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Abstract

In this paper we present a general scheme to create mecha-
nisms that approximate the social welfare in the presence of
selfish (but rational) behavior of agents. The usual approac
is to design truthful mechanisms in which an agent can only
lose by impersonating as another agent. In contrast, our ap-
proach is toallow an agent to impersonate several different
agents. We design the mechanisms such that only a limited
set of impersonations are reasonable to rational agents. Ou
mechanisms make sure that oty choice of such imperson-
ations by the agents, an approximation to the social welfare
is achieved. We demonstrate our results on the well studied
domain of Combinatorial Auctions (CA). Our mechanisms
are algorithmic implementations, a notion recently sutgges

in (Babaioff, Lavi, & Pavlov 2006).

Introduction

In recent years we have seen a growing body of work on
distributed agent systems that tries to handle the selfish be
havior of the agents with game-theoretic tools. Most of¢hes
works use the game-theoretic solution concept of dominant
strategies. A dominant strategies truthfaiechanism re-
quires that each agent can maximize his utility by reveal-
ing his private information (type) truthfully, independn

of any strategies the other agents choose. In particulgr thi
implies that an agent is never better off if he impersonates
an agent of different type to the mechanism. However, we
see truthfulness asraeansof achieving an approximation

to the optimal welfare and not a goal in itself. In this paper
we show that it is possible, by a suitable construction of an
allocation rule (algorithm), to limit the types of imperson
ation a rational agent will adopt. Such limitations allow us
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By the revelation principle, any dominant strategies mecha
nism can be converted to a truthful dominant strategies argsh,
thus truthfulness is without loss of generality.

to achieve an approximation to the optimal social welfare,
for any rational impersonations by the agents.

We demonstrate our technique on the extensively studied
CA domain for discrete goods (see e.g. the textbook (Cram-
ton, Shoham, & Steinberg 2005)), as well as CA for axis-
parallel rectangles on the plane. In a combinatorial anctio
we need to allocate a s@tof goods {n items in the discrete
case, the plane in the other caseqtagents$, where agent
i has valuep;(s) for every subset of items. We assume
monotonicity, i.ev;(s) C v;(t) for everys C t, and that
v;(@) = 0. The goal is to maximize the sum of true val-
ues of agents for the subsets they receive. We focus an the
case that agents are single-minded (Lehmann, O’Callaghan,
& Shoham 2002): each agenthas one specific bundlg
that he desires; his value for this bundle and any superset of
it is v;, and any other bundle is worth 0 to him).

Two informational assumptions can be made: in the un-
known single-minded (USM) CA (Lehmann, O’Callaghan,
& Shoham 2002), both the desired bundle and the value
are assumed to be private information, while in the known
single-minded case (Mu'alem & Nisan 2002), the desired
bundle is publicly known, while the value is private infor-
mation. Truthfulness in the “known” case only requires that
the allocation rule is value monotonic (improving the bid
cannot make a winner into a loser), while truthfulness in the
“unknown” case is much harder to achieve. To ensure that
an agent will reveal his desired bundle truthfully, we have t
make sure that he never gains by bidding for a superset of
his desired bundle.

Several papers (Mu'alem & Nisan 2002; Archefr al.
2003; Babaioff & Blumrosen 2004) either provide results
only for the “known” case, or provide inferior results for
the “unknown” case. Their truthful mechanisms for the
“known” case arenot truthful for the “unknown” case, as
agents can sometimes gain by bidding for a superset of
their desired bundle. The main idea behind our results is to
solve this problem byllowing every agent to impersonate
a bounded number of single minded agents withshme
value (the mechanism knows that all the impersonations are
from the same agent, unlike in (Yokoo, Sakurai, & Matsub-

2An allocation is a tuple of disjoint subsets, ..., s,, of items,
where the meaning is that agergets the items is;. Some items
may be left unallocated.



ara 2001) which handles the case that one agent appears tdOur Results

the mechanism in the guise of many agents).

We present a general framework that takesca
approximation algorithm (that satisfies several proper-
ties which we discuss below) and converts it toca
approximation mechanism. We show that for allocation
rules that satisfy these properties (we give two examples be
low), in any rational strategic choice the agent will reveal
his true value and his true desired bundle, coupled wittaextr
false information (supersets of his desired bundle willHze t
only reasonable lies). By using their true value and bundle
we can achieve the same approximation ratio as the original
approximation algorithm.

The formal game-theoretic framework for our mecha-
nisms is the framework of “algorithmic implementation”, a
notion recently suggested and justified in (Babaioff, Lavi,
& Pavlov 2006), and which we present below for complete-
ness of the presentation. The current work suggest an ad-
ditional method of achieving algorithmic implementation
beyond what was suggested in (Babaioff, Lavi, & Pavlov
2006). This suggests that the notion of algorithmic imple-
mentation is a general notion. Furthermore, the currenkwor
has an improved approximation (by a log factor better than
what appeared in (Babaioff, Lavi, & Pavilov 2006).

Algorithmic Implementation

We briefly present the concept of “algorithmic implementa-
tion” (Babaioff, Lavi, & Pavlov 2006), and relate it to our
impersonation-based mechanisms.

In our impersonation-based mechanisms, an agent does
not have a dominant stratejy The mechanism achieves

good approximation when we merely assume that each agent

does not choose@ominatedstrategy if he can find a strat-

egy that dominates it. This is reasonable to assume as the
dominating strategwalwaysperforms at least as well, and

in at least one case performs better. Thus, it is rational
for an agent to move from a given strategy to another strat-
egy that dominates it, if such a dominating strategy can be
found. The formal notion of “algorithmic implementation”
(Babaioff, Lavi, & Pavlov 2006) captures this intuition ggv

if agents are computationally bounded:

Definition 1 A mechanism/ is analgorithmic implemen-
tation of ac-approximationif there exists a set of strategies,
D, with the following properties:

1. For any combination of strategies from, M obtains a
c-approximation of the welfare in polynomial time.

For any strategy that does not belong f& there ex-
ists a strategy inD that dominates it. Furthermore, this
“improvement step” can be computed in polynomial time
(“algorithmic improvement property”).

2.

3A dominant strategy is a strategy which always performs at
least as well as any other strategy.

“Formally, letu;(s:, s—_;) denote the resulting utility of agent
when he plays; and the others play_;. A strategys; of agent
i is (weakly) dominatedby another strategy; if, for every s_;,
wi(si, s—i) > ui(si, 5—i).

The main idea behind our technique is to allow a single-
minded agent that desires a bundig, to impersonate and
claim that he might prefer to be considered by the mecha-
nism as desiring some superset of his desired bundle. By
allowing the agent to bid foseveralbundles, we make it
possible for him to impersonate to an agent with a superset
of 5; and thus increase his utility, but also make sure it would
neverreduce his utility if his smallest reported bundle is his
true desired bundle (this is in contrast to previous work tha
merely allows the agent to bid for a single bundle).

Our general framework, formally described in Figure 1,
takes an approximation algorithéhand a parametet > 1,
and constructs a mechanisi(G, K) as follows. An agent
is allowed to submit a value and a chain of at mogt bun-
dless! C s? C ... C s™. We then decompose this chain
into k; single minded virtual players, each h&svalue and
one of the bundles of the chain. We then feed this set of vir-
tual players to the algorithr&, and get as the output a set
of virtual winners, which corresponds to the real winners
A winner receives his minimal bundle in the chaif, and
pays the minimal value he needs to bid in order to win. This
is well defined if the mechanism is value monotonic. In this
case the framework ensures that a rational agent will bid his
true value and a chain of bundles, where the minimal bundle
in the chain contains his desired bundle. To ensure the ap-
proximation we actually need that the minimal bundle in the
chain will be exactly equal to the desired bundle. Thus we
need the mechanism to additionally satisfy the property of
encouraging minimal bundle biddin(@ll formal details are
given in the paper body).

We can now tie the ends with the definition of an algo-
rithmic implementation. The sdb contains all strategies
in which a single-minded agent reveals his true value and a
chain of bundles where the minimal bundle in the chain is
the agent’s desired bundle. Our framework ensures that any
strategy is dominated by a computable strategyinand
each specific application will additionally ensure thasthi
transformation is computable in polynomial time. We get:

Theorem 1 Suppose that an allocation rul& is a c-
approximation for single-minded agents. If thé(G, K)
mechanism is value monotonic and encourages minimal
bundle bidding, then it is an algorithmic implementation of
a c-approximation.

We give two applications to demonstrate the usefulness of
our technique.

Application 1: A CA of rectangles in the plane. In

an axis-parallel rectangles CA, the set of goods is the
set of points in the plan&?, and agents desire axis-
parallel rectangles. Babaioff & Blumrosen (2004) ex-
tended an algorithm by Khanna, Muthukrishnan, & Pater-
son (1998) to a truthfuD(log(R)) approximation mech-
anism, forknownsingle minded bidders, wherR is the
ratio between the smallest width and the largest height of

5At most one ofi’s virtual players can win as all their bundles
intersect.



Impersonation-Based Mechanism for USM CA
Given a direct revelation allocation rufe for single minded CA
(each agent bids a valuev; and a bundls;),

and a positive integek’.

Strategy space:
Each agent submits a value; and a sequence &f < K
bundless C s? C ... C s¥i.

Allocation:

Run the allocation rulé& on the input{ (v, s?)}iew,kzlwki
and get a set of winneid’.

Each winneri € W receivess; (the minimal bundle),
other agents lose, and gkt

Payments (assuming the allocation is value monotonic):
Losers pay 0. Each winner, pays his critical value for winningj,
i.e. the minimal value; that will cause; to win.

Figure 1: The framework for building Impersonation-Based
Mechanisms for unknown single-minded CA.

any two of the given rectangles. However, for the “un-
known” case they were only able to give &{R) approx-
imation. With the Impersonation-Based mechanism, we
achieve the originaD(log (R)) approximation ratio using
algorithmic implementation. We use thhifting algo-
rithm of Khanna, Muthukrishnan, & Paterson (which we
later define), to construct the Impersonation-Based mecha-
nismM (Shifting,log (R)) (the Shifting algorithm is the
allocation algorithm and{ = log (R)). By showing that

M (Shifting,log(R)) is value monotonic and encourages
minimal bundle bidding, we prove:

Theorem 2 M (Shifting,log(R)) is an algorithmic im-
plementation of a®(log (R))-approximation.

Application 2: A modified k-CA. The k-CA algorithm

of Mu'alem & Nisan (2002) provides aa- /m approxi-
mation for anye > 0, in time proportional tol /2. This
gives the ability to fine tune the trade-off between the run-
ning time and the approximation. It is truthful for known
single-minded agents, but is not truthful in the unknown
case. Closing the gap by plugging it into the imperson-
ation based mechanism will not help, as the result will
not be value monotonic. To fix this, we define the IA-k-
CA algorithm, which is based on theCA algorithm, and
suits the impersonation-based technique. The approxima-
tion ratio of the 1A-k-CA algorithm slightly increases to be
(2-€-+/m - Int,,,,) for any fixede > 0, still in time pro-
portional tol /2. For this case we get:

Theorem 3 For any fixede > 0, M (IA-k-CA, /m) is an
algorithmic implementation of 2 - € - /m - InUyaz)-
approximation.

Thus we get that for the “unknown” case we are also able
to fine tune the trade-off between the running time and the
approximation. In particular, if the valug,,.,. is bounded
by a constant, we can get,/m-approximation for any
¢ (by the proper choice of). This improves upon the

best truthful mechanism for the “unknown” case (Lehmann,
O’Callaghan, & Shoham 2002), which achieves an approxi-
mation of/m.

The rest of the paper is organized as follows. First we
describe the general framework, then we describe the appli-
cation of our technique to selling rectangles in the pland, a
finally we describe the application to single minded CA with
discrete set of items.

The General Technique

The general technique to create an impersonation-based
mechanism from an approximation algorithm is described in
Figure 1. In this section we show that any strategy is domi-
nated by a strategy in which an agent bids his true value, and
a chain that contains his desired bundle. We also prove that
if in any played strategy the agent bids his desired bundle,
then the impersonation-based mechanism achieves the same
approximation as the original algorithm.

Proposition 1 Assume that theM/ (G, K) mechanism is
value monotonic (for any choice of impersonation). Then
for any agenti, any strategy is dominated by a strategy in
whichs! D 5; andv; = v;. Additionally, the new strategy
can be calculated in polynomial time.

Proof: If it does not hold that; C s}, 4's utility is non
positive. If he loses his utility is 0, while if he wins, he get
the bundles;! which has 0 value, and he pays non negative
payment, thus has non positive utility. Thus any strategy fo
which it does not hold that; C s!, is dominated by the
strategy of bidding the true value and true desired bundle (a
such strategy ensures non-negative utility).

Since the mechanism is value monotonic, and the pay-
ments are by critical values, any strategy withC s} and
v; # v; is clearly dominated by the strategy that declares the
same chain of bundles and the true valyébidding differ-
ent value can only change the chances of winning, never the
payment. Bidding higher can only cause winning and paying
over the value instead of losing, bidding lower might cause
losing in case winning is desired). Finally, it is clear thmat
both cases the improvement can be done in polynomial time.

To ensure the approximation, we actually need that the
minimal bundle in the declared chain will be equal to the true
desired bundle. We require this in the following definition:

Definition 2 The value-monotonic mechanisi (G, K)
encourages minimal bundle biddiifgfor any agenti, any
strategy is dominated by a strategy with= 5,. Addition-
ally, the new strategy can be calculated in polynomial time.

Theorem 1 Suppose that an allocation rul& is a c-
approximation for single-minded agents. If thé(G, K)
mechanism is value monotonic and encourages minimal
bundle bidding, then it is an algorithmic implementation of
a c-approximation.

Proof: Let D be the set of all strategies in which an agent
bids his true value and a chain with his true desired bundle as
the minimal element. By Proposition 1 and the definition of



The Shifting Algorithm for single-minded agents

Input:

A vector of values)’ and a vector of axis-parallel rectangleés
(with one element for each agent).

Procedure:

1. Divide the given rectangles tog (R) classes such that a
classc € {1,...,log(R)} consists of all rectangles with
heights in

[W-2¢71 W - 2°) (where the height of an axis-parallel rec
tangle is its projection on thg-axis)?

. Foreach class € {1,...,log (R)}, run the Class Shifting
Algorithm (Figure 3) on the class, where the input is thg
vector of values’ and a vector of axis-parallel rectang!
from s? with height in[IW -2~ /- 2¢), to get an allocatior
Wj (C)

114

S

Output:
Output the maximal value solutidiv’;(c) (with respect ta,'),
over all classes € {1,...,log (R)}.

#Assume that the last class contains also the rectangles of
heightW - 2'°8 (1),

Figure 2:The Shifting Algorithm.

“encourages minimal bundles bidding”, an agent can move
from any strategy to a strategy i that dominates it, in
polynomial time. We next prove that the approximation is
achieved when all agents play strategie®in

Let ¢ be the true types of the agents, and#ebe the
sequence of single-minded bidders constructed from the
agents’ bids. Sincd/ (G, K) is value monotonic, then, in
any strategy inD, each agent reports his true value. Since
M (G, K) encourages minimal bundle bidding,is the true
bundle of agent for all i. Thereforet C ¢/, i.e. all the
actual agents of exist int’. Letv*(t),v*(¢) be the opti-
mal efficiency according t6, ¢', respectively. We first claim
thatv*(t) = v*(¢'): Obviously,v*(t) < v*(t') ast’ in-
cludes all agents af and perhaps more. On the other hand,
v*(t) > v*(¢'), since we can convert any allocation #h
to an allocation it with the same value — choose the same
winners and allocate them their bundlestinThis is still

The Class Shifting Algorithm:
Input:

Aclass numbee.

A vector of valuesy’ and a vector of axis-parallel rectangle
each of height irfi¥ - 2°7 W - 2¢).
Procedure:

1. Superimpose a collection of horizontal lines with a dis&
of W - 2¢*! between consecutive lines. Each area between
two consecutive lines is calledsdah Later, we shift this
collection of lines downwards. Each location of these lines
is called ashiftand is denoted bj.

. For any slab created, and for all the rectangles in this sla
which do not intersect any horizontal line, project all tee-r
tangles to thex-axis. Now, find the set of projections (intef-
vals) that maximizes the sum of valuations wa.(this can
be done in polynomial time using a dynamic-programm
algorithm (Babaioff & Blumrosen 2004)). Lé&t(h, ) be the
value achieved in slabof shift h.

n

. Sum the efficiency achieved in all slabs in a shift to caitau
the welfare of this shift. Denote the welfare achieved iffitsh
hbyV(h) =32, V(R1).

Shift down the collection of horizontal lines By, and re-
calculate the welfare. Repeat the procgss' times.

Output:
Output the set of agents winning in the shift with maximalrea
of V(h), and their winning rectangles.

4.

Figure 3:The Class Shifting Algorithm.

Muthukrishnan, & Paterson 1998) (see Figure 2) with algo-
rithm implementation. Throughout this section we assume
that the sub-procedure to find the optimal interval alloca-
tion breaks ties in favor of contained rectangles (if a necta
gle contains another rectangle, than the latter will be ehos
and not the former). Lebhifting be the shifting alloca-
tion algorithm of Figure 2, and/ (Shifting,log(R)) be

the Impersonation-Based mechanism basedsbffting,
with K = log (R).

Theorem 2 M (Shifting,log(R)) is an algorithmic im-
plementation 0O (log (R))-approximation.

a valid allocation as allocated bundles only decreased, and Proof: The claims below show that/ (Shi fting, log (R))

it has the same value. Thug(t) = v*(t'). SinceG(t)
produces an allocation with value at leastt’)/c, the ap-
proximation follows.

Finally, we note that sinc& runs in polynomial time,
then the mechanism runs in polynomial time: the allocation
is clearly polynomial time computable. The payment of each
agent can be calculated by running the allocation at most
log (Umaz) imes using a binary search (. is the maximal
value of any agent). ]

Application 1: Selling Rectangles on the Plane

In a CA of the plane, the set of goods is the set of points in
the planei?, and agents desire axis-parallel rectanglesin the
plane. With the Impersonation-Based mechanism technique,
we are able to achieve the origin@(log (R)) approxi-
mation ratio of the original shifting algorithm of (Khanna,

is value monotonic and the mechanism encourages minimal
bundle bidding, hence the claim follows by theorem 1.

Claim 1 M(Shifting,log(R)) is value monotonic.

Proof: Suppose a winner increases his value. Agent
remains a winner in any shift in which he was winning pre-
viously (since the allocation in each shift is monotonid)eT
only shifts whose value increases are those in whisins
(possibly after increasing his bid). The value of any shift
(in any class) in which he remains a loser does not change.
Thus, the shift with the maximal value (over all classes and
shifts in each class) must contdias a winner. ]

Claim 2 M(Shifting,log (R)) encourages minimal bun-
dle bidding.

Proof: Since the mechanism is value monotonic (Claim 1),
by Proposition 1, for any ageintwe only need to show how



to take a strategy with; C s! andv; = ¥;, and move to to make it value monotonic, we use the technique of Fig-
another strategy that dominates the first, with= s! and ure 4, due to (Babaioff, Lavi, & Pavlov 2005). Briefly, given
v; = v;. We show that the following polynomial time pro-  an allocation rul&z, this method maintainisi v,,,, classes,
cedure achieves this goal: Given the chain of rectanglés (al where the’'th class “sees” only agents with value of at least
with height at least the height &f), we take all rectangles  2¢~!. Each class computes an allocation according to an
that belong to the class and replace them with a minimal  unweighted version ofr (i.e. all agents have values of,

area rectangle that contaigsand is contained in the mini- and the allocation of the class with maximal value is chosen.
mal of them (thus in all of them). We then addto the new Babaioff, Lavi, & Pavlov showed that the resulting approxi-
chain, if it is not already there. mation ratio is increased only by a factor@flog(vmqz))-

We need to show that this transformation never decreases We use this in our “impersonation-adjuste€A’:

¢'s utility. It is sufficient to show that it will never change Definition 3 (The impersonation-adjustedk-CA) The
from winning to Iosmg.clﬂlt.he given strategynever bids in impersonation-adjustek-CA allocation rule IA-k-CA is
a class: for which W - 2= is smaller than the height ef, defined to be the Bitonic Unweighted Allocation Rule of

T e e oo otipe  FOUE 4 oni0p ofa-CA allocaon e of (ualem &
height ofs;). Let s! denotes the minimal area bundle agent Nisan 2002) with the following tie breaking rules:

i bids for in a class. We show that any strategy in which e The greedy algorithm favors larger bundles over smaller

bids fors! is dominated by a strategy in whi¢heplaces! bundles.
by some minimal area bundée D s; in classc. e The exhaustivé-algorithm favors smaller bundles over
If ¢ wins with a bundle notin class replacing the bundles larger bundles.

in classc cannot make a loser (since only allocations with ¢ 4 fixede. %k is chosen to make thé-CA an ev/m-

ias a winner are improved). Assqmeqtha\lins the bundle - 555 oximation for the KSM CA model. By (Babaioff, Lavi,
5 Wht')Ch glelongslto class Rherri]lagmgsi by some minimal ¢ paylov 2005), the impersonation-adjuste€A is a thus
area bundie; in classe, such thass; € s; € s;, can NeVer 5 (9. .\ /. In,,,, )-approximation for the known single-
cause to lose (in any shift from whick; was not removed, minded agents.

s; will not be removed as well). The same shift iaginning We use the impersonation-adjuste@A as the allocation
at?%at_ lﬁ"ﬁ't the sdame value as before, and the value of anyje for our Impersonation-Based mechanism. We set the
shift with i losing does not increase). parameterk of the mechanism to bg/m. Effectively, this

Agenti can remove any non minimal area bundies in. any enables any agent to bid for any chain he might desire to bid
class, since this will never change the outcome. Addition- ;. o< \ve later show.

ally, adding bundles can never make him worse off. This

implies that since can bid for up tolog (R) bundles, an Theorem 3 For any fixede > 0, M(IAk-CA, /m) is
agent can always bid a minimal area bundle, in any atass algorithmic implementation of’@z e /m- 1;15 )-
such thatlV - 2¢~1 is at least the height of;. In particu- approximation. e

lar, he can bid for a minimal area bundle in the class;of Proof: The following claims show that/ (IA-k-CA , \/m)
The only minimal size bundle in the classwfis the desired gy 51ye monotonic and it encourages minimal bundle bid-
bundle itself. Thus, agerithas a strategy with! = 5, that ding, hence the claim follows by theorem 1.

dominates any strategy with C s;. . . .
O Claim 3 M(IA-k-CA, /m) is value monotonic.

This completes the proof of the theorem.

Proof: We prove that if an agent enters a new class, and

Application 2: Single-Minded Combinatorial becomes a loser in that class, then the value of the allatatio
Aucti of that class does not increase. This immediately implies

uctions monotonicity: let ¢ be the class with highest value. Suppose

In this section we present the mechanism for single-minded some winner in ¢ increases his value. This may only affect
CA with discrete goods. As we use a modification of the the allocation in classes he now joins because of the value
k-CA Algorithm (Mu'alem & Nisan 2002), we first present  increment. All those classes had values lower than the value
the algorithm. The k-CA Algorithm chooses the allocation  of ¢. By the above claim, any class that now has value higher

that is the maximal of the following allocations. than the value of c must havas a winner, thusis a winner

e The exhaustivés The maximal value allocation with at  in the new winning class.
mostk bundles (found by exhaustive search over all allo- ~ Suppose the agent joins a new class. There are two cases:
cations withk bundles). either the greedy wins or the exhaustivavins after the
The areedv by value alaorithm over bundles of size at agentqued. If the greedy wins butoses, this means that

¢ 9 y by 9 1 loses in the greedy, thus the value of the greedy does not
mosty/m/k. change by addingand was maximal before the change (the

For our mechanism, it is important to set the right tie break- value of the exhaustivi-can only increase by addiny So

ing rules in order to encourage minimal bundle bidding. It we conclude that the value of the allocation does not change.
turn out (see Appendix) that if the greedy algorithm favors If the exhaustivek wins afteri joins, since: loses in the
large bundles (as we should in order to encourage minimal exhaustivek, the value of the exhaustiviedoes not change.
bundle bidding), the 1-CA is not value monotonic. In order If the exhaustivek was maximal before the change, then the



A Mechanism for a Bitonic Unweighted Rule:
Input:
Each agent reports a value;.

Allocation:

e Partition the given input tdog(Tma=) classes according t
their value. Agent that bidsv; appears with valué in any
classC such that; > 2¢~!, and with value0 in all other
classes.

e Compute the bitonic allocation rulBR for each clas<.
Denote the number of winners in claSsy n(C).

e Output the clasg’* for which 2¢~1n(C) is maximal.

Payments:
Each winner pays his critical value for winning, losers pay Q

Figure 4: Converting an unweighted bitonic allocation rubR
into a truthful mechanism.

value of the allocation does not change. If the greedy was
maximal before the change, it must be the case that its value
decreases (since the value of the exhaugtivefixed), so

the value of the allocation decreases.

Claim4 M(lA-k-CA ,/m) encourages minimal bundle
bidding.

Proof: To prove the claim we present the following poly-
nomial time algorithm, that given a strategy in which
bids the valuey; and a sequence df; < /m bundles

sl c s2 C ... C s¥ wheres; C s!, outputs a strategy

2

that dominates it witls; = s}. Given the strategy, we:

e remove all reported bundles different from of size
larger than,/m.

e adds; as the new minimal reported bundle.

First, note that the algorithm results with a chain of at
most/m bundles. This holds since for the original chain
5; C s1, thus there are at mogfm — 1 bundles in any chain
of bundles, each of size at magin, with 5; C s} (the chain
does not includea;). We need to show that this transforma-
tion never decreaseé$ utility. It is sufficient to show that it
will never change from winning to losing. Thus, we show
that in any case thatwins with the original chain, he also
wins with the new chain.

In any class, in the exhaustivedf ¢ wins with some bun-
dle that containg; before the change, he also wins with
after the change. Only agents with| < \/m might win in
the greedy algorithm before the change. In any class, in the
greedy algorithm, it wins with some bundle that contains
3; before the change, he also wins with the same bundle af-
ter the change (this bundle is not removed). Addinmight
only cause to win if he lost before the change.

The above shows that [§;| > \/m, the strategy of re-
portingv; ands}! = 5; (k; = 1) is a dominant strategy far

This completes the proof of the theorem. ]

Conclusions and future work

In this paper we expanded on the work begun in (Babaioff,
Lavi, & Pavlov 2006). We showed an alternative method
of achieving an algorithmic implementation which in some
special cases improves on the bound achieved in (Babaioff,
Lavi, & Pavlov 2006). This shows that the notion of al-
gorithmic implementation is indeed a general method. The
main challenge that remains is to characterize the family of
domains for which the notion of algorithmic implementation
is a useful solution concept.
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Impersonation-Based Mechanism with 1-CA is
Not Value-Monotonic

We remark that it does not suffice for the allocation rule it-
self to be value monotonic. E.g. the 1-CA of (Mu'alem &
Nisan 2002) will not do. This algorithm chooses the maxi-
mal allocation over giving all the goods to the highest bilde
and running a greedy by value on agents with bundle of size
at most,/m, with tie breaking in favor of larger bundles (to
encourage minimal bundle bidding). Suppose there are three
agents and 10 goods, agent 1 has value of 6 for thegsét
agent 2 has value of 5 for the sefg,}, and agent 3 has
value of 10 for the set of all goods. In the impersonation-
based mechanism we allow each agent to bid for at most 3
bundles. Assume agent 1 bids 6 and the cHair}, agent

2 bids 5 for the chaif g2} C {g1, g2}, and agent 3 bids 10

for all the goods. In this case agent 1 wifig } and agent

2 wins {g2}. If agent 2 increases his reported value to 7,
then he becomes a loser, since agent 3 wins alone (the value
of greedy decreases from 11 to 7, and the maximal value
remains 10).



