Image Vectorization using Optimized Gradient Meshes

Jian Sun Lin Liang

Fang Wen

Heung-Yeung Shum

Microsoft Research Asia

(a) input raster image

(b) Adobe Live Trace result

(c) subdivision mesh

(d) optimized gradient mesh

Figure 1: Three vector representations for a raw yolk. (a) input image. (b) result by Adobe “Live Trace”, with 3,619 patches. (c) result by
subdivision mesh, with 1,834 patches and 0.61/pixel reconstruction error. (d) gradient mesh optimized by our approach, with a 18 x 15 mesh
and 0.6/pixel reconstruction error. The top row shows the reconstructed images. A simple gradient mesh can also faithfully reconstruct the

highlights and reflectance on the yolk’s surface.

Abstract

Recently, gradient meshes have been introduced as a powerful vec-
tor graphics representation to draw multicolored mesh objects with
smooth transitions. Using tools from Abode Illustrator and Corel
CorelDraw, a user can manually create gradient meshes even for
photo-realistic vector arts, which can be further edited, stylized and
animated.

In this paper, we present an easy-to-use interactive tool, called opti-
mized gradient mesh, to semi-automatically and quickly create gra-
dient meshes from a raster image. We obtain the optimized gradient
mesh by formulating an energy minimization problem. The user
can also interactively specify a few vector lines to guide the mesh
generation. The resulting optimized gradient mesh is an editable
and scalable mesh that otherwise would have taken many hours for
a user to manually create.

1 Introduction

The goal of image vectorization is to convert a raster image into
a vector graphics that is compact, scalable, editable, and easy to
animate. Today, it is more important because of the increasing re-
quirements of vector-based contents (e.g., Flash or SVG) on the
Internet, and in vector-based GUIs used in new operating systems
such as Windows Vista.

Vector graphics are usually represented by points, lines, curves,
polygons or regions since these representations can be manually
drawn and editing using tools typical in vector graphics drawing
systems. Often, these primitives only allow a gradual global color
change to be applied along the paths of curves, or within the fill
regions of polygons, in linear or radial forms. However, draw-
ing a complex and multi-colored object with smooth transitions,
as shown in Figure 1 (a), is difficult with simple primitives such
as curves and polygons. Combining multiple simple primitives to
create a coherent multicolored object is complicated and requires
considerable artistic skill.

To address this problem, some vector graphics editors like Adobe
Iustrator and Corel CorelDraw have recently introduced a draw-
ing tool called “gradient mesh”. With gradient meshes, artists can
create a single multicolored mesh object on which colors can be
assigned and color transitions can be manipulated to create a rich
color object. A 2D graphics designer can now use the gradient mesh
tool to manually create a vector graphic art with photo-realistic
shading/shadow transitions. The results are painterly effects that
look as if they had come from image editing tools - yet they are all
in vector form. The designer can keep the art completely scalable
and editable throughout the design process.

Gradient meshes are able to represent a large variety of image ob-

jects containing both smoothly shaded and rapid changes. Also, as
shown in Figure 1, optimized gradient meshes have a much simpler
structure and thus are easier for the user to edit than those created
by other vectorization methods. However, it is often tedious and
time-consuming to delineate an object with photo-realistic gradual
transitions from a real image. It can easily take more than an hour
by a professional artist using the gradient mesh tool to manually
create a simple mesh like Figure 1(d).

In this paper, we provide a tool, called “optimized gradient mesh”,
to help a user to quickly convert an image object into gradient
meshes. It only requires a small amount of user assistance for ini-
tialization. Figure 1 (d) shows an optimized gradient mesh created
by our approach in less than a minute. Our tool works well with
multicolored objects with smooth shading or shadow transitions,
such as a face, a body, a toy, a piece of art, or any object with a
smooth surface, in real images. The optimized gradient mesh is also
able to handle a moderate amount of rapid color/intensity changes.
For example, the highlights and complex reflectance on the yolk’s
surface are faithfully reconstructed in Figure 1 (d).

While the gradient mesh exists in commercial tools, we are the first
to introduce it for image vectorization. We also present an effective
optimization approach to fit gradient meshes to an image. Gradient
meshes produced by our technique have several advantages: 1) Ef-
ficiency of use; the optimized gradient mesh makes it much faster
for users to create gradient meshes from an input image. A skill-
ful artist can save substantial labor and focus on re-creation, and a
novice is able to create a single or a library of photo-realistic vector
art for re-use. 2) Easy to edit; compared with other vectorization
tools, the optimized gradient mesh can produce a simpler mesh that
the user can further edit and animate. 3) Scalability; The gradient
meshes can be scaled in size with fewer artifacts, as we will explain
in Section 3.1. 4) Compact representation. The gradient mesh is an
efficient representation for image objects with smooth transitions.
For example, Figure 1 (d) shows a 7.7KB mesh, whereas the same
quality JPEG image is 37.5KB. This advantage will be increased if
the object is scaled in size.

The above advantages arise from the powerful representation ability
of the gradient mesh, which introduces geometric and color gradi-
ents on each vertex of the mesh and represents an image as a sparse
set of points and gradients.

2 Previous Work

For scanned line art, black-white images, maps, and cartoon draw-
ings, the main task of vectorization is to recognize and extract lines,
regions, and text [Fan et al. 1995; Dori and Liu 1999; Zou and
Yan 2001; Hilaire and Tombre 2006]. These approaches are mainly
based on thresholding, thinning, contour tracing, and skeletoniza-
tion algorithms in image processing. The extracted line, image con-
tour, or region is represented by vector graphics primitives, e.g.,
curves and paths.

Recent commercial vectorization software, such as Adobe “Live
Trace”, Corel CorelTrace, and AutoTrace [AutoTrace 2004], are
able to process photographic images, but are limited to cartoon-like
flat shading images. For real images with smooth shading, these
approaches typically output an over-segmented vector graphic con-
sisting of a large number of irregular regions with flat colors. This
kind of result is challenging to edit further. Figure 1 (b) shows a
Live Trace result which contains thousands of small patches.

In RaveGrid [Swaminarayan and Prasad 2006], a constrained De-
launay triangulation of the edge contour set is performed to yield
a polygon based vectorization. Adaptive triangulations [Demaret
et al. 2006] approximate the image as a linear spline over an adapted

=O

(a) Ferguson patch

(b) gradient mesh

Figure 2: The gradient mesh on the right consists of four Fergusion
patches.

triangulation. “ARDECO” [Lecot and Levy 2006] fits the image to
a set of regions delimited by cubic splines. Each region is filled with
a constant color, or a linear or circular gradient. Though these ap-
proaches faithfully approximate the image, the vectorization result
is too dense to be edited.

The works in [Ramanarayanan et al. 2004; Tumblin and Choudhury
2004] embed vector-based primitives, such as boundaries, lines, or
curves into the image to make the image scalable. Adjacent pixels
may be separated by these primitives and are not mixed in the ren-
dering. These approaches mainly focus on the sharp edges in the
image.

To make the result editable, object-based image editing [Barrett
and Cheney 2002] represents the image with an irregular, texture-
mapped triangular mesh. The user can easily manipulate the image
at an object level. Due to the use of texture mapping, the represen-
tation is not a scalable vector graphic.

In object-based vectorization [Price and Barrett 2006], an image ob-
ject and its sub-objects are hierarchically segmented by a recursive
graph cut algorithm. Each object or sub-object is represented by a
regular mesh with Bezier patches. The mesh is further subdivided
if the reconstruction error is above a threshold. Figure 1 (c) shows
a subdivision mesh produced by this approach. There are many
tiny patches in the rapidly changing regions (e.g., highlight and re-
flectance regions) that make further editing difficult. In this paper,
we represent the image object as simple and easy-to-edit gradient
meshes created by the proposed optimization approach.

3 Gradient Mesh

We introduce gradient mesh in this section. Note that our under-
standing of gradient mesh may be different from the actual imple-
mentations in Adobe Illustrator and Corel CorelDraw, which have
not been made public.

Ferguson patch. A general parametric surface representation has
the form § = {(x,y,2) : x =X (u,v),y =Y (u,v),z = Z(u,v)}, where
u and v are the parametric coordinates. Usually, the surface is di-
vided into topologically rectangular patches with mesh-lines. The
Coons patch [Coons 1967] is probably the simplest type of para-
metric surface representation. The bounding mesh-lines of a patch
are known and the interior points can be calculated with a blending
function. A tensor product patch is defined as

m(u,v) = F(u)QF (v), (1)

where m(u,v) is the position vector of a point (u,v), the F vectors
consist of the basis functions, and the Q matrix is a function of the
control points of the surface patch. The tensor product representa-
tions include Bezier bicubic, rational biquadratic, parametric spline,

Figure 3: Scalability. Left: a gradient mesh at original resolution
(x 1). Middle: gradient mesh scaling result (x 8). Sharp edges are
well preserved. Right: bi-cubic raster scaling result (x 8). Blocky
artifacts appear.

B-splines, and so on. Most of these representations are suitable for
interactive surface design, but not for describing existing surfaces,
since they require control points lying outside the surface. The Fer-
guson patch [Ferguson 1964; Farin 1997], however, is defined with
control points lying on the surface. Because of this it is suitable for
image vectorization purposes. The Ferguson patch is defined by

m(u,v) = F(u)QF" (v) =UCQCTV,)
where
m(l) mz m? m§ 1 0 0 0
m m m m 0 0 1 0
0= m(,lz mé mgv mévv » €= :; ; —12 —11 ’
my, nmy, my, nmyy
U:[l u u? u3], and V:[l v o2 v3}.

The my, m,, m,, are the partial derivatives. In practice, the values
of my,, are usually set to zero. Figure 2 (a) shows a Ferguson patch.

3.1 Gradient mesh

A gradient mesh consists of topologically planar rectangular Fer-
guson patches with mesh-lines. It has four boundaries and each
boundary consists of one or more cubic Bezier splines. Figure 2 (b)
is a gradient mesh. For each control point ¢ in the mesh, three types
of variables can be interactively edited: position, derivatives, and
RGB color:

e the 2D position {x?,y?} of point g.

o the derivatives {mf mg, oylmf, ailml} are specified by four

direction handles, as shown in Figure 2 (red lines). The direc-
tion handles can be dragged as in standard path tools. In order
to achieve continuity between neighboring patches, m{ and
odmd (m? and ol m?) have the same direction but can be dif-
ferent in length, where ;! (oy!) is a scale variable. These four
derivatives are shared with four adjacent Ferguson patches.

e the RGB color ¢4 = {¢?(r),c?(g),c?(b)} is assigned by sam-
pling a color from an input image or a color palette.

To render each colored Ferguson patch, color derivatives {c},c{}
for each channel are also necessary. In the gradient mesh tool, these
color derivatives are automatically estimated. Without knowing the
implementation details in Adobe Illustrator or Corel CorelDraw, we
have compared a number of methods to estimate the color deriva-
tives from given colors on mesh points. We have found that a mono-
tonic (1D) cubic spline interpolation [Wolberg and Alfy 1999] of
colors along the mesh lines produces numerically similar rendering
results compared with the rendering results by Adobe Illustrator.
For the example in Figure 2 (b), two cubic splines are fitted along
the mesh line {¢ — 1,¢,q + 1} using the monotonic cubic spline

r |

vasll gl

Figure 4: Optimization. Left: a screen snapshot of a gradient mesh
in Adobe Illustrator. We rasterize it as our input image. Middle
and Right: optimized gradient mesh. The reconstruction error is
0.7/pixel.

interpolation algorithm [Wolberg and Alfy 1999]. Then the color

derivatives ¢Z, ¢~ and ¢"! are analytically calculated from the

cubic splines. Each color channel is processed independently.

After getting the information (positions, geometric derivatives, col-
ors, and color derivatives) of all control points, each Ferguson patch
in the gradient mesh is rendered according to Equation (2):

flu,v)y=UcQ/c"v, 3)

where @/ contains color control variables. In Figure 2 (b), a
smooth, multicolored image is generated by assigning the top-left
point as orange-red, the middle-center point as green, the bottom-
center point as blue, and the other points as light gray.

By representing an image object by a sparse set of points and gra-
dients, gradient meshes are compact, scalable, and editable.

Scalability. Gradient meshes can be scaled with fewer artifacts than
images. Sharp edges whin an image object can be preserved by
placing two closely-spaced mesh lines on either side of the edge.
Although a Ferguson patch is continuous in parametric coordinate
space, the derivatives of image coordinates w.r.t. parametric coor-
dinates (e.g., dx/du) can change from positive to negative or vice-
versa. Therefore, when we render the image by incrementally sam-
pling the parametric coordinates, we may visit the same image pixel
twice and assign different colors, resulting in color discontinuities.
Gradient mesh users often take advantage of this feature to draw an
object with sharp edges (as shown in Figure 3).

Gradient mesh editing. Gradient meshes are easier to manipulate
than images. The user can add, delete or edit mesh points and mesh
lines. For each mesh point, its derivatives are manipulated by drag-
ging four direction handles. With a selected mesh point, the user
can choose a color from the color palette to define the color for that
point. Each mesh point’s direction handles and paths define how
this point’s color blends with other colors from other mesh points.

4 Optimized Gradient Mesh

In this section, we present our vector graphics creation tool: the
optimized gradient mesh. We denote the gradient mesh as M =
{0p, Qﬂ};’:l, which consists of P patches. Given a smooth raster
image object I, we expect to create or optimize a simple gradient
mesh M with small reconstruction error. It is straightforward to
minimize the following energy function:

P
EM)= Y, Y I (m(u,v) = fyluv)|? (©)

p=lu,y

where u,v are discrete parametric coordinates in each patch p and
I, is the image region in the patch p. This energy term is the recon-
struction residual between the input image and the color graphics

Figure 5: Smoothness constraint. Left: input image. Middle
and Right: optimized results without and with the smoothness con-
straint. The reconstruction errors are 1.8/pixel and 0.9/pixel.

rendered by the gradient mesh using Equation (3). This fitting prob-
lem is similar to geometric modeling work such as [Schmitt et al.
1986; Krishnamurthy and Levoy 1996]. In this work, we fit a set of
connected Ferguson patches to an image.

4.1 Optimization

Notice that minimizing E(M) is a non-linear least squares
(NLLS) problem, i.e., the energy can be written in the form
E = Ya||f(z)||>, where z is the vector form of unknowns
in M. For each control point, the associated unknowns are
{x,y,my,my, &, ay,cy,cy}. To enforce the differentiability of the
rendered image, the scale variables «,, &, are shared with the color
derivatives in all color channels. The color value ¢ is a function
of (x,y) and is sampled from the underlying image, i.e., ¢ = I(x,y).
For object boundaries, the color is sampled from the estimated fore-
ground colors by the coherent matting method [Shum et al. 2004]
in a narrow band along the boundaries.

The Levenberg-Marquardt (LM) algorithm [Levenberg 1944] has
proven to be the most successful solver for NLLS due to its use of
an effective damping strategy that lends it the ability to converge
promptly from a wide range of initial guesses. For more details

of the LM algorithm, please refer to [Nocedal and Wright 1999].

LM requires the computation of a Jacobian (J)i = 3271(7) Since

f;(z) contains an image observation, the derivative of the image is
required and computed by convolution with a derivative of Gaus-
sian filter. Notice that the Jacobian matrix is block-sparse because
each J; is only dependent on its neighboring control points. We
use a standard LM implementation with sparse matrix support. In
order to avoid local minima and make the solver robust, we build a
Gaussian pyramid from the input image and apply a coarse-to-fine
optimization for LM. The optimization time is about 10-30 seconds
for a 10 x 10 mesh with our current unoptimized implementation.
More sophisticated LM variants or GPU acceleration could be used
for further speedup.

Figure 4 shows an example of an optimized gradient mesh. We
first manually create a gradient mesh in Adobe Illustrator. It is then
rasterized to an image as our input. The mesh is initialized by a
4 x 4 evenly divided mesh. Figure 4 (b) is the optimized gradient
mesh after 40 LM iterations. The optimized mesh-lines are similar
to the manually created mesh-lines, and the rendering results are
virtually identical. Notice that both smooth regions and sharp edges
are faithfully reconstructed.

Smoothness constraint. However, for complex examples or real
images with noise, the optimization of energy function (4) often
becomes stuck in a local minimum. The middle column of Figure
5 shows such an example. The user also expects a smooth opti-
mized mesh since the manually created gradient meshes are usually

pr——

adadndnd

Figure 6: From left to right: input image and initial mesh, directly
optimized gradient mesh with reconstruction error of 2.5/pixel, two
vector lines on u direction are specified by the user, optimized gra-
dient mesh with vector lines as soft constraints with reconstruction
error of 0.5/pixel.

smooth. Hence, we add a smoothness term into the energy:

P
E'(M)=EM)+A le [Hm(s—As,t) —2m(s,t) +m(s+As,1)|*
p=11

Hlm(s,t = Ar) = 2m(s,r) + (st~ A2] - (5)

where s and ¢ are discrete parametric coordinates. And As and At are
sampling intervals which are set as 5 times the sampling intervals of
u and v, respectively. The parameter A balances the influence of the
two terms, and the default value of A is 50. Note that smoothness
is also enforced between neighboring patches, i.e., m,(—As,t) =
mp_1(1—As,t), where p and p — I are two adjacent patches in the
u direction. The new energy term is the smoothness of the gradient
mesh which minimizes the second-order finite difference. The last
column of Figure 5 shows the optimized gradient mesh with the
smoothness constraint. Smaller reconstruction errors are obtained
by arriving at a better local minimum.

Boundary constraint. The boundary of a gradient mesh consists of
four segments. Each segment is one or more cubic Bezier splines.
We will describe the boundary initialization in section 4.3. In the
optimization, we want to enforce a boundary constraint in which
the control points on the boundary only move along the splines. For
example, for the control point g on the spline S in the u direction,
the associated unknowns are reduced to {¢,my,cy,cy}, Where ¢ is
the parametric coordinate of the control point on the spline. The
scale o, should be one, and variables m,, and o, are a function of
t. Supposing that the two adjacent control points of g are ¢ — 1 and

g+ 1, we have my, = %(l’qu] —tg) and oy, = (1g —t4—1)/(tgs1—1q)

where % is the derivative of the spline S. The boundary constraint
in the v direction is similarly enforced.

4.2 Vector line guided optimized gradient mesh

In most cases (all examples shown in the paper), our optimization
can generate satisfactory results automatically. We also allow the
user to draw a few vector lines in the image to control the mesh
generation, e.g., the dominant directions of mesh-lines. Formally,
if vector fields V,, and V,, along the u and v directions are specified,
we optimize an energy E” (M) by adding a new term:

I , L dm(u,v) 2
E'"(M)=E'(M)+p le wu(m(u,v))<T,J_Vu(m(u,v)))
p=luy
) 2 v 2] ©
dm(u,v)

where (-) is the dot-product operator, —; = is the derivative in the
u direction, and LV, (m(u,v)) is the unit normal vector of the V,

at location m(u,v). W and LV, (m(u,v)) are similarly defined.

Figure 7: Red pepper. Left: gradient meshes by an artist. Middle:
initial gradient meshes. Right: optimized gradient meshes. After
the optimization, the highlight and shadow regions are faithfully
reconstructed.

The default value of f is 20. The new energy term encourages con-
sistency between optimized mesh-lines and specified vector fields.

The vector field is only computed in a narrow band along the vector
line. The width of the narrow band is set as one fifth of the length
of the vector line. The weight wy, (m(u,v)) in Equation (6) is the
Gaussian falloff factor: wy(m(u,v)) = G(d|0,72) where d is the
distance from the location m(u,v) to the nearest vector line. We set
the standard deviation o, to one third of the width of the narrow
band. Figure 6 compares the optimized gradient meshes with and
without the vector lines as soft constraints.

4.3 Mesh initialization

As drawn by artists, a complex object usually consists of several
semantic parts. We first decompose the input image object into
several sub-objects using an interactive image cutout tool [Li et al.
2004] or a free lasso tool. Then, the boundary of each sub-object
is manually divided into four segments. To obtain a good result, it
is better to have a division so that the segments follow the major
and minor axes of the object. Each segment is fitted by one or more
cubic Bezier splines. Finally, the mesh-lines are initialized in two
ways: evenly distributed or interactive placement.

Each sub-object with four segments is treated as a Coons patch,
which supports multiple splines on one segment. To create an
evenly distributed mesh, we simply divide the Coons patch evenly
in parametric # and v coordinates. To interactively initialize a mesh,
the user clicks a point p in the Coons patch, then we compute the
parametric coordinates of p - (up, vp) using subdivision. A mesh-
line in the u direction can be added by fixing the v coordinate to
vp. Adding a mesh-line in the v direction or two mesh-lines in both
directions can be done in a similar way.

The user can quickly create an initial mesh by simple mouse clicks.
Placing more mesh-lines in rapidly changing regions and fewer
mesh-lines in smooth regions usually produces a better result. But
accurate mesh-line placement and editing are not required. The
mesh initialization is very quick — 1-2 minutes on average. The
initial mesh rendering result without optimization is also shown on
the screen for instant feedback. The initial meshes of grapes (the
third row) and face (the fourth row) are shown in Figure 8.

5 Experimental Results

We first show an optimized result from a vector object created by
the gradient mesh tool in Adobe Illustrator, as shown in Figure 7.
An artist drew this object using six meshes with 354 patches, and
our optimized meshes consist of three meshes with 276 patches.

Boundary Init. Mesh Init. Optimization
(mins) (mins) (mins)
Fig.1 - egg 1 0.2 2.2
Fig.7 - pepper 3 1.5 2.8
Fig.8 - cup 2 0.5 1.9
Fig.8 - flower 3 1.5 24
Fig.8 - grapes 4 2.0 11.3
Fig.8 - sculpture 3 1.5 9.3
Fig.8 - face 4 2.5 10.3

Table 1: Timings of examples in Figure 1, 7, and 8.

To fit the shadow region on the ground, the occluded region is in-
painted. In the rendering, supersampling is applied along the ob-
ject boundaries to reduce alisasing artifacts. Then, we compare our
approach with subdivision meshes [Price and Barrett 2006] in the
top row of Figure 8. The subdivision meshes contain 1,973 small
patches while our optimized gradient meshes consist of only 177
patches without sacrificing visual quality.

Figure 8 also shows the vectorization results for a flower, grapes, a
sculpture, and a human face. In the flower example, five gradient
meshes are individually optimized for the five petals which are seg-
mented with overlap. The user spent 3 mins to specify boundaries
and 1.5 min to initialize the meshes. The optimization takes 2.5
mins in total. The last two columns show editing results. We locally
change the colors of a number of mesh points and deform a few
mesh-lines to obtain naturally smooth transitions. In the next exam-
ple, we separated the grapes into eight pieces. In the face example,
the result consists of seven meshes - face(1), eyes(2), neck(1), right
ear(1), and others(2). Note that the rendering results of the eye-
brows, eyelashes, and hairs are smooth because these highly tex-
tured regions are beyond the capability of the gradient mesh. In the
last example, the body of a sculpture is fitted with three overlapped
gradient meshes. Table 1 shows the timings of boundary initializa-
tion, mesh initialization, and mesh optimization for seven examples
in the paper.

With gradient meshes, the user can manipulate or control the
smooth transitions of colors. Moreover, animation effects can be
achieved by linear interpolation of meshes. Figure 9 shows three
edited keyframes for an animation effect.

6 Conclusions

In this paper, we have introduced gradient mesh as an image rep-
resentation and present an optimized gradient mesh tool for image
vectorization. The output gradient meshes are simple, quick to cre-
ate, and easy for editing and animation. It is a new application of
geometric modeling tools in the image domain.

Limitations remains in our approach. A simple gradient mesh is
insufficient to capture the fine image details and highly textured
regions, as shown in Figure 10. Another difficult case is when
the boundaries of the object are too complicated, or the object has
complicated topologies, very thin structures, or many small holes.
Despite these limitations, our optimized gradient mesh extends the
range of “editable” vectorization to a variety of images.

Acknowledgements

We thank the anonymous reviewers for helping us to improve this
paper, and Stephen Lin for his help in video production and proof-
reading. This work is inspired by Alex Hsu’s talk at Microsoft Re-
search Asia.

e X
iR
.g[l’f"!-- —

2

Figure 8: More examples on real images. From left to right: input image, reconstruction result, and optimized gradient meshes. In the top
row, the third column shows the subdivision mesh result. In the second row, the last two columns are the edited rendering result and mesh. In
the third row, the third column is the initial mesh that is evenly distributed. In the fourth row, the third column is the interactively initialized
mesh. From top to bottom: teacup (2 meshes, 177 patches), flower (5 meshes), grapes (8 meshes), face (7 meshes), and sculpture (4 meshes).
The reconstruction errors of all examples are below 1.0/pixel.

Figure 9: Editing result. Left: input image. Right: three of four
edited gradient meshes (keyframes) for a 8-sec animation. The col-
ors of several control points are changed to create smooth transition
effects.

NN

sy
TR

Figure 10: From left to right: input image, reconstructed image,
and optimized gradient meshes. Simple meshes can represent the
low-frequency parts and large scale structures in the image, but
fine details are lost .

References

AUTOTRACE. 2004. http://autotrace.sourceforge.net/.

BARRETT, W. A., AND CHENEY, A. S. 2002. Object-based image
editing. In Proceedings of SIGGRAPH, 777-784.

COONS, S. A. 1967. Surfaces for computer-aided design of space
form. Tech. Rep. MAC-TR-41, Massachusetts Institute of Tech-
nology.

DEMARET, L., DYN, N., AND ISKE, A. 2006. Image compression

by linear splines over adaptive triangulations. Signal Processing
86,7, 1604-1616.

DoRrI, D., AND L1u, W. 1999. Sparse pixel vectorization: An
algorithm and its performance evaluation. /EEE Trans. on PAMI
21, 3,202-215.

FaN, K.-C., CHEN, D.-F., AND WEN, M.-G. 1995. A new
vectorization-based approach to the skeletonization of binary im-
ages. In ICDAR, 627-632.

FARIN, G. 1997. Curves and surfaces for computer aided geomet-
ric design: a practical guide. Academic Press, New York.

FERGUSON, J. 1964. Multivariable curve interpolation. Journal of
the ACM 11,2, 221-228.

HILAIRE, X., AND TOMBRE, K. 2006. Robust and accurate vec-
torization of line drawings. [EEE Trans. on PAMI 28, 6, 890—
904.

KRISHNAMURTHY, V., AND LEVOY, M. 1996. Fitting smooth
surfaces to dense polygon meshes. In SIGGRAPH, 313-324.

LEcOT, G., AND LEVY, B. 2006. ARDECO: Automatic region
detection and conversion. In Eurographics Symposium on Ren-
dering, 1604-1616.

LEVENBERG, K. 1944. A method for the solution of certain prob-
lems in least squares. Quart. Appl. Math., 2, 164—168.

LL, Y., SuN, J., TANG, C.-K., AND SHUM, H.-Y. 2004. Lazy
snapping. ACM Trans. Graph. 23, 3, 303-308.

NOCEDAL, J., AND WRIGHT, S. J. 1999. Numerical Optimization.
Springer.

PRICE, B., AND BARRETT, W. 2006. Object-based vectorization
for interactive image editing. In Visual Computer (Proceedings
of Pacific Graphics), vol. 22, 661-670.

RAMANARAYANAN, G., BALA, K., AND WALTER, B. 2004.
Feature-based textures. In Eurographics Symposium on Render-
ing, 186-196.

SCHMITT, F. J. M., BARSKY, B. A., AND HUI DU, W. 1986.
An adaptive subdivision method for surface-fitting from sampled
data. In SSIGGRAPH, 179-188.

SHUM, H. Y., SUN, J., YAMAZAKI, S., L1, Y., AND TANG, C. K.
2004. Pop-up light field: An interactive image-based modeling
and rendering system. ACM Transaction of Graphics 23, 2, 143—
162.

SWAMINARAYAN, S., AND PRASAD, L. 2006. Rapid automated
polygonal image decomposition. In 35th Applied Imagery and
Patt. Reco. Workshop, 28-33.

TUMBLIN, J., AND CHOUDHURY, P. 2004. Bixels: Picture sam-
ples with sharp embedded boundaries. In Eurographics Sympo-
sium on Rendering, 186—196.

WOLBERG, G., AND ALFY, I. 1999. Monotonic cubic spline in-

terpolation. In Proceedings of Computer Graphics International,
188-195.

Zou, J.J., AND YAN, H. 2001. Cartoon image vectorization based
on shape subdivision. In Proceedings of Computer Graphics In-
ternationa, 225-231.

