IEEE TRANSACTIONS ON SERVICES COMPUTING, VOL.5, NO.3, JULY-SEPTEMBER 2012 345

Hierarchical Online Problem
Classification for IT Support Services

Yang Song, Anca Sailer, and Hidayatullah Shaikh

Abstract—The overwhelming amount of various monitoring and log data generated in multitier IT systems makes problem
determination one of the most expensive and labor-intensive tasks in IT Services arena. Particularly the initial step of problem
classification is complicated by error propagation making secondary problems surfacing on multiple dependent resources. In this
paper, we propose to automate the process of problem classification by leveraging machine learning. The main focus is to categorize
the problem a user experiences by recognizing the real root cause specificity leveraging available training data such as monitoring and
logs across the systems. We transform the structure of the problem into a hierarchy using an existing taxonomy. We then propose an
efficient hierarchical incremental learning algorithm which is capable of adjusting its internal local classifier parameters in realtime.
Comparing to the traditional batch learning algorithms, this online solution decreases the computational complexity of the training
process by learning from new instances on an incremental fashion. Our approach significantly reduces the memory required to store
the training instances. We demonstrate the efficiency of our approach by learning hierarchical problem patterns for several issues
occurring in distributed web applications. Experimental results show that our approach substantially outperforms previous methods.

Index Terms—Machine learning, artificial intelligence, computing methodologies, services technologies, principles of services,

services computing.

1 INTRODUCTION

MOST organizations rely nowadays on IT environments
to provide or receive business critical services. The
problem determination in such environments is one of the
most expensive and labor-intensive tasks in the IT incident
and problem management. Traditionally, once the user
(customer or technical personnel) detects a problem, they
first try to identify the type of problem in order to search for
the relevant fix. However, in case of problems in multitier
(e.g., web) environments with complex distributed system
dependencies, the same front-end issue that the user
experienced may be caused by different back-end system
or application problems. Thus, the initial symptom may be
only the effect of an underlying issue propagated through
the complex chain of dependent systems and the fixes
found are not addressing the real root cause. An example of
such a multitier web environment is illustrated by the IT
environment in Fig. 1. The distributed e-business system
supported by an infrastructure consists of the following
interdependent subsystems connected by local and wide
area networks: web-based presentation services, access
services, application business logic, messaging services,
database services, and storage subsystems. Attempting to
collect and manually analyze all the available monitoring
and log data in a failing multitier environment turns the
problem classification in an overwhelming effort. Therefore,

e Y. Song is with Microsoft Research, One Microsoft Way, Redmond, WA
98034. E-mail: yangsong@microsoft.com.

o A. Sailer and H. Shaikh are with the IBM T.]. Watson Research Center,
Hawthorne Research Lab, 19 Skyline Dr, Hawthorne, NY 10532.
E-mail: {ancas, hshaikh}@us.ibm.com.

Manuscript received 27 Aug. 2010; revised 8 Dec. 2010; accepted 25 Dec.
2010; published online 2 Feb. 2011.

For information on obtaining reprints of this article, please send e-mail to:
tsc@computer.org, and reference IEEECS Log Number TSC-2010-08-0121.
Digital Object Identifier no. 10.1109/TSC.2011.3.

1939-1374/12/$31.00 © 2012 IEEE

only an effective automatic problem classification can
significantly improve the incident and problem manage-
ment experience and thus contribute to substantial reduc-
tion in system administration costs. Most of the existing
solutions for problem classification use either only the
monitoring data or only logs, without getting the full
benefit of both worlds. Steinder and Sethi [24] review the
existing approaches to fault classification and also presents
the challenges of managing modern e-business environ-
ments. The most common approaches to fault classification
are Al techniques (e.g., rule-based, model-based, neural
networks, decision trees), model traversing techniques (e.g.,
dependency-based), and fault propagation techniques (e.g.,
codebook-based, Bayesian networks, causality graphs). Our
solution falls in the category of Al (machine learning)
techniques. Another limitation of the prior art is that most
solutions are problem specific and as such lack the potential
of being applied to wider type of issues: e.g.,, network
problems [5], database problems [12], and misconfiguration
problems [27], [28], [10], [14].

More recently, machine learning techniques have been
introduced to problem determination [15]. For instance,
fault logs and trace logs are analyzed using statistical
methods to determine the root causes [7]. However, this
approach did not take into consideration the taxonomy of
the problem causes and used a flat structure for detection,
which is not scalable to real-world large systems. Decision
tree are used as well to find the root causes in distributed
systems leveraging a hierarchical structure of the problem
taxonomy [31]. Nevertheless, decision tree is known to give
preference to features (or attributes) with a large number of
potential values [26], which may cause bias during the
learning process and reduce the classification performance.

In this paper, we propose a framework to address
problem determination enhancement through automation

Published by the IEEE Computer Society

346

IEEE TRANSACTIONS ON SERVICES COMPUTING, VOL.5, NO.3, JULY-SEPTEMBER 2012

“¥ | Monitor and

Monitoring

SnappiMon

Data
Collector

LABELED DATA

PROBLEM
DATA
PATTERNS
CLASSIFIER

PROBLEM LABELED
AUTOMATICALLY

PROBLEM LABELED MANUALLY

Fig. 1. Problem classification process in multitier web environment. The monitoring data and error logs are manually labeled with the real underlying
problem that occurred when the data were collected. The patterns specific for an exiting problem taxonomy are learned from this historical labeled
data. Our system recognizes problems when given a new set of monitoring and log data based on the learned patterns.

by classifying the problems into a predefined hierarchical
structure of taxonomies, using an incremental online
learning algorithm that learns the pattern of errors from a
set of manually labeled training data. Specifically, we make
the following contributions:

e By transforming the structure of a flat problem space
into a hierarchy (see Fig. 2) which is predefined
according to an existing taxonomy, we reduce the
complexity of the pattern search for problem deter-
mination, since using a more efficient tree structure.

e We propose an incremental Perceptron learning
algorithm which is capable of adjusting its internal
local classifier parameters whenever a new training
instance is available. Comparing to the traditional
batch learning algorithms, this online learning
framework can significantly decrease the computa-
tional complexity of the training process by learning
from new instances on an incremental fashion.
Additionally, this reduces the amount of memory
required to store the training instances.

e For efficiency, we train a linear classifier at each
node in the hierarchy, since linear classifiers usually
have simpler decision boundaries, which exhibit
better generalization toward large data sets in the

WebSphere

®
HTTP o e Runtime
@ ® ® W

Cache EJB Session CPU

MySQL
@G
JDBC General

Fig. 2. An example of problem taxonomy represented using two-tree
forest with A/ = 10 nodes. Each tree in the forest represents a different
application. Each node is associated with a class label. Gray nodes
indicate a problem trace of an error which is formed using a multilabel
assignment in our learning algorithm.

hierarchical structure [6]. Moreover, linear classifiers
require less internal parameters to learn, which
potentially avoids the problem of overfitting caused
by large number of model parameters, and also
makes it scalable to large-scale enterprise-level
systems.

e We combine error logs with usage and performance
monitoring data for training data as a more power-
ful feature set for error classification, instead of
simply using partial data. The log data are typical
generated information for any software resource in
an IT environment and is collected by IT manage-
ment tools as events. The monitoring data can be
either natively generated by the software resource
themselves and when available pulled by IT
monitoring tools or it can be generated by monitor-
ing agents deployed in the IT environment and
stored by IT monitoring tools in repositories for
reporting and postevent analysis. In the log data we
are mainly looking for word features since it
typically consists of text and code, while in the
monitoring data we are looking for trends since it
contains numerical values. These two types of data
are basically uncorrelated. In machine learning, it
has been shown that combining features that are less
correlated will generally exhibit better predictive
performance for the model [11], which becomes the
motivation of this combination.

Note that the creation of the problem taxonomy is
beyond the scope of this paper. The problem taxonomy
used in this paper is mainly extracted from the IBM Support
Assistant (ISA) tool.! ISA is an IBM serviceability work-
bench for software products that allows the users to analyze
an IT problem and manage a problem request. The main
goal of ISA is to accelerate the problem resolution for
customers. ISA contains a predefined problem taxonomy

1. http:/ /www-01.ibm.com/software/support/isa/index.html.

SONG ET AL.: HIERARCHICAL ONLINE PROBLEM CLASSIFICATION FOR IT SUPPORT SERVICES 347

for IBM products: DB2, WebSphere, Lotus, Tivoli, and
Rational. Currently, in order to invoke the problem analysis
with its specialized data collectors (one for each problem in
the ISA taxonomy), the customer has to know the real
problem they are dealing with, not only its front-end effects.
Due to the large ISA coverage of IT problems and to the
significant volume of issues solved by the IBM personnel
using ISA, the taxonomy defined within ISA is highly
relevant and the use cases sufficient for the training data
required by our classifiers.

2 RELATED WORK

2.1 Hierarchical and Online Classification

Hierarchical classification on one hand decomposes tradi-
tional multiclass classification into hierarchical structures
by discovering the dependencies between class labels. The
new representation facilitates both classifier learning and
new label prediction. Hierarchical classification is closely
related to multilabel classification, where each instance
contains more than one class of labels. Most of the existing
solutions assume that the multilabel of an instance only
includes one path in the hierarchy, starting from the root
and ending at one of the leaves.

One approach was to automatically organize the content
of search results by leveraging the outputs from different
levels of hierarchical classifiers [9]. The authors leveraged
support vector machines as the classifiers. Similarly, the
neural networks were used as a hierarchical mixture of
expects (HME) for text classification [21]. Alternatively, the
single path assumption in hierarchical classification can be
relaxed [20]. The authors introduced a kernel method that is
capable of assigning an instance to more than one path in
the hierarchy.

On the other hand, online learning aims at incrementally
updating the classifiers when the training data are collected
continuously over time. Compared to traditional batch
learning algorithms, online learning exhibits significantly
faster training effort at comparably predictive performance.
Among online classifiers such as online linear discriminant
analysis (LDA) [16], online support vector machines (SVMs)
have been proved the most successful classifiers [23], [17].
The idea behind online-SVMs is simple and effective: keep a
set of previously used training data instead of the entire
training data and use only this data to proximate the
training space for an optimal online SVMs. Every time an
instance is misclassified, the algorithm updates the para-
meters by using the SEEN data. This approximation can be
treated as a tradeoff between time/space complexity and
the predictive performance of the classifiers. We leverage
this effective technique to train our online classifier.

More recently, both hierarchical and online incremental
learning have been combined to create more powerful
classifiers. A general framework was introduced that can
be implemented by using arbitrary classifiers at each node
in the taxonomy [6]. From a machine learning perspective,
the proposed model minimizes the H-loss of the training
set which is a loss function defined over the taxonomy.
The authors also theoretically analyzed the performance of
their framework where more than one path is allowed for
classification.

In the IT problem determination context, a technique
based on statistical modeling, clustering and inference, that
automatically extracts signatures from system metrics
during problem events was described in [8]. These signa-
tures are constructed so that they can be matched against
signatures for similar previous events. In our approach we
combine the system metrics and logs to identify signatures
and use supervised machine learning techniques.

3 OUR APPROACH

We propose a novel machine learning algorithm that uses a
hierarchical classification framework for problem classifica-
tion. The hierarchical approach that we consider is suitable
for problem determination since it allows the problem
categorization in an automatic fashion. Each problem will
be labeled with a set of labels that cover the name of the
application/product (A/P) as well as the specific cause of
the problem. This set of interrelated labels can be well
represented using a hierarchical forest structure as shown
in Fig. 2, where each tree in the forest specifies possible
causes of a specific A/P. The name of the A/P is assigned to
the root of a tree whose level-structure is decided by the
complexity of that A/P, while its nodes represent specific
A/P aspects or subcomponents that can be sources of
problems. Regardless of the tree structure, however, the
path of the labels always starts at a root node and ends at a
leaf node. For each individual problem there is one and
only one such path in the entire forest. Note that whenever
a certain node is included in the label set, all the nodes on
the path to the root node must also be included.

When a problem occurs, either the A/P will generate
error logs, or the administrator will notice some change of
the monitoring data. To automate the process of problem
determination, set of training data are needed for the
classifiers to learn the patterns of the problem taxonomy.
This process requires a manual labeling of each problem
instance that is used for training purpose. In our problem
setting, each problem instance contains a set of labels,
which is referred to as multilabel, e.g., {MySQL, General},
{WebSphere, Runtime, CPU}. The presence of a multilabel
indicates whether a problem instance has been labeled by
all nodes relevant to the problem. A simple representation
of multilabel is the binary coding schema, where 1 indicates
the presence of the problem instance at a node, and 0
indicates the absence of the problem instance at a node. In
the example shown in Fig. 2 where a total of M = 10 labels
exist, the problem instance (in gray nodes) has two labels:
labels 1 and 3. Thus, the associated multilabel can be
represented as {1,0,1,0,0,0,0,0,0,0}.

3.1 Hierarchical Classification Framework

For training classifiers, each problem instance is trans-
formed into a feature vector xz, where the features in the
vector correspond to words that appear in the error logs, the
numerical thresholds monitored by the administrator and
so on. Details of feature representation and selection will be
discussed in Sections 4 and 5, respectively. Given a set of
problem instances x; with their associated labels y;, we train
M binary classifiers for the taxonomy, where each node in
the taxonomy has a local classifier. Each binary classifier

348 IEEE TRANSACTIONS ON SERVICES COMPUTING, VOL.5, NO.3, JULY-SEPTEMBER 2012

simply makes a decision whether y; is presented at that
node (positive) or not (negative). Note that the choice of
classifiers can be arbitrary at each node. For simplicity, we
restrict the classifiers to be the same for all nodes in the
taxonomy in this paper.

The training process is shown in Algorithm 1, where
each z; is a d-dimensional feature vector and y; an M
dimensional multilabel vector. Each problem instance z; is
passed to all M nodes for classification. The associated
decision functions at each node are updated given the
feature vector z; and the predictive results from the local
classifiers. The algorithm also maintains the relationship
between classifiers, i.e., knowing the parent and children
nodes of each classifier f,,. In the situation when z; is
classified to be negative (0) by the node f,,, all the nodes in
the subtree of f,, will update their parameters by assuming
a negative label of z;, without making further computation.
Otherwise, z; will visit all nodes in the subtree of f,,
iteratively. After training, each node retains a locally trained
binary classifier.

Algorithm 1. Hierarchical Classification: Training
1: Input training data {x;,y;}, x; € R? d-dimensional
feature vector, y; = {y1,...,ynm} € {0, 1}M multilabel,
where
N: number of instances, M: number of labels (nodes)
2: Initialize local classifiers for all M nodes

{fi(x), - fu(x)}
3: for each training data x; (i =1...N)
4: for each label m (m=1... M)
5: if Yparentim) = 0
6: then update the parameters of f,, given y,, =0
7: else classify x; using f,(x;), output the
predicted y,,
8: update the parameters of f,, according to y,,
9: end for
10: end for

11: Output M classifiers {fi(x),..., fu(x)}

3.2 Online Learning Classifiers

For training efficiency, we propose to use classifiers that are
capable of incremental learning from the training data
received continuously over time. Specifically, an online-
learning classifier should be able to adjust the classification
parameters once new training data are available, without
resolving to previously used training data. For simplicity,
we only consider linear classifiers for online learning in our
hierarchical framework.

Normally, a linear classifier can be represented as
f(x;) = wlx; +wo, where w is called weight vector and
has the same dimensionality as the feature vector x;. wy
indicates the bias or offset of the classifier. w and wy
together are the internal parameters of the classifier which
are learned during the training phase. For binary classifica-
tion where each label y,, is either 0 (negative) or 1
(positive), an input vector x; is classified to the positive
class if f(x;) > 0 and to the negative class otherwise.

We propose an online Perceptron algorithm as shown in
Algorithm 2. Traditionally, the Perceptron algorithm is
known to be a simple and very effective discriminative

classifier [19]. The learning phase of Perceptron only
involves two parameters. Specifically, the Perceptron only
updates the parameters w and w;, when an instance x; is
misclassified. In case the true label of x; is positive (1) but
predicted to be negative (0), the parameters are updated by
adding x; : w = w + ax;, where « indicates the learning
rate; if the true label of x; is negative (0) but predicted to be
positive (1), the parameters are updated by subtracting
X; : W = W — ax;. The Perceptron algorithm guarantees to
converge if the data are linearly separable, i.e., the
algorithm is capable of finding a hyperplane to separate
two classes well. However, the classic Perceptron algorithm
is required to iterate many runs on the training data until
its convergence, which makes it unsuitable for online
learning purpose.

Algorithm 2. Online Perceptron Learning
1: Initialize the parameters for each f,(x)

w” = {0,... ,O}d,wg" = —1, augment
w" = {wy, w"},
RESERVE = {}.

2: for each training data x; (i =1...N)
3: augment X; = {1,x;}
4: for each label m (m=1... M)
5: classify x; using f,,(%X;) = W"%;
6 if x; is misclassified
7 for each x; in RESERVE // the adding phase
8 augment x; = {1, x;}
9 W =W+ ”f;ﬁz %;, where § = —W"%;

and e is a small positive number

10: end for

11: add x; to RESERVE

12: for each x; in RESERVE // the removing phase
13: if x; is classified correctly

14: remove x; from RESERVE

15: end for

16: end if

17: end for

18: end for

Thus, in Algorithm 2, we propose a variant of the
general Perceptron, which is able to update the parameters
more efficiently [19]. In this modified algorithm, the weight
vectors for each node are initialized to be zero or small
random variables. We combine the parameters w and wy
into one vector W, and augment each feature vector x; by
adding 1 to its first column to be %;, so that the update of
the decision function can be simplified to f(x)=w’%;. We
also maintain a set RESERVE that keeps all the misclassi-
fied instances.

The algorithm has two major learning phases: 1) the
adding phase and 2) the removing phase. In phase 1, each
time an instance is misclassified at a node m, the algorithm
adds the data into the RESERVE set. The algorithm then
updates the parameters by adding a constant factor to W,
by iterating through all previously misclassified data in
RESERVE. This way the hyperplane gets another chance to
correct errors on previously misclassified instances. In
phase 2, during the removing phase, the algorithm checks
if a data in RESERVE can now be classified correctly after

SONG ET AL.: HIERARCHICAL ONLINE PROBLEM CLASSIFICATION FOR IT SUPPORT SERVICES 349

the parameters update. If this is the case, the data are then
removed from the RESERVE set. The algorithm stops when
all data instances have been classified. We define § = —w’
and use it as a part of the learning rate for each Perceptron
update. € is a very small positive number. This way we
accelerate the update of Perceptron by guarantying to
reduce the error rate after each step. When all instances
have been classified, the algorithm stops and outputs the
learned weight vectors for each classifier f; at node i.

Given a set of N training instances and M predefined
labels, the online learning algorithm iterates N = M steps to
update the parameters for learning. During each update, the
prediction is calculated by multiplying two d-dimensional
vectors into a scalar for all data in the RESERVE set. Thus,
the computational complexity of our algorithm is bounded
by O(MNRd), where R is the maximum size of the
RESERVE set.

X

3.3 The Online Perceptron Learning Rate
The learning rate o = ";*‘2 of the Perceptron technique is
the most important parameter during learning, since it
controls the algorithm convergence rate. Historically, the
learning rate was chosen heuristically to be either 1 or a
small positive number without prior knowledge. Instead of
using a fixed learning rate for online learning, we propose to
adjust the learning rate according to every new instance
received dynamically. Theoretically, it has been shown
that the learning rate ‘Z:T._, is guaranteed to correct the
classification of each instance x by at least € at each step [19].
Consequently, the misclassified instances in the RESERVE
set will have a chance to get corrected after new training
data are introduced (during the adding phase), and will
eventually be removed from the RESERVE set (during the
removing phase).

Fig. 3 demonstrates two true examples to show the
importance of the learning rate. Two class examples that are
separable are presented, with a new data arriving on the
margin. In the case where the original hyperplane has
already separated two classes before the introduction of a
new data, our learning rate guarantees that the new weight
vector moves to the region where it is just able to separate
the new data without introducing new misclassified data,
while the learning rates of 0.1 and 0.8 both create new
misclassified instances in this case. On the other hand,
when the original hyperplane cannot separate the two
classes (in Fig. 3b three instances are misclassified), our
learning rate will make sure that no more misclassified
instances will be introduced. Specifically, after the adding
and removing phases, the hyperplane that uses our learning
rate reduces the number of misclassified instances to 1. The
other two hyperplanes, unfortunately, both introduce new
misclassified instances which are not present in the
RESERVE set.

3.4 Explanations on One Pass Learning

Our online learning framework resembles the online SVM
learning as in [23], where the model only gets retrained
when an example is misclassified. With a good initial
hypothesis parameters from previous trained models, the
training time on new examples is usually sufficiently short
so that it can be considered a real-time algorithm.

rate = 0.8
- rate = 0.1

“~--- our learning rate
> new data
original hyperplane

(a) Original hyperplane separates the two classes.

Co0 90
090 00
000

original hyperplane

~rate=0.1
~-- our learning rate

: O ~_ new data
- rate =0.8

(b) Original hyperplane does not separate the two classes.

Fig. 3. The impact of the learning parameter. The original hyperplanes
are shown in solid lines. The new hyperplanes with different learning
rates are in dash lines.

Similarly, our algorithm has an adding phase where
poorly classified examples are included in the RESERVE
set. Whenever a new example is misclassified, the algorithm
will iterate through all the examples in the RESERVE set
and adjust the parameter. This step is very similar to the
online SVM algorithm. However, our algorithm also has a
removing phase where the correctly classified example by
using the updated parameters can be removed from the
RESERVE set. This makes sure that the size of the RESERVE
set R does not grow monotonically but will be adjusted
after each update, so that its size is relatively smaller than
the entire data set N. It is true that during the adding phase,
the parameter updating needs several rounds to converge.
But considering R <« N, our algorithm can be considered as
a one-pass online learning framework.

Fig. 4 illustrates an example of the online learning
process. We randomly generated two multivariate normal
distributions, N; ~ (0,[1 — 0.4;—0.41]) (in red) and N; ~
(0,[10.8;0.81]) (in blue), each with 1,000 examples, respec-
tively. We then randomly shuffled the data points and
added them to the online learning framework sequentially.
We demonstrate the change of the error rate as well as
the size of the RESERVE set when every 200 examples are
added to the training set in Fig. 4. We limit the size of the
RESERVE set to be 50 in this case. Thus, if more than
50 examples are misclassified, only the first 50 will be kept
in the RESERVE set. It can be observed that the error rate is
generally less than 3.5 percent in all scenarios, while the size
of the RESERVE set fluctuates from 0 to 50. During each
round, only the examples that are the most difficult to

350 IEEE TRANSACTIONS ON SERVICES COMPUTING, VOL.5, NO.3, JULY-SEPTEMBER 2012

examples=200,error=1.5%
RESERVE size=4

examples=400,error=0.65%
RESERVE size=5

examples=600,error=0.1%
RESERVE size=0

examples=800,error=1.2%
RESERVE size=10

examples=1000,error= 2.4%
RESERVE size=50

examples=1200,error=2.6%
RESERVE size=50

examples=1400,error=3.2%
RESERVE size=50

examples=1600,error=1.5%
RESERVE size=25

examples=2000,error=2.2%
RESERVE size=44

examples=1800,error=0.6%
RESERVE size=12

Fig. 4. A demonstration of our framework. Size of RESERVE set is limited to be 50. Data are added incrementally from 0 to 2,000.

classify are added to the RESERVE set. Some of those
examples are correctly classified in the next round so that
the RESERVE set will shrink, e.g., from 1,400 to 1,600, half of
the examples in the RESERVE set were classified success-
fully. The error rate then dropped from 3.2 to 1.5 percent. It
is obvious that the size of the RESERVE set plays an
important role in balancing the efficiency and the classifica-
tion performance. If the size of the RESERVE set is set to be
infinite (or equal to the size of training set), then the
algorithm is essentially the same as the original Perceptron
algorithm. The influence regarding the size of the RESERVE
set will be discussed in the experiments Section.

3.5 Online Hierarchical Prediction

After training, each node in the hierarchical framework
needs to store only the weight vectors w,, in the memory.
The trained classifiers can now be used for real-time
hierarchical classification when a new instance is reported.
Specifically, given a new xx, its multilabel yx is predicted
using the same top-down process as used for training,
except for the condition that a node m is visited only if its
parent node parent(m) classifies the instance x* to be
positive. The detailed algorithm is listed in Algorithm 3.
The label decision rule is shown below

1, if w”x, > 0 and m is a root node,
Ym = 17 if w"x, > 0 and Yparent(m) = 17
0, otherwise.

Algorithm 3. Hierarchical Classification: Prediction
1: Input M classifiers {fi(x),..., fu(x)}, a test
instance xx

: for each classifier f,,(x) (m=1...M)
if f,,(x) classifies x* to be negative (0)

assign y,, = 0
else if f,,(x) classifies x * to be positive (1)
if Yparent(m) = 1 then assign y,,, = 1
else assign y,, =0
end for
: Output predicted class label y. for xx*

RN AU SN

The online prediction is extremely effective using our
algorithm. Given a taxonomy with K trees, with the largest
tree having depth D, a traditional multiclass classifier needs
to decide the labels for K x 2P possible classes. However,
with our algorithm only D steps are required to determine
the label of an instance. Because during every step, a tree or
a subtree with root predicted to be zero will be removed
from the path. For example, given the taxonomy in Fig. 2
with K =2 and D = 3, at most three steps are needed for
deciding the root cause of a problem.

4 FeEATURES FOR PROBLEM CLASSIFICATION

Two types of data are considered important for problem
classification. 1) The first type of data is the error log or
trace generated by the A/P under failure. This semistruc-
tured data usually contains important information regard-
ing the errors, including, for example, error timestamps, ID
of the instance which caused the error, error signatures,
and error trace messages. An example of such an error log
trace generated by IBM WebSphere Application Server is
shown in Fig. 5.

Using the text information of the error logs for problem
classification has been extensively studied [7], [4], [5], [12],
[27], [28], [10], [14], [30], and these techniques often exhibit
good accuracy in practice. Intuitively, two errors that share
similar log information such as the error signatures are
likely to be caused by the same root issue. However, this is
not always reliable in the real-world scenarios. Since the
format of error logs are often predefined varying from
application to application, one technique may not be able to
capture all problem patterns for a particular problem
taxonomy, which often evolves over time.

2) Consequently, we suggest leveraging a second type of
data, which is the monitoring data, as additional features.
We collect important performance metrics at system,
middleware and application level, e.g.,, CPU usage ratio,
average application response time, etc.,, which exhibit
significant changes when a related problem happens in
the system. For example, in Fig. 6, we illustrate 17 hours of
CPU usage for a WebSphere Application Server. An error

SONG ET AL.: HIERARCHICAL ONLINE PROBLEM CLASSIFICATION FOR IT SUPPORT SERVICES

351

[6/16/08 13:34:59:388 EDT] 000042a6 ServletWrappe E SRVEOO6SE: Uncaught exception thrown
in one of the service methods of the servlet: TradeAppServlet. Exception thrown :
at com.ibm.websphere.samples.trade.web. TradeServletAction.dologin(TradeServletAction.java:377)
at com.ibm.websphere.samples.trade.web. TradeAppServlet.performTask(Trade AppServlet.java: 122)
at com.ibm.websphere.samples.trade.web. TradeAppServlet.doPost(TradeAppServlet.java: 84)
at javax.servlet.http. HttpServlet.service(HttpServlet.java: 763)
at javax.servlet.http. HttpServlet.service(HttpServlet.java:856)
at com.ibm.ws.webcontainer.servlet.ServletWrapper.service(ServletWrapper.java: 966)
at com.ibm.ws.webcontainer.servlet.ServletWrapper.service(ServletWrapper.java: 907)

Fig. 5. A sample of error log trace from the IBM WebSphere application. The error contains timestamp, application ID, originating class as well as the

error trace message.

WBS_SLESVMZ(WebSphere 6.x)

CPU Usage Since Last Measurement

i Average

2.00 &1

Per

00 29,90

e Graph

Il _| |! l| [iLa"J% i '

00 01 0 03 04 05 06 07 08 09 10 11 12 13 14 15 16 17 I8 1% 20 21 22 23

I B CPU Usage Since Last Measurament

o e T

HIDE DATA

Fig. 6. An example of CPU usage graph from the Snappimon monitoring suite. An error was injected between 08:00 am and 10:00 am that causes a

low CPU usage.

that alters the connection between clients and this applica-
tion server was injected between 08:30 am and 10:00 am.
Evidently, the CPU usage is significantly lower during this
time period than it normally should be. Note that this type
of errors can also be discovered by extracting and
analyzing the system error logs with some effort. However,
the value of the CPU usage is clearly a better indicator of
CPU related failures.

In our experimental setup, we use the IBM Snappimon
monitoring suite [3] to collect all important network, the
application servers and the database servers are set up.
Specifically, integrated infrastructure, network, system,
middleware, and application metrics.

5 FEATURE SELECTION

Feature selection is an important postprocessing step after
the feature generation and the construction of the instance-
feature matrix. The benefits of feature selection include
reducing the storage requirement of the training data,
easing the visualization of the data for a better under-
standing, and most importantly, feature selection techni-
ques are believed to improve the prediction performance of
classification tasks, especially for text classification tasks
[13], [18]. This is generally due to the sparseness issue of the
bag-of-words representation in text classification, where
each word is treated as a feature without considering the
relations between different words. Fig. 7 illustrates an
example of instance-feature matrix in our experiments,
where each row is a training instance and each column
represents a (word or numerical) feature. Each dot indicates
an appearance of the feature in the instance. The feature

space contains both text features and numerical features in
no particular order.

Theoretically, word features that are less correlated or
orthogonal to each other are more likely to show better
predictive performance than features that are highly
correlated [11]. Consequently, the objective of our feature
selection task is to keep the most important word features,
or so called signatures from the error logs, as well as the
most useful numerical features of system performance,
which have been successfully used in the literature [4] by
monitoring their change points to detect system failures.

Similarly, numerical features have the same issues as
word features. Fig. 8 presents an illustration of three
features, where committed rows and message count are
highly correlated, while message count and method ready
count are less correlated. By scatter plotting, it is clear to

Fig. 7. An example of error-feature matrix from one of the data sets used
in this paper. X-axis corresponds to feature IDs, and Y-axis is error IDs.
Each red dot indicates an appearance of a particular feature in an error
message. The features contain both text features (logs) and numerical
features (system metric). The matrix is more than 90 percent sparse.

352

H
s
g @

Row:
g8

H

8
Comitted Rows
8

H

Committed

g

g

e

e S S S S S—
Toes zoms 2067 2087 2068 _20eec 2009 20w 207

Message Count xio*

0 m w0

o o)

o
Time

IEEE TRANSACTIONS ON SERVICES COMPUTING, VOL.5, NO.3, JULY-SEPTEMBER 2012

2.088

5

Method Ready Count
2
Message Count

8

g

0)]

) [1 2 3 4
Time Message Ready Count

Fig. 8. Two examples of feature correlations. (Left) Time and correlation plots of two highly correlated features. (Right) Time and correlation plots of

two less correlated features.

see that the correlation values of highly correlated features
lie very close to the dash line of perfect correlation.
Including these variables, therefore, will be redundant in
terms of training an efficient classifier. We describe in the
next sections the three supervised feature selection
methods used in this paper.

5.1 Information Gain-Based Feature Selection

Information gain is an entropy-based method. Researchers
have found that information gain is among the most
effective statistical feature selection methods, which re-
moves unnecessary features without losing accuracy for
classification [18]. Specifically, given a set of training
examples X with d features {Fi,...,F;} in M classes
Y ={%,..., Yy}, we want to select features that give high
information gain to the class labels. We define IG(Y|F;) to
be the information gain of ¥ given feature F;:

IG(Y|F) = H(Y) - HY|X)

M
_ mz:lp(ym) logy p(Yom) (2)

M
+p(F) > p(YulF) log, p(You|F)),

m=1

where p(Y,,) and p(F;) are the marginal probabilities of
class labels and features, while p(Y,,|F;) defines the
conditional probability of class label Y;, given a feature F;.
In our experiments, a predefined threshold ¢ is specified to
remove features whose IG values are less than ¢. The time
complexity for this preprocessing step is O(dM).

5.2 SVM-Based Feature Ranking

Support vector machines (SVMs) have been one of the
most effective classifiers for text classification in the past
years. Recently, researchers have proposed the use of
SVMs as a tool for feature selection [29]. The authors first
train an /;-norm SVM on the training data. The output of
the classifier contains weights for each feature where
higher weighted features are more important. The authors
find that many features are weighted zero and therefore
they can be eliminated from the training set.

5.3 Document-Specific Feature Selection

A similar approach was taken by ranking the features
based on their within-class weights obtained by the
classifier [13]. This full induction method retains the top-
k ranked features for each training instance, and then
retrains a classifier with the new representation of feature

space. The method is referred to as the document-specific
feature selection (DSFS) method.

These feature selection methods have been used in our
experiments for comparison with the IG-based method.

6 EXPERIMENTS

In this section, we present some empirical analysis of our
approach. We used an experimental setting similar to the
one presented in [4]. Specifically, we used Trade 6 [1] as a
testbed for web applications. Trade 6 serves as a Web-
Sphere performance benchmark that simulates a brokerage
trading system. Users of this application are able to perform
typical trading operations provided by brokers. This
application contains Java servlets, JDBC, JSPs, and other
resources which are critical sources of failures for both
WebSphere and its hosted applications and, thus, are
covered by ISA’s problem taxonomy.

For simulating user operations, we used IBM Websphere
Workload Simulator (WSWS) [2] to perform multiuser
activities on Trade 6. We recorded and repeated multiple
user activities on different sessions. User actions include
registration, view account, view portfolio, buy stock, sell stock,
logoff, etc. Details can be found in [4].

To replicate a monitored multitier working environ-
ment, we installed the WebSphere Application Server v6
and DB2 Server v9 on different machines. We deployed
Trade 6 benchmark web application on the WebSphere
Application Servers. We installed Snappimon [3] on a
separate server to monitor this distributed e-commerce
environment. Fig. 9 shows our experimental settings. Since
our goal is learning failure patterns for future recognition,
it was sufficient to have a single server exposed to a
particular failure under varying conditions of loads and
additional failures rather than having a cluster of multiple
load balanced servers under the same error injection;
hence, we conducted our experiments focusing on a single
pair of WebSphere/DB2 servers.

To generate failure training data, we injected commonly
occurring errors into the system and collected the necessary
data. More precisely, we ran multiuser sessions simulta-
neously (10 and 20 users for two experiments, respectively)
for 30 minutes. The first 20 minutes correspond to normal
operations and, hence, are error free, while during the last
10 minutes of each session we injected seven different
errors. For the validity of our evaluation, we selected from
the most prevalent issues in actual IT deployments those

SONG ET AL.: HIERARCHICAL ONLINE PROBLEM CLASSIFICATION FOR IT SUPPORT SERVICES 353

Snappimon
9.2.139.62

Fig. 9. Servers and client setup for our experiments. Server 1 contains
the database server. Server 2 installs web application server, database
client, and a web application. A monitoring suite is installed in a separate
machine.

errors that appear similarly in production as well as on our
testbed [4].

1. Iptables routing: drop packages and cause a network
failure between WebSphere and DB2.

2. DB2 drop index: drop a DB2 table index.

3. CPU hog (DB): run a malicious program that
consumes 100 percent of CPU on the DB2 Server.

4. DB2 shutdown: shutdown the DB2 server by force.

5. User limit exceed: connect many clients at the same
time to the Trade 6 web application until WebSphere
exceeds the configured limit of accepted connection.

6. WebSphere port change: switch the default port to
an unknown port to the web applications.

7. CPU hog (WebSphere): run a malicious program
that consumes 100 percent of CPU on WebSphere
Application Server.

Overall, we collected a total of 1,700 failure samples
(each sample corresponds to a failure), which consists of
approximately 2,800 word features and 80 numerical
features in seven classes. Fig. 10 shows the taxonomy in
our experiment.

For performance evaluation, we measure both effective-
ness and efficiency of our algorithms. The effectiveness is
calculated by using the F; score, defined as F; =2 Px
R/(P+ R), where P and R are the precision and recall
metrics [22]. The efficiency is evaluated considering the
computational complexity for training the classifiers.

We compare the effectiveness of our algorithm to two
online-learning algorithms and one batch learning algo-
rithm. The first online algorithm, online-LDA, is an online
extension of the Fisher linear discriminant analysis [16],
which exhibited good performance for text classification.
The other online algorithm, online-SVM, is a relaxed
version of support vector machine classifiers [23], which
keeps a window of previously trained data to reduce the
training complexity. The batch learning algorithm is
SVM*“ which is an SVM algorithm for predicting
structured outputs.”> It has been successfully applied to

2. http:/ /svmlight.joachims.org/svm_struct.html.

DB2 WebSphere

Network e e Runtime HTTP @ @ Runtime

Iptable Index CPU Connection User Routing CPU

Fig. 10. Problem taxonomy for our experiment. Two applications with
seven different errors are presented in the tree.

both hierarchical classification and natural language par-
sing [25]. Since it has been shown that linear classifiers
usually perform well for text classification [13], we choose
the linear kernel for both SVM algorithms.

For feature selection, we compare the three algorithms
described in Sections 5.1, 5.2, and 5.3.

We split the error data into both training and testing data
with different proportions from 10 to 90 percent. Addition-
ally, for feature selection, we evaluate the performance of
classifiers with 10, 40, and 70 percent of features selected.

In all our experiments, we preset the size of the RESERVE
set to be 5 percent of the training data and perform
adding and removing phrase according to Algorithm 2.
The choices of the parameters will be discussed later.

6.1 Results and Discussions

Table 1 reports the effectiveness results of F} score after
10 independent runs of experiments. Our algorithm
(Online-Perc) clearly outperforms online-LDA in all cases.
Our algorithm also outperformed online-SVM in many
cases, and in general, shows very competitive results
against SVMs. The batch learning SVM*™"“ algorithm
achieves the best predictive performance as expected in
all three cases, and with an edge of only 1.5 percent over
online-Perc on average.

Comparing the three feature selection methods, the
SVM-based feature selection method shows evident advan-
tage over the other two. The document-specific feature
selection (DSFS) performs somewhat better than informa-
tion gain (IG), but not very significant. Interestingly, the
SVM-base feature selection method shows bigger improve-
ment when applied to online-perc and online-LDA. For the
two SVM classifiers, i.e., online-SVM and SVM*"", how-
ever, SVM-based feature selection exhibits less improve-
ment over IG and DSFS. Note that using 70 percent features
demonstrates the best performance among all algorithms.

Next, we compare the learning efficiency of the four
classifiers. From Fig. 11, it can be seen that the online
Perceptron has a constant learning time as the number of
training data increases. While for the batch learning
algorithm, the computational cost of training a classifier is
linear to the number of training instances, which cannot be
scalable for large enterprise-level applications. It is also
evident that the online-SVM algorithm requires more time
for training. The reason is that every time an instance is
misclassified, the online-SVM has to find new parameters
by performing quadratic programming on a set of pre-
viously reserved data. While for our algorithm, updating
the parameters only involves linear operations for both
adding and removing phases.

354

IEEE TRANSACTIONS ON SERVICES COMPUTING, VOL.5, NO.3, JULY-SEPTEMBER 2012

TABLE 1

Experimental Results on F; Score of Four Classifiers

of features

Online-Perc

Online-LDA

Online-SVM

SVMstTuct (Batch)

10% (G)

61.77% £ 1.43%

53.21% + 1.15%

62.92% + 2.23%

64.78% + 1.21%

40% (IG)

71.54% £ 1.75%

68.33% + 1.60%

71.56% + 2.73%

73.69% £ 2.17%

70% (IG)

83.25% + 2.11%

76.14% + 1.75%

83.22% + 2.32%

84.35% + 2.51%

100% (IG)

80.75% =+ 2.08%

73.75% + 1.21%

81.07% =+ 2.91%

81.78% + 2.17%

10% (SVM)

63.77% £ 1.11%

55.13% + 1.22%

63.25% + 2.07%

65.17% + 1.16%

40% (SVM)

72.54% £ 1.21%

69.98% + 1.57%

72.58% + 2.12%

74.17% + 2.00%

70% (SVM)

85.25% + 2.35%

79.33% + 1.85%

85.35% + 2.45%

85.38% =+ 2.38%

100% (SVM)

82.84% + 1.79%

74.59% + 1.34%

84.39% + 2.66%

81.89% + 2.18%

10% (DSFS)

61.95% + 1.57%

53.87% + 1.07%

62.16% =+ 2.56%

64.71% + 1.25%

40% (DSFS)

71.84% £ 1.09%

68.97% + 1.81%

71.48% =+ 2.09%

73.85% + 2.05%

70% (DSES)

83.22% + 2.50%

79.35% + 1.55%

83.22% + 2.04%

84.85% + 2.44%

100% (DSFS)

78.76% £ 2.09%

72.76% + 1.34%

71.90% =+ 2.32%

81.85% + 2.05%

Three feature selection methods are evaluated. IG = information gain. SVM = support vector machine ranking. DSFS = document-specific feature

selection.

Furthermore, we examine the performance of combine
text features and numerical features. We choose to use
different proportion of the training data, 10, 40, and 70
percent. We also select features using three different thresh-
olds with three different methods. We use online-perc and
online-SVM as the classifiers. This results a total of 2 33*% =
27% different experiments. For brevity, we only show the 27
results by using IG-based feature selection. Fig. 13 presents
the predictive precisions. It can be observed that with the
combination of both log data and numerical data, both
algorithms show the best predictive performance in most
scenarios. It is evident that with 90 percent of the training
data, the performance of the algorithm is generally much
better than those with few training data. With the combina-
tion of log and numerical, our algorithm achieves a 93.35
percent of precision with 90 percent of the training data. It is
also observable that using only log features constantly
outperforms using only numerical features. Moreover,
combining log and numerical features usually indicate
better performance than log features itself. In our case, even

60 : ‘
[l Online-Perc
[Eonline-LDA
[JOnline-SVM

\:ISVMstruct

o
f=]
T

Training Time (sec)
w
o

S
=

0
10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

Percetage of Training Data

Fig. 11. Computational complexity of four learning algorithm. Our
algorithm (online-Perc) exhibits a constant learning time with the
increase of the training data, while traditional batch learning algorithm
(SVM#ty requires linear learning time.

with 40 percent features selected (86.02 percent, top right
figure), the combination of both features outperforms log
features with 70 percent features selected (85.09 percent, top
middle figure). A rough conclusion drawn from the results
is that, by combining log and numerical features, the
performance of classifiers can be further improved.

To show the advantage of our hierarchical classification
framework, we made a simple comparison to an approach
that uses a flat structure to classify errors. Specifically, the
algorithm performs a binary classification for each class and
chooses the path with the highest confidence (i.e., highest
predictive score) as the class label. In our experiments, this
involves classifying an instance into one of the 13 classes as
shown in Fig. 10, and choosing the leaf node with the
highest confidence score. An example has been shown in
Fig. 12 to classify instances into the “Iptable” issue category.
We choose to use Perceptron as the classifier for the flat
(binary) case for fair comparison. Fig. 14 shows the results
for the two frameworks. Our hierarchical structure clearly
outperforms the flat stricture in all cases. As explained in
the algorithm details, the hierarchical structure reduces the

DB2

0
e o Runtime
061010,

Index CPU Connection

Runtime

o Iptable

e Index
(6)cPU

o Connection

(b) Flat (binary) Classification

Network

Iptable
(a) Hierarchical Classification

Fig. 12. Comparison of hierarchical classification and flat classification.
To classify an instance into the “Iptable” category, hierarchical
classification only has to perform three cases of classification while flat
classification has to perform binary classification in all nodes which
potentially increases the error rate.

SONG ET AL.: HIERARCHICAL ONLINE PROBLEM CLASSIFICATION FOR IT SUPPORT SERVICES

100% features selected

70% features selected

355

40% features selected

Blliog+numerical Blliog+numerical
90r|[Mlog only e 90| [log only
numerical onl numerical onl
80| Y | 80 i

lliog+numerical
9oH [Mlog only
[Jnumerical only

Precision
o
(=]
Precision
o
(=]

Precision
o
(=]

10% 70% 10%

40%
% of training instances

100% features selected

40%,
% of training instances

70% features selected

70% 10% 70%

40%,
% of training instances

40% features selected

100 100
90| e 90
80| * 80 M
70| 70

Precision
o
(=]
Precision
o
(=]

Precision
o
(=]

10% 70% 10%

40%
% of training instances

40%,
% of training instances

70% 10% 70%

40%,
% of training instances

Fig. 13. Precision on the test data set. The combination of log and numerical data performs the best. Top: results using online Perceptron classifier.
Bottom: results using online SVM classifier. Left: 100 percent features used. Middle: 70 percent features selected. Right: 40 percent features

selected.

candidate classes for a test sample by approximately half
after each step of classification, which potentially reduces
the probability of making errors as well.

Finally, we are also interested in discovering which text
and numerical features are most useful in problem determi-
nation. By examining the IG-based and SVM-based scores,
we find that originating class and instance ID are among the
most informative text features, while CPU usage and (net-
work) response time are the most discriminative numerical
features. Table 2 lists the best features and their scores.

Note that in machine learning, hierarchical online
classification has been a very challenging problem in the
last decades, e.g., the subcategories in two different tree
structures can have similar labels (take Fig. 10 as an
example, both DB2 and WebSphere have an CPU category).
Comparing to the published works in other application
areas [9], [21], [6], the results of our top-down approaches
indicate a significant improvement in terms of both
performance and efficiency.

120%

Il Hierarchical Perceptron
100%[_JFlat Perceptron

A

60% -~

Accuracy

40% -

20% -~

0

50% 90%

% of training data

10%

Fig. 14. Comparison of the test performance between hierarchical
classification versus flat classification. Our Hierarchical approach shows
better results in all three cases.

6.2 The Influence of RESERVE Set Size

Next, we demonstrate the influence of the size of the
RESERVE set. By setting the size to be 5, 20, 45, and
65 percent, we compare the performance of the online
Perceptron with the original Perceptron algorithm which
iterates many rounds to converge. In this experiment, we
empirically set the iteration to be 200. We test also whether
the removing phase in Algorithm 2 is efficient and effective
when removing correctly classified instances.

Fig. 15 sketches the results. Two observations can be
made here. First, with the increase of the size, the accuracy
increases as well, but not very significantly. The improve-
ment of 65 percent over 5 percent as RESERVE set size is
only 1.5 percent on average. Furthermore, the accuracy
starts to converge even when the RESERVE size is only
20 percent, indicating that the size doesn’t need to be large
because the most difficult examples have already been
included in the set. This observation indicates the effective-
ness of the RESERVE set in our online learning framework.

Second, we can also observe that without the removing
phrase, the accuracy of the online learning does not increase

TABLE 2

The Most Discriminative Text and Numerical Features
feature name IG score SVM score
originating class (text) 0.21705597 | 0.57662841
instance ID (text) 0.09327432 | 0.24273866
timestamp (text) 0.05267098 | 0.13238833
CPU usage (numerical) 0.13290475 | 0.44714795
response time (numerical) 0.08123898 | 0.21245921
method ready count (numerical) | 0.04002738 | 0.13219308
committed rows (numerical) 0.01784899 | 0.04259606

Their IG scores and SVM scores are listed.

356

120,

[IRESERVE size=5%
|;RESER\/E size:
100|{[EEJRESERVE size=45% i

[CIRESERVE size=65%
[CIRESERVE size=infinite wio removing
gol{CIBatch Perceptron |

Accuracy
3
7
L

8
T
L

Il I 1
¢ 10% 50% %
% of training data

Fig. 15. Comparison of different size of the RESERVE set with the
original Perceptron algorithm.

at all. Indeed, the size of the RESERVE set may only
increase without removing, which could potentially benefit
the learner to learn better parameters with more examples.
But in practice, it only increase the learning cost by adding
more examples which compromises the efficiency of the
algorithm without increasing the accuracy. This observation
indicates that the removing phase in Algorithm 2 can
efficiently remove examples to be further classified, without
affecting the accuracy of our framework.

7 CoONCLUSION AND FUTURE WORK

We presented a hierarchical online classification framework
to automatically determine the root causes of problems in
IT services. We proposed a novel online Perceptron
algorithm which is capable of learning an optimal decision
boundary for the training data by making only one pass
through the data. Our approach showed similar quality of
classification when comparing with state-of-the-art online
SVM classifier, as well as faster training time than online
SVM. By comparing with two other online algorithms and a
batch learning algorithm, our framework shows better
generalized performance on a real-world data set. We
believe that this approach is suitable for large-scale
enterprise-level systems.

In the future, we will try to collect more system
performance data to boost the predictive results by using
numerical features. We will also test our algorithms on a
larger data sets that contain more problem patterns to make
sure our algorithms scale to the real-world applications.
Finally, we are looking forward to integrating our frame-
work with the IBM support assistant (ISA) tool.

ACKNOWLEDGMENTS

We would like to thank Narendran Sachindran and Manish
Gupta from IBM IRL for providing the error injection
methodology and code.

REFERENCES

[1] IBM Trade Performance Benchmark Sample, http://www-306.
ibm.com/software/webservers/appserv/was/performance.html,
2012.

[2] IBM Websphere Studio Workload Simulator, http://www-306.
ibm.com/software/awdtools/studioworkloadsimulator, 2012.

[3] Snappimon Monitoring Suite, http:/ /www.snappimon.com, 2012.

[4] MK. Agarwal, N. Sachindran, M. Gupta, and V. Mann, “Fast
Extraction of Adaptive Change Point Based Patterns for Problem
Resolution in Enterprise Systems,” Proc. Distributed Systems,
Operations and Management (DSOM), 2006.

(5]

(6]

[

(8]

B

[10]

(11]

[12]

(13]

(14]

(15]

[10]

(171

(18]

(19]

(20]

(21]

[22]

(23]

(24]

(23]

(20]

IEEE TRANSACTIONS ON SERVICES COMPUTING, VOL.5, NO.3, JULY-SEPTEMBER 2012

A. Brown, G. Kar, and A. Keller, “An Active Approach to
Characterizing Dynamic Dependencies for Problem Determina-
tion in a Distributed Environment,” Proc. Seventh IFIP/IEEE Int’l
Symp. Integrated Network Management, 2001.

N. Cesa-Bianchi, C. Gentile, and L. Zaniboni, “Incremental
Algorithms for Hierarchical Classification,”]. Machine Learning
Research, vol. 7, pp. 31-54, 2006.

M.Y. Chen, E. Kiciman, E. Fratkin, A. Fox, and E. Brewer,
“Pinpoint: Problem Determination in Large, Dynamic Internet
Services,” Proc. Int'l Conf. Dependable Systems and Networks (DSN),
pp. 595-604, 2002.

I. Cohen, M. Goldszmidt, A. Fox,]J. Symons, J. Symons, S. Zhang,
S. Zhang, T. Kelly, and T. Kelly, “Capturing, Indexing, Clustering,
and Retrieving System History,” Proc. Capturing, Indexing,
Clustering, and Retrieving System History (SOSP '05), pp. 105-118,
2005.

S. Dumais and H. Chen, “Hierarchical Classification of Web
Content,” Proc. 23rd Ann. Int'l ACM SIGIR Conf. Research and
Development in Information Retrieval (SIGIR "00), pp. 256-263, 2000.
A. Ganapathi, Y.M. Wang, N. Lao, and J.R. Wen, “Why PCs Are
Fragile and What We Can Do About It: A Study of Windows
Registry Problems,” Proc. Int’l Conf. Dependable Systems and
Networks (DSN '04), p. 561, 2004.

I. Guyon and A. Elisseeff, “An Introduction to Variable and
Feature Selection,” . Machine Learning Research, vol. 3, pp. 1157-
1182, 2003.

J. Hellerstein and V.R Tummalapalli, “Using Multidimensional
Databases for Problem Determination and Planning of a
Networked Application,” Proc. IEEE Third Int’l Workshop Systems
Management (SMW "98), p. 117, 1998.

A. Kolcz and W. tau Yih, “Raising the Baseline for High-Precision
Text Classifiers,” Proc. 13th ACM SIGKDD Int’l Conf. Knowledge
Discovery and Data Mining (KDD '07), pp. 400-409, 2007.

N. Lao, JR Wen, W.Y. Ma, and Y.M. Wang, “Combining High
Level Symptom Descriptions and Low Level State Information for
Configuration Fault Diagnosis,” Proc. 18th USENIX Conf. System
Administration (LISA '04), pp. 151-158, 2004.

M.A. Munawar and P.A.S. Ward., “A Comparative Study of
Pairwise Regression Techniques for Problem Determination,”
Proc. Conf. Center for Advanced Studies on Collaborative Research
(CASCON '07), pp. 152-166, 2007.

S. Pang, S. Ozawa, and N. Kasabov, “Incremental Linear
Discriminant Analysis for Classification of Data Streams,” IEEE
Trans. System, Man and Cybernetics, vol. 35, no. 5, pp. 905-914, Nov.
2005.

L. Ralaivola and F. d’Alché-Buc, “Incremental Support Vector
Machine Learning: A Local Approach,” Proc. Int’l Conf. Artificial
Neural Networks (ICANN '01), pp. 322-330, 2001.

L. Ralaivola and F. d’Alché-Buc, “Incremental Support Vector
Machine Learning: A Local Approach,” Proc. Int’l Conf. Artificial
Neural Networks (ICANN ’01), pp. 322-330, 2001.

R. Rojas, Neural Networks: A Systematic Introduction. Springer,
1996.

J. Rousu, C. Saunders, S. Szedmak, and]. Shawe-Taylor,
“Learning Hierarchical Multi-Category Text Classification Mod-
els,” Proc. 22nd Int’l Conf. Machine Learning (ICML '05), pp. 744-
751, 2005.

M.E. Ruiz and P. Srinivasan., “Hierarchical Text Categorization
Using Neural Networks,” Information Retrieval, vol. 5, pp. 87-118,
2002.

G. Salton and M.J. McGill, Introduction to Modern Information
Retrieval. McGraw-Hill, 1986.

D. Sculley and G.M. Wachman, “Relaxed Online Svms for Spam
Filtering,” Proc. 30th Ann. Int'l ACM SIGIR Conf. Research and
Development in Information Retrieval (SIGIR '07), pp. 415-422, 2007.
M. Steinder and A.S. Sethi, “The Present and Future of Event
Correlation: A Need For End-To-End Service Fault Localization,”
Proc. Fifth World Multiconf. Systemics, Cybernetics, and Informatics
(SCI), pp. 124-129, 2001.

I. Tsochantaridis, T. Hofmann, T. Joachims, and Y. Altun,
“Support Vector Machine Learning for Interdependent and
Structured Output Spaces,” Proc. 21st Int’l Conf. Machine Learning
(ICML "04), p. 104, 2004.

AM. Tsvetkov, “Development of Inductive Inference Algorithms
Using Decision Trees,” Cybernetics and Systems Analysis, vol. 29,
pp. 141-145, 1993.

SONG ET AL.: HIERARCHICAL ONLINE PROBLEM CLASSIFICATION FOR IT SUPPORT SERVICES

(27]

(28]

(29]

(30]

(31]

H.J. Wang, J.C. Platt, Y. Chen, R. Zhang, and Y.-M. Wang,
“Automatic Misconfiguration Troubleshooting With Peerpres-
sure,” Proc. Sixth Conf. Symp. Opearting Systems Design and
Implementation (OSDI "04), pp. 17-17, 2004.

Y.-M. Wang, C. Verbowski, J. Dunagan, Y. Chen, H.J. Wang, C.
Yuan, and Z. Zhang, “Strider: A Black-Box, State-Based Approach
to Change and Configuration Management and Support,” Proc.
17th USENIX Conf. System Administration (LISA ‘03), pp. 159-172,
2003.

J. Weston, A. Elisseeff, B. Scholkopf, and M. Tipping, “Use of the
Zero Norm with Linear Models and Kernel Methods,” |. Machine
Learning Research, vol. 3, pp. 1439-1461, 2003.

C. Yuan, N. Lao, J.-R. Wen, J. Li, Z. Zhang, Y.-M. Wang, and W.-Y.
Ma., “Automated Known Problem Diagnosis with Event Traces,”
SIGOPS Operating System Rev., vol. 40, no. 4 pp. 375-388, 2006.
AX. Zheng, J. Lloyd, and E. Brewer, “Failure Diagnosis Using
Decision Trees,” Proc. First Int’l Conf. Autonomic Computing
(ICAC '04), 2004.

Yang Song received the BS degree in computer
science from Zhejiang University, China, in 2003
and the PhD degree in computer science from
The Pennsylvania State University in 2009. His
research interests include machine learning,
data mining, information retrieval, and search
engines. He is a research member at Microsoft
Research, Redmond.

357

Anca Sailer received the PhD degree in
computer science from Pierre et Marie Curie
University of Paris, France, in 2000. She was a
research member at the Networking Research
Laboratory at Bell Labs from 2001 to 20083,
where she specialized in Internet services traffic
engineering and monitoring. In 2003, she joined
IBM, where she is currently a research staff
member in the Service Products Department.
Her interests include cloud computing manage-

ment, self-healing technologies, and information analysis.

»

ability clusters.

Hidayatullah Shaikh is a senior technical staff
member and senior manager at the IBM T.J.
Watson Research Center. He is currently the
IBM lead for business support services for cloud
offerings. His research interests and expertise
include virtualization, cloud computing, remote
services delivery, business process modeling
and integration, service-oriented architecture,
grid computing, e-commerce, enterprise Java,
database management systems, and high-avail-

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (None)
 /CalCMYKProfile (None)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.6
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 36
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 2.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 36
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 2.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 36
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU (IEEE Settings with Allen Press Trim size)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [567.000 774.000]
>> setpagedevice

