0;
8 foreach (Row row in input) {
9 if (flag) {

10 flag = false;
11 x = row["x"].Integer;
12 }
13 // ...
14 }

Figure 7: The SingleItem pattern.

Impure. 19 reducers are found to be impure and so may yield
different results given the same input in the same row order. Most
of them call a random number generator explicitly to sample a small
portion of data in their input or to implement randomized algorithms
such as k-means clustering [6]. Nondeterministic outcome of these
reducers are very likely to be intended by their author.

Unknown. There are two reasons for 29 reducers to be put in this
category. For some reducers, ILSpy fails to decompile them. The
other reducers are just too complicated for us to judge whether they
are commutative or not.

4.1 Non-commutativity Patterns
To better understand why so many reducers are non-commutative,

we further classify them according to how their output is sensitive to
input order. The second surprising finding in our study is that most
292 non-commutative reducers can be categorized into five simple
patterns according to the root cause of their non-commutativity even
as we see a wide variety of algorithms and coding styles among them.
In the rest of this section, CKey denotes the reduce key column(s)
and C with another subscript to denote a non-key column. Figure 6
shows classification results that are described as follows.

Finding 2: Most non-commutative reducers (88%) can be clas-
sified into five simple patterns according to how their output
depends on input order.
Implication: Most non-commutative reducers can be automat-
ically recognized and understood well by a pattern matching
approach (discussed in Section 7).



Script
1 Hashed = SELECT Url, GetHash(Url) AS UrlHash, ...
2 FROM Data;
3

4 T = REDUCE Hashed ON Url
5 PRODUCE ...
6 USING UrlReducer;

UrlReducer
7 string url = null;
8 string urlHash = null;
9 foreach (Row row in input) {

10 url = row["Url"].String;
11 urlHash = row["UrlHash"].String;
12 // aggregates the other columns
13 }

Figure 8: An example SingleItem reducer that yields determin-
istic results because functional dependency Url → UrlHash is
guaranteed by the preceding map stage (the SELECT statement).

SingleItem. A reducer with this pattern processes input rows in
a loop, extracting some non-key column CSingle in the first or last
row for later use to compute the output. Since the input row order is
nondeterministic, it is possible for the reducer to use CSingle in any
row while that column in other rows is discarded. If two rows have
different values in CSingle, either value can be selected. Figure 7
shows two examples of this pattern where reducer output depends
on the value of x, which is sensitive to input row order. 105 out of
the 292 non-commutative reducers belong to this pattern.

Although we can construct a set of input rows for each SingleItem
reducer so that output depends on input row order, we find two clues
in many such reducers that implies that their authors know of a
certain implicit input data property that guarantees deterministic
results. Such a data property is a functional dependency (written
CKey→CSingle) in relational database theory [4] that ensures that
non-key column CSingle always has the same value in an input group
with the same CKey. We express this in SCOPE’s data model as:

DEFINITION 2. In a table, a set of columns X is said to func-
tionally determine another set of columns Y (written X→Y ) if, and
only if, each X value is associated with precisely one Y value.

For simplicity, we also use X → Y to denote functional dependency
between two single columns.

For a functional dependency CKey→CSingle, it is common that
the reduce key column CKey is named by a unique identifier of
some objects while the name of CSingle is an attribute of the objects.
For example, CKey is “UserID” and CSingle is “UserType”. These
names imply that all rows with the same UserID refer to the same
user that has a fixed UserType.

For some SingleItem reducers, functional dependency is also
guaranteed at some previous stage. For example, UrlReducer in
Figure 8 is non-commutative with a SingleItem pattern on the non-
key column UrlHash, which is calculated from the key column Url

in the preceding map stage (the SELECT statement) by the GetHash
function that returns the hash value of a given string. For all rows
with the same Url in the Hashed table, the UrlHash column has
a constant value. As a result, in each invocation of the reducer,
UrlHash in all input rows are the same.

As data is sometimes processed by multiple jobs in a production
cluster, such functional dependency can also be guaranteed by some
stage in another job that generates the input file of the job invoking
the SingleItem reducer. We even found a SingleItem reducer relying
on a functional dependency that was guaranteed two jobs before
in the pipeline. Our finding indicates that implicit data properties

Type 1
1 Dictionary<int, int> dict = new ...;
2 foreach (Row row in input) {
3 int x = row["x"].Integer;
4 int y = row["y"].Integer;
5 dict[x] = y;
6 // ...
7 }

Type 2
8 Dictionary<int, int> dict = new ...;
9 foreach (Row row in input) {

10 int x = row["x"].Integer;
11 int y = row["y"].Integer;
12 if (!dict.Contains(x))
13 dict[x] = y;
14 // ...
15 }

Figure 9: The IndexValuePair pattern.

Script
1 SegView = SELECT ClientID, SegmentID, SUM(Views) AS Views
2 FROM Data GROUP BY ClientID, SegmentID;
3

4 AggView = REDUCE SegView ON ClientID
5 PRODUCE ...
6 USING SegmentsReducer;

Figure 10: SCOPE script that guarantees the functional
dependency (ClientID, SegmentID) → Views in the first
reduce stage (the SELECT statement). Therefore the following
IndexValuePair reducer SegmentsReducer always yields deter-
ministic results.

are very important in understanding user-defined functions, which
requires not only whole-program analysis but also analyzing other
jobs that generate target job input.

IndexValuePair. In this pattern, a reducer considers two non-key
columns CIndex and CValue as index-value pairs and stores them in an
array or hash table with CIndex being indices/keys and CValue being
values. The reducer’s output also depends on the final content of the
array or hash table. If two rows have the same index in CIndex but
different values in CValue, the value stored in the array or hash table
depends on the order of these two rows. There are also two types of
this pattern, as shown in Figure 9, keeping the first or the last value
in case of conflicts, respectively. 34 reducers exhibit this pattern.

Like the SingleItem pattern, a functional dependency of the form
(CKey,CIndex)→CValue is required for an IndexValuePair reducer
to yield deterministic results. This functional dependency can
also be guaranteed by a preceding statement. Sometimes there
is a stronger property on the data; e.g. SegmentsReducer in Fig-
ure 10 is an IndexValuePair reducer where CIndex is SegmentID and
CValue is Views. Its SegView input is the result of an aggregation
on columns (ClientID, SegmentID) performed by the preceding
SELECT statement. Therefore in the SegView table, no two rows
have the same value of (ClientID, SegmentID) and so in each
group of ClientID all values in SegmentID are distinct, which is
stronger than the functional dependency (ClientID, SegmentID)
→ Views.

Although implicit data properties are crucial for the SingleItem
and IndexValuePair reducers to yield deterministic results, they
are not checked by the runtime engine of SCOPE or other popular
MapReduce implementations such as Hadoop. There is also no
language-level support for users to annotate desired data properties
explicitly so that they are enforced. As a result, the user’s assump-



1 int max = 0;
2 int y = 0;
3 foreach (Row row in input) {
4 int x = row["x"].Integer;
5 if (max < x) {
6 max = x;
7 y = row["y"].Integer;
8 }
9 }

10 // emit (max, y)

Figure 11: The MaxRow pattern.

tion on an implicit data property is error prone. For example, the
consistency between the reducer and the previous statement or job
guaranteeing the data property may not be maintained properly. The
assumption can be wrong because the user overlooks some corner
cases, or the assumption can be correct but the input data is cor-
rupted due to other faults. Even worse, when such a property is not
satisfied, the reducer silently produces somewhat well-formed but
nondeterministic results, where the error in a large volume of data
can be very hard to observe. Three real bugs presented in Section 6
are caused by violations of implicit data properties; both were exer-
cised daily but went undetected for at least three months until we
reported the issues to the authors. To avoid such bugs, designers
of MapReduce systems can allow users to annotate desired data
properties so that they can be enforced automatically.

Finding 3: 48% of the non-commutative reducers exhibit the
SingleItem or IndexValuePair pattern. They would yield deter-
ministic results if certain implicit data properties are satisfied,
that, as later shown in Section 5, are in most cases satisfied by
real data.
Implication: Non-commutative reducers are harmless if data
satisfies certain implicit properties, whose violations can indicate
a bug as programmer assumptions are inconsistent with data.

MaxRow. Finding the maximum (or minimum) value in a column
(CMax) is a common reducer operation. Although it is commutative
by itself, user-defined reducers often emit other non-key columns
COther in the row where a maximum value is found. If two rows have
the same maximum value but different values in COther, the values
emitted for COther are nondeterministic. Figure 11 demonstrates this
pattern where CMax is column x and COther is column y.

A MaxRow reducer can also yield deterministic results if certain
data properties are satisfied (e.g., (CKey,CMax)→COther), but in a
way that is different from SingleItem and IndexValuePair. Among
the 39 MaxRow reducers, timestamp is the primary data type of
the column according to which the maximum row is selected; such
reducers usually want to find the latest event in their input. There
are also some reducers that find the most frequent item by selecting
the row with the maximum “count” column computed by a previous
reduce stage. For most of these MaxRow reducers, it is highly likely
that any maximum row is acceptable in case of a tie.

FirstN. 37 reducers are non-commutative because they only return
the first N rows and discards the rest of their input (Figure 12). The N
output rows directly depends on the input row order, unless a certain
data property is satisfied, such as that the number of rows in each
input group is not greater than N, or all the input rows are identical
for each reduce key. Note that FirstN reducers with N = 1 also
satisfy the criteria of the SingleItem pattern. We categorize them
into the FirstN pattern because they, like other FirstN reducers, are

1 int count = 0;
2 foreach (Row row in input) {
3 count++;
4 if (count >= N) break;
5 // ...
6 }

Figure 12: The FirstN pattern.

1 List<string> names = new List<string>();
2 foreach (Row row in input) {
3 names.Add(row["Name"].String);
4 // ...
5 }
6 string s = String.Join("|", names);
7 // emit s

Figure 13: The StrConcat pattern.

only emitting N input rows unchanged while SingleItem reducers
also aggregate other columns.

There are two completely different purposes in writing these
FirstN reducers, depending on the value of N. In 23 out of the 37
FirstN reducers N = 1, which indicates that these reducers want
to extract any one row in each group. Many of them just want to
eliminate redundant items and we even find “dedup”, “duplicate”,
“unique” or “distinct” in the name of 7 reducers. A large N tends
to indicate the other purpose, which is to limit the number of rows
in each group: three reducers have N greater than 1 million and all
of them have “throttle” in their names. There are also 10 reducers
with N between 2 and 3000 and 1 reducer for which we cannot find
the value of N since it is computed through a complex logic. It is
hard to determine their purpose without checking their real input
data, but it is likely that the author of a FirstN reducer is aware of
the uncertainty in the output.

Finding 4: 26% of the non-commutative reducers exhibit the
MaxRow or FirstN pattern. Nondeterminism in their output is
very likely to be tolerable.
Implication: Non-commutativity is harmless if users know and
can tolerate nondeterminism in the results.

StrConcat. The 43 reducers with this pattern emit concatenation
of some string columns from all or a part of their input rows. With
different input row orders, a StrConcat reducer concatenate strings
in different orders and thus generates different output strings. Fig-
ure 13 shows an example StrConcat reducer.

String concatenation in StrConcat reducers are usually used as a
custom serialization of string arrays. We observe that in many cases
input strings are concatenated by special delimiters in these reducers,
and the result is then split into the components back for future
processing in succeeding stages or another job that consumes this
job’s output. Impact of the uncertainty in such string concatenation
depends on how future stages or jobs process the string components.
Without manually tracking the usage of concatenated strings and
analyzing future processing logic, we conservatively consider these
reducers harmless. However, we do catch a subtle bug caused by a
StrConcat reducer that is described in Section 6.



Finding 5: 15% of the non-commutative reducers exhibit the
StrConcat pattern. However, their results are often treated as a
set of items in an order-insensitive way.
Implication: Non-commutativity is also harmless if the nonde-
terministic output of a reducer is processed in such a way in
succeeding stages that the final output of the whole program is
deterministic.

5. CHECKING REAL DATA
The classification of user-defined reducers shows that many of them
are non-commutative. However, it is not enough to claim that a
non-commutative reducer is buggy by only analyzing its code. It
is possible that nondeterminism in the reducer’s output is known
and tolerable or even intended; the author can have certain domain
knowledge on the input data that guarantees that the reducer always
produces deterministic results even if it is non-commutative. In Sec-
tion 4, we have found some non-trivial data properties guaranteeing
determinism for SingleItem and IndexValuePair reducers. But the
SCOPE runtime system is not aware of these patterns and does not
enforce corresponding data properties automatically. There is also
no language-level support for users to annotate desired data prop-
erties manually. When some data property is violated, unexpected
nondeterministic results might show up unnoticed. We therefore
check these properties on real input data for some reducers to un-
derstand whether programmers rely on the properties and, if so,
whether or not the properties are satisfied by the data.

We randomly sample some reducers exhibiting the SingleItem
and IndexValuePair patterns. After obtaining the reducer’s input, we
submit a new SCOPE job to check whether or not the data property
is satisfied in each input group. For 28 out of the 37 reducers,
implicit data properties are satisfied entirely in the input data so their
non-commutativity is harmless. For the other 9 reducers, implicit
data properties are violated in at least one input group. By further
studying other statements in the job of each reducer, we find that
sometimes a few columns in the reducer’s output are later discarded
and nondeterminism does not propagate to the final output of the
job. We conservatively consider a reducer to be buggy only if we
are sure that the final output is also nondeterministic. In this way,
we find three bugs that we present in Section 6.

6. BUG CASE STUDY
This section describes five real bugs that we found in our manual
study; they manifest themselves by causing programs to produce
nondeterministic results due to non-commutative reducers. All bugs
were in production programs that were running periodically (daily
in most cases) for at least three months. All bugs were confirmed
with the authors of the programs and eventually fixed.

Bug 1: Bad Assumption on Functional Dependency
Non-commutativity pattern: SingleItem.

This program processes logs of Bing’s on-line advertisement sys-
tem through many pipelined map and reduce stages. The bug was
found in one reduce stage whose input data records page views
associated with advertisement events such as impressions and clicks.
Each record consists of over 30 columns including ViewID, at-
tributes such as State and AdId, and many numerical metrics of an
advertisement event such as Clicks and Revenue. Each page view
is often associated with multiple events where the buggy reducer
(shown in Figure 14) aggregates them into one output record accord-
ing to page view ID. The author assumed that ViewID functionally
determines all page view attributes (ViewID→ State, ViewID→
AdId, etc.). As a result, the reducer selects attributes in the last row
of each ViewID as output (lines 8 and 9).

Reducer
1 string id = null;
2 string state = null;
3 string adid = null;
4 int clicksTotal = 0;
5 double revenueTotal = 0;
6 foreach (Row row in input) {
7 id = row["ViewID"].String;
8 state = row["State"].String;
9 adid = row["AdId"].String;

10 clicksTotal += row["Clicks"].Integer;
11 revenueTotal += row["Revenue"].Double;
12 // aggregate other columns
13 }
14 output["ViewID"].Set(id);
15 output["State"].Set(state);
16 output["AdId"].Set(adid);
17 output["Clicks"].Set(clicksTotal);
18 output["Revenue"].Set(revenueTotal);
19 // set other columns
20 yield return output; // emit the result

Figure 14: Code for Bug 1.

Table 2: An example input group and two possible output rows
for Bug 1.

An example input group:
ViewID State AdId · · · Clicks Revenue · · ·
DEADBEEF CA 10000 · · · 1 1.00 · · ·
DEADBEEF CA 10000 · · · 0 0.10 · · ·
DEADBEEF CA 10000 · · · 0 0.00 · · ·
DEADBEEF TX 10000 · · · 1 0.80 · · ·

Possible output 1:
DEADBEEF CA 10000 · · · 2 1.90 · · ·

Possible output 2:
DEADBEEF TX 10000 · · · 2 1.90 · · ·

The assumed functional dependency turns out to be incorrect:
there are cases where two events with the same ViewID have two
different values in the State column; for example, when a user
travels across states. Table 2 shows an example input group and
two possible outputs. The program might output either “CA” or “TX”
as the State of this ViewID due to nondeterminism. We re-ran
the whole program twice on the same real input in the production
cluster, observing differences in the outputs.

The impact of this bug is non-negligible even as the assumed func-
tional dependency held for about 99.9% of the ViewIDs. Because
this program aggregates the numerical metrics of advertisement
events on State, AdId and some other page view attributes in the
following steps, we have found that the aggregation results are non-
deterministic for 49% of the aggregation groups. We calculated the
minimal and maximal values for the nondeterministic groups on
the real data: in some cases, the maximal values can be an order
of magnitude higher than the minimum. The writer of the program
confirmed the seriousness of the issue and rewrote the program.

Bug 2: Data Corruption
Non-commutativity pattern: SingleItem.

This bug is similar to Bug 1 in that it also involves the SingleItem
pattern where an assumption of functional dependency does not
always hold. The violation in this case is caused by data corruption,
however. The input data is another log from an advertisement system
in a complex semi-structured format. The program extracts useful
columns by a user-defined mapper and later aggregates the data



Script
1 T = REDUCE Data ON AdId
2 PRODUCE AdId, ...
3 USING EntropyReducer;

EntropyReducer
4 string key = "";
5 foreach (Row row in input) {
6 key = row[36].String;
7 // ...
8 }
9 output[0].Set(key);

10 // ...
11 yield return output;

Figure 15: Code for Bug 3.

by Key in a reducer. We find that occasionally two rows with the
same reduce key have different XID where one is actually a prefix
of the other. Further study on the original log verifies our conjecture
that a row is truncated in arbitrary row positions: either the head or
the tail of a row can be missing. The functional dependency Key

→ XID is violated due to such data truncation. In the first user-
defined mapper that extracts useful information from the log, there
is already some code to filter out malformed log entries. But it only
checks the existence of some useful columns and not their length.
XID is usually the last portion of useful data in a log entry and so
incomplete ones are undetected.

The impact of this bug is yet unclear. On the one hand, only
several truncated log entries can be found in the log every day and
the reducer’s nondeterministic output is not amplified in succeeding
stages as in Bug 1. On the other hand, this log is very important to
the advertisement system and also consumed by at least ten other
programs, none of which filters out truncated log entries correctly.

Bug 3: Incorrect Column Index
Non-commutativity pattern: SingleItem.

The reducer in this case computes the entropy in two non-key
columns for each group and also includes the reduce key AdId in its
output row, as shown in Figure 15 (line 9). The root cause is simple:
the column index of AdId is 37 but the author writes 36 by mistake
(line 6). This was undetected for months partly because column 36
is another ID in the same format.

Although the root cause is simple, the bug manifests nondeter-
ministic behaviors as the reducer falls in the SingleItem pattern
on the non-key column 36. Checking the real data shows that the
needed functional dependency does not hold in the real data, helping
us to spot the bug.

Bug 4: Counting Concatenated Strings
Non-commutativity pattern: StrConcat.

The job in this case computes statistics of online articles. Each
input row of ArticleReducer (shown in Figure 16) contains some
information of an article, including articleId and a profiles

column that contains some associated URLs concatenated by the
delimiter “|”. The reducer aggregates rows for the same article
and outputs distinct URLs that are also concatenated and stored in
the profiles column. Subsequent statements count the number of
articles with different sets of URLs.
ArticleReducer finds distinct URLs by adding each URL in

each input row into a HashSet and reading all URLs from it after
processing all input. In the C# implementation of HashSet, the
order in which the default enumerator iterates the set depends on
the order in which elements are added. As a result, distinct URLs in

Script
1 // Schema of Data: articleId, profiles, ...
2 T1 = REDUCE Data ON articleId
3 PRODUCE articleId, profiles
4 USING ArticleReducer;
5

6 T2 = SELECT DISTINCT profiles FROM T1;
7

8 T3 = SELECT COUNT() + " unique articles." AS num FROM T2;

ArticleReducer
9 string articleId = null;

10 HashSet<string> urls = new HashSet<string>();
11 foreach (Row current in input) {
12 articleId = current[0].String;
13 string[] array = current[1].String.Split("|");
14 for (int i = 0; i < array.Length; i++)
15 urls.Add(array[i]);
16 }
17 outputRow[0].Set(articleId);
18 outputRow[1].Set(String.Join("|", urls);
19 yield return outputRow;

Figure 16: Code for Bug 4.

Reducer
1 Special special;
2 List<Impression> impressions = new List<Impression>();
3 bool specialFound = false;
4

5 foreach (Row row in input) {
6 bool isSpecial = row[6].Boolean;
7 bool isImpressions = row[7].Boolean;
8 if (isSpecial) {
9 special.XXX = row[0].String;

10 special.YYY = row[1].Integer;
11 specialFound = true;
12 }
13 if (isImpressions)
14 impressions.Add(new Impression(row[3].Integer,
15 row[4].Long, row[5].Integer));
16

17 if (specialFound) {
18 // aggregate impressions and emit the result
19 }
20 }

Figure 17: Code for Bug 5.

profiles of the output row is concatenated in a nondeterministic
input-dependent order. And the subsequent statements may evaluate
a larger count than the correct value, because two articles with
the same set of URLs may have different strings in profiles and
are therefore considered different. The author either overlooks the
order requirement in the “count-distinct” statements or has wrong
assumptions on the implementation details of HashSet, which leads
to the bug in this StrConcat reducer.

Bug 5: Misplacing of a Brace
Non-commutativity pattern: Other.

Figure 17 shows the code of this buggy reducer that aggregates
advertisement impressions. In each group of input rows, there are
multiple impression rows and zero or one special row. The reducer
stores information of each row in local variables (lines 8 to 15). It
should perform the aggregation and emit the result after the loop if
a special row is found. However, the author puts the emitting code
inside the loop by mistake (lines 17 to 19). As a result, the emitting
code would run multiple times if the special row appears before some
impression rows in a group, and the amount of excessive output is
nondeterministic depending on the position of the special row. The



bug is not detected by the production team partially because the
excessive output rows are still well-formed and meaningful. Mixed
tabs and spaces in the reducer’s source code also makes the bug
inconspicuous for code reviews.

After fixing the bug by moving lines 17 to 19 out of the loop,
the reducer remains non-commutative because it becomes a special
SingleItem one on column 1 (column 0 is the reduce key) that only
stores the value of this column in the last special row. But it will
never produce nondeterministic results because there is at most one
special row in each group of the real data.

6.1 Summary
We have shown five bugs in non-commutative user-defined reducers
from production programs that survive code reviews, testing and
trial on real data for at least three months, which indicates that
non-commutativity can be harmful and undetected for long. In
addition, Bug 1 demonstrates that just a little uncertainty in the
buggy reducer’s output can be amplified later and impact correctness
of the final results in a significant way. Note that the nondeterminism
is only a symptom but never the root cause. All these bugs are caused
by logic or data errors, including wrong assumption on implicit data
properties, data corruption, or various semantic errors. Making the
system running deterministically does not fix any of them.

Finding 6: We find five bugs in well-tested production programs
caused by non-commutative reducers. Their root causes include
wrong assumptions on implicit data properties, data corruption,
and various semantic errors leading to non-commutativity.
Implication: Non-commutativity remains a source of bugs that
can go undetected for a long period of time. Checking implicit
properties on real data is an effective way to detect this kind of
bugs.

7. DISCUSSION
Our study justifies the pervasiveness of non-commutativity among
user-defined reducers and shows that flagging all non-commutative
reducers as bugs by only analyzing code would create too many false
positives because most of them are actually harmless. In particular,
SingleItem and IndexValuePair reducers behave like commutative
ones if certain data properties are satisfied by real data, which is the
common case. However, such reducers do lead to bugs in case of
data property violations. We therefore propose to detect this kind
of bugs by both recognizing certain non-commutativity patterns in
code and checking desired properties on data.
Recognizing non-commutativity patterns. Section 4.1 has shown
that all the five non-commutativity patterns are very simple, mak-
ing a pattern matching approach feasible to recognize them auto-
matically. For the SingleItem and IndexValuePair patterns, most
reducers exactly conform to the code structures in Figures 7 and 9
according to our experience in the manual study. A static program
analysis that identifies the loop enumerating input and matches
code structure patterns can be able to recognize a large portion of
SingleItem and IndexValuePair reducers, their related columns and
desired data properties. We leave implementation of this pattern
matching approach as our future work.

Another option is to allow users to annotate desired data properties
by themselves. In SCOPE, this can be done by extending the original
annotation syntax. For example, the REDUCE statement in Figure 8
can be annotated as below.

[SINGLE_ITEM_COLUMN("UrlHash")]
T = REDUCE Hashed ON Url ...

With a little extra efforts by users, annotations makes desired data
properties explicit and helps users to avoid property violations in

Instrumented SingleItem Type 2
1 bool flag = true;
2 int x = 0;
3 foreach (Row row in input) {
4 if (flag) {
5 flag = false;
6 x = row["x"].Integer;
7 } else if (x != row["x"].Integer) {
8 ReportViolatedProperty(...);
9 }

10 // ...
11 }

Instrumented IndexValuePair Type 2
12 Dictionary<int, int> dict = new ...;
13 foreach (Row row in input) {
14 int x = row["x"].Integer;
15 int y = row["y"].Integer;
16 if (!dict.Contains(x))
17 dict[x] = y;
18 else if (dict[x] != y)
19 ReportViolatedProperty(...);
20 // ...
21 }

Figure 18: Instrumentation in a IndexValuePair reducer to
check desired data properties.

future maintenance. This approach can be used in combination with
program analysis to increase coverage.
Checking desired data properties. Given desired data properties,
the compiler can generate extra code to check the properties on
real data and report violations to users. Because the properties
are functional dependencies between columns, checking them only
needs one pass on data and can be done in the enumerator that is
used by a reducer to scan its input. If the non-commutativity patterns
are recognized by the pattern matching approach, it is also possible
for the compiler to instrument original user-defined reducers like
lines 7, 8, 18 and 19 in Figure 18, which would usually incur limited
overhead.

8. RELATED WORK
Commutativity of reducers. Previous work considered commu-
tativity a correctness requirement on reducers in MapReduce pro-
grams. Our study shows that such a requirement might not be
appropriate because non-commutative reducers are common and
mostly harmless. Csallner et al. [3] proposed a white-box symbolic
execution approach to test commutativity. Xu et al. [13] studied 23
reducers in open-sourced MapReduce programs and used a black-
box approach to test commutativity. Both of them check code
and generate different input sequences with the same data set, on
which the target reducer outputs different results. Our study shows
that certain data properties (functional dependencies) in the data
can render non-commutative reducers harmless, making a case for
checking data properties. In addition, 11 out of 23 reducers in [13]
are non-commutative and exhibit the StrConcat pattern accord-
ing to their study. The distribution of non-commutativity patterns
is not consistent with our results, probably because open-sourced
MapReduce programs in their study process simpler data with fewer
cross-column relations than our samples from the production envi-
ronment as discussed in Section 3.1.

Commutativity is also studied to improve job performance. Yu et
al. [14] proposed various partial aggregation mechanisms in MapRe-
duce programs to reduce network I/O when the target reducers
satisfy certain commutativity properties. While our study focuses on
the correctness issue of non-commutative reducers, we also plan to



leverage the patterns found in this work to improve job performance
further, even when the reducers are non-commutative.

Empirical study on MapReduce programs. Some researchers
have studied characteristics of MapReduce programs from various
angles. Kavulya et al. [8] analyzed 10-months of trace data from a
production MapReduce cluster and provided the performance and
failure characteristics of the jobs in this cluster. They aimed to
achieve better system performance by improving scheduling deci-
sions and resource provisioning, while our study helps to understand
subtle correctness requirements in MapReduce programs. The more
related work by Li et al. [9] was a characteristics study on failures of
SCOPE jobs, revealing that exceptional data and mismatched data
schema are a major source of job failures. Although we both focused
on correctness and our study subjects both come from the SCOPE
platform in Microsoft, there were essential differences between their
work and ours. First, their study focused on job failures with ex-
plicit exceptions thrown out, while we analyzed jobs that terminated
successfully but could potentially produce undesirable nondeter-
ministic results due to non-commutativity. Second, their goal was
to save system resources wasted by failed jobs, while we aim to
minimize harmful effects on production systems by finding subtle
bugs. Interestingly, we shared the same finding that inconsistency
between code and data was a major cause of errors in MapReduce
programs. However, they discussed inconsistency on data format,
which is usually explicit and easy to diagnose, whereas we have
found violations of implicit data properties that are hard to observe
and could go undetected for a long period of time.

9. CONCLUSION
The correctness of MapReduce programs is going to be increasingly
important as they are becoming widely used in data-parallel compu-
tation, but the subject remains under-studied and not well understood.
This paper focuses on the issue of non-commutative reducers, as the
nondeterminism caused by such reducers is a problem that is unique
to MapReduce programs, with significant implications on correct-
ness. Our in-depth study on production MapReduce programs and
their data reveals several surprising findings on commutativity, non-
determinism, and correctness, which we believe provide valuable
guidelines for advancing our understanding on and ensuring the
correctness of MapReduce programs.
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