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Abstract

The proliferation of mobile computing devices and
local-area wireless networks has fostered a growing interest
in location-aware systems and services. In this paper we
present RADAR, a radio-frequency (RF) based system for
locating and tracking users inside buildings. RADAR
operates by recording and processing signal strength
information at multiple base stations positioned to provide
overlapping coverage in the area of interest. It combines
empirical measurements with signal propagation modeling
to determine user location and thereby enable location-
aware services and applications. We present experimental
results that demonstrate the ability of RADAR to estimate
user location with a high degree of accuracy.

Keywords: location-aware services, user location and
tracking, wireless LAN, radio-frequency wireless network.

1 Introduction

The proliferation of mobile computing devices and
local-area wireless networks has fostered a growing interest
in location-aware systems and services. A key distinguishing
feature of such systems is that the application information
and/or interface presented to the user is, in general, a
function of his or her physical location. The granularity of
location information needed could vary from one application
to another.  For example, locating a nearby printer requires
fairly coarse-grained location information whereas locating a
book in a library would require fine-grained information.

While much research has focussed on developing
services architectures for location-aware systems (e.g.,
[Maa97,Nel98]), less attention has been paid to the
fundamental and challenging problem of locating and
tracking mobile users, especially in in-building
environments. The few efforts that have addressed this
problem have typically done so in the context of infrared
(IR) wireless networks.  The limited range of an IR network,
which facilitates user location, is a handicap in providing
ubiquitous coverage. Also, the IR network is often deployed
for the sole purpose of locating people and does not provide
traditional data networking services. To avoid these
limitations, we focus on RF wireless networks in our
research.  Our goal is to complement the data networking
capabilities of RF wireless LANs with accurate user location
and tracking capabilities, thereby enhancing the value of
such networks.

In this paper, we present RADAR, an RF-based system
for locating and tracking users inside buildings. RADAR

uses signal strength information gathered at multiple receiver
locations to triangulate the user’s coordinates.  Triangulation
is done using both empirically-determined and theoretically-
computed signal strength information.

Our experimental results are quite encouraging. With
high probability, RADAR is able to estimate a user’s
location to within a few meters of his/her actual location.
This suggests that a large class of location-aware services
can be built over an RF local-area wireless data network.

The remainder of this paper is organized as follows. In
Section 2, we survey related work in location determination
technologies. In Section 3, we discuss our research
methodology.  Section 4 contains the core of the paper where
we present and analyze the empirical and the signal
propagation modeling methods. A discussion of extensions
to the base RADAR system appears in Section 5. Finally, we
present our conclusions in Section 6.

2 Related Work

Related work in the area of user location and tracking
falls into the following broad categories: (1) in-building IR
networks,  (2) wide-area cellular networks (based on RF),
and (3) Global Positioning System (GPS).

The Active Badge system [Wan92,Har94] was an early
and significant contribution to the field of location-aware
systems. In this system, a badge worn by a person emits a
unique IR signal every 10 seconds. Sensors placed at known
positions within a building pick up the unique identifiers and
relay these to the location manager software. While this
system provides accurate location information, it suffers
from several drawbacks: (a) it scales poorly due to the
limited range of IR, (b) it incurs significant installation and
maintenance costs, and (c) it performs poorly in the presence
of direct sunlight, which is likely to be a problem in rooms
with windows.

Another system based on IR technology is described in
[Azu93]. IR transmitters are attached to the ceiling at known
positions in the building.  An optical sensor on a head-
mounted unit senses the IR beacons, which enables the
system software to determine the user's location.  This
system suffers from similar drawbacks as the Active Badge
system.

The system described in [ATC97] is based on pulsed
DC magnetic fields. Multiple sensors are placed on body-
mounted peripherals, such as data gloves, and their output is
processed to determine a person's location and orientation
with a high degree of precision.  This technology is used



extensively in the computer animation industry. It is,
however, quite expensive and, like IR, severely range
limited, hence unsuitable for large-scale deployment.

Recently, several location systems have been proposed
for wide-area cellular systems [Tek98].  The technological
alternatives for locating cellular telephones involve
measuring the signal attenuation, the angle of arrival (AOA),
and/or the time difference of arrival (TDOA). While these
systems have been found to be promising in outdoor
environments, their effectiveness in indoor environments is
limited by the multiple reflections suffered by the RF signal,
and the inability of off-the-shelf and inexpensive hardware to
provide fine-grain time synchronization.

Systems based on the Global Positioning System
[GPS99], while very useful outdoors, are ineffective indoors
because buildings block GPS transmissions.

The Daedalus project [Hod97] developed a system for
coarse-grained user location. Base stations transmit beacons
augmented with their physical coordinates. A mobile host
estimates its location to be the same as that of the base
station to which it is attached. Consequently, the accuracy of
the system is limited by the (possibly large) cell size.

Our work differs from previous work in that we tackle
the problem of user location and tracking on a widely
available radio frequency based wireless network in an in-
building environment.  RF networks offer a significant
advantage over IR networks in terms of range, scalability,
deployment, and maintenance.  With speeds of up to 11
Mbps, these systems have gained rapid acceptance and are
being widely deployed in offices, schools, homes, etc.

We recently became aware of the Duress Alarm
Location System (DALS) described in [CG93]. While their
work and ours are similar in some ways, they also differ in
significant ways. Briefly, their system (1) is dependent on
specialized hardware, (2) does not use propagation modeling
to build a radio map of the building, (3) does not factor in
user body orientation, and (4) requires infrastructural
deployment over and above a wireless data network. These
points are clarified in the following sections.

3 Research Methodology

We begin with a description of our experimental
testbed.  We then discuss the data collection process,
including tools we developed for this purpose. Finally, we
describe the processing we performed on the data as a
precursor to the analysis described in Section 4.

3.1 Experimental Testbed

Our experimental testbed is located on the second floor
of a 3-storey building. The layout of the floor is shown in
Figure 1.  The floor has dimension of 43.5 m by 22.5 m, an
area of 980 sq. m (10500 sq. ft.), and includes more than 50
rooms.

We placed three base stations, BS1, BS2 and BS3, at the
locations indicated in Figure 1. Each base station was a
Pentium-based PC running FreeBSD 3.0 equipped with a
wireless adapter.  Our mobile host, carried by the user being

tracked, was a Pentium-based laptop computer running
Microsoft Windows 95.

Each base station and the mobile host was equipped
with a Digital RoamAboutTM network interface card (NIC),
based on Lucent’s popular WaveLANTM RF LAN
technology. The network operates in the 2.4 GHz license-
free ISM (Industrial, Scientific and Medical) band. It has a
raw data rate of 2 Mbps and a one-way delay of 1-2 ms. The
range of the network, as specified in [Roa96], is 200 m, 50
m, and 25 m, respectively, for open, semi-open, and closed
office environments. This classification is based on the type
and density of obstructions between the transmitter and the
receiver.  With this nomenclature, our testbed environment
would be classified as being open along the hallways where
the base stations are located and closed elsewhere. The base
stations provide overlapping coverage in portions of the
floor, and together cover the entire floor.

3.2 Data Collection

A key step in our research methodology is the data
collection phase. We record information about the radio
signal as a function of the user’s location. As discussed in
Section 4, we use the signal information to construct and
validate models for signal propagation during off-line
analysis as well as to infer the location of a user in real time.
We refer to the former as the off-line phase and the latter as
the real-time phase.

Among other information, the WaveLAN NIC makes
available the signal strength (SS) and the signal-to-noise
ratio (SNR). SS is reported in units of dBm and SNR is
expressed in dB. A signal strength of s Watts is equivalent to
10*log10(s/0.001) dBm. A signal strength of s Watts and a
noise power of n Watts yields an SNR of 10*log10(s/n) dB.
For example, a signal strength of 1 Watt is equivalent to 30
dBm. Furthermore, if the noise power is 0.1 Watt, the SNR
would be 10 dB.

The FreeBSD 3.0 WaveLAN driver extracts the SS and
the SNR information from the WaveLAN firmware each
time a broadcast packet is received1. It then makes the
information available to user-level applications via ioctl
system calls. We used the wlconfig utility, which provides a
wrapper around the ioctl calls, to extract the signal
information.

In our testbed, we chose to have the Windows-based
mobile host broadcast packets (beacons) periodically and
have the FreeBSD base stations record signal strength
information. However, in a production system with many
more mobiles than base stations, it may be desirable to have
the latter transmit the beacons and the former measure the
signal strength. Nevertheless, the accuracy of the user
location and tracking is not impacted by this choice2.

We wrote a simple application using Tcl/Tk [Ous94]
and Perl [Wal96] to control the entire data collection process
                                                          
1 It is quite easy to modify the driver to record information
for other packets as well, but we found no reason to do so.
2 While our analysis does not assume symmetry of signal
strength, the few instances where we measured signal
strength at both ends indicate little asymmetry.



from the mobile host. The process operates as follows. First,
the clocks on the mobile host and the base stations are
synchronized (to within the round-trip latency of the wireless
link, essentially less than 5 ms). The mobile host then starts
broadcasting UDP packets, each  with a 6-byte payload and
spaced apart uniformly, at a default rate of 4 per second.
Each base station (bs) records the signal strength (ss)
measurement3 together with a synchronized timestamp t, i.e.,
it records tuples of the form (t, bs, ss). This information is
collected both during the off-line phase and the real-time
phase.

Figure 1 Map of the floor where the experiments were
conducted. The black dots denote locations were empirical
signal strength information was collected. The large stars
show the locations of the 3 base stations. The orientation is
North (up) and East (right).

                                                          
3 During the course of our experiments, we discovered that
the signal strength is a stronger function of location than the
signal-to-noise ratio. The latter is impacted by random
fluctuations in the noise process. So we only use signal
strength information in our analysis.

In addition, during the off-line phase (but not the real-
time phase), the user indicates his/her current location by
clicking on a map of the floor. The user’s coordinates (x,y)
and timestamp t are recorded.

During our experiments, we discovered that signal
strength at a given location varies quite significantly (by up
to 5 dBm) depending on the user’s orientation, i.e., the
direction he/she is facing. In one orientation, the mobile
host’s antenna may have line-of-sight (LoS) connectivity to a
base station’s antenna while in the opposite orientation, the
user’s body may form an obstruction.  So, in addition to
user's location (x,y), we also recorded the direction (d) (one
of north, south, east, or west) that he/she is facing at the time
the measurement is made4. Thus, the mobile host records
tuples of the form (t,x,y,d) during the off-line phase. We
discuss the implications of the user’s orientation in more
detail in Section 4.

In all, during the off-line phase, we collected signal
strength information in each of the 4 directions at 70 distinct
physical locations on our floor. For each combination of
location and orientation (i.e., (x,y,d) tuple), we collected at
least 20 signal strength samples.

3.3 Data Processing

We outline the data processing that we performed as a
precursor to the analyses discussed in Section 4.

3.3.1 Signal Strength Information
Using the synchronized timestamps, we merged all of

the traces collected during the off-line phase into a single,
unified table containing tuples of the form (x,y,d,ssi,snri),

where { }3,2,1∈i corresponding to the three base stations.

For each (x,y,d) tuple, we computed the mean, the standard
deviation, and the median of the corresponding signal
strength values for each of the base stations. For much of our
analysis, we use this processed data set (primarily the mean)
rather than the original, raw data set.

We wrote routines to search through the processed data
set to determine exact as well as closest matches. There is a
fair amount of database research literature that describes
efficient data structures and algorithms for such multi-
dimensional searches (e.g., R-Tree [Gut84], X-Tree [Ber96],
optimal k-nearest neighbor search [Sei98], etc.) However,
we chose a simple linear-time search algorithm because our
relatively small data set and dimensionality (at most 3, as
explained in Section 4) did not warrant the complexity of the
aforementioned algorithms. Moreover, the focus of our
research is on the analysis rather than on developing an
optimal closest match implementation.

3.3.2 Building Floor Layout Information
We obtained the layout information for our floor, which

specified the coordinates of each room.  We also obtained
the coordinates of the three base stations. Using these and

                                                          
4 While there are other sources of fluctuation, such as the
movement of other people and objects, these tend to be
random. In contrast, the body of the person carrying the
mobile host introduces a systematic source of error.



the Cohen-Sutherland line-clipping algorithm [Fol90], we
computed the number of walls that obstructed the direct line
between the base stations and the locations where we had
collected the empirical signal strength data.  We use this to
build an accurate signal propagation model (Section 4.2).

4 Algorithms and Experimental Analysis

In this section, we discuss several algorithms for user
location and tracking, and present an analysis of how well
these perform using our experimental data.

A premise of our work is that signal strength (SS)
information provides a means of inferring user location. To
demonstrate that this is a reasonable premise, we show in
Figure 2 shows how the SS measured at each of the 3 base
stations varies as the user walks along the outer hallway of
the floor in a counter-clockwise direction (Figure 1). The
walk begins and terminates at the north-west corner (close to
BS1). There is a definite trend in the SS recorded at the three
base stations as the user walks around the loop. Not
surprisingly, the signal received at a base station is the
strongest when the user is close to it and weakest when the
user is far away. This strong trend is an indication that using
SS to infer location is a promising approach.

0

5

10

15

20

25

30

35

40

0 20 40 60 80 100

Distance along walk (meters)

S
ig

n
al

 S
tr

en
g

th
 (

d
B

m
)

BS 1 BS 2 BS 3

Figure 2 Signal strength recorded at the three base stations
as the user walks around the floor.

Our basic approach is triangulation5. Given a set of
signal strength measurements at each of the base stations, we
determine the location that best matches the observed signal
strength data. We then “guess” that to be the location of the
user. There are multiple variations of this basic idea that
arise because of several choices for each of the following:

• Ways of summarizing the signal strength samples
measured at the base stations.

• Basis for determining the best match.
• Metric for determining the best match.

We discuss each of these in turn.

                                                          
5 It is just coincidental that we have three base station in our
testbed. Triangulation can also be done with fewer or more
base stations.

First, we summarize multiple signal strength samples
from a base station using the sample mean. In the case of a
static user whose location and orientation are fixed (the user
location problem), it is clear which signal strength
measurements should be included in the sample set. In the
case of a mobile user (the user tracking problem), it is less
clear what the sample set should be. In the latter case, we
define the sample set to be all samples that lie within a
sliding time window.

Second, to determine the location and orientation that
best match a given (summarized) set of SS measurements,
we first need to determine what the SS (at each base station)
should be used for a particular combination of user location
and orientation. We consider a couple of alternative
approaches. The first is the empirical method where we use
the location and SS data gathered during the off-line phase
(Section 3.2). The second approach is signal propagation
modeling. As discussed in Section 4.2, we have developed a
model that accounts for both free-space loss and loss due to
obstructions in computing the SS at each base station
corresponding to given a user location.

Third, we need a metric and a search methodology to
compare multiple locations and pick the one that best
matches the observed signal strength. We term our general
technique nearest neighbor(s) in signal space (NNSS). The
idea is to compute the distance (in signal space) between the
observed set of SS measurements, (ss1,ss2,ss3), and the
recorded SS, (ss’1,ss’2,ss’3), at a fixed set of locations, and
then pick the location that minimizes the distance. In our
analysis, we use the Euclidean distance measure, i.e.,
sqrt((ss1-ss’1)

2+(ss2-ss’2)
2+(ss3-ss’3)

2). It is possible to use
other distance metrics, for example, the sum of the absolute
differences for each base station (the “Manhattan” distance
[Cor90]) or a metric weighted by the signal strength level at
each base station. We experimented briefly with these
alternatives, but do not present the results here due to space
limitations.

In all of our analyses, we characterize the goodness of
our estimate of the user’s location using the error distance,
which is the Euclidean distance between the actual (physical)
location of the user and the estimated location.

4.1 Empirical Method

In this case, we use the empirical data obtained in the
off-line phase (Section 3.2) to construct the search space for
the NNSS algorithm. We present results of the various
analyses that we performed. Unless otherwise indicated, we
assume the user to be stationary.

4.1.1 Basic Analysis
For the basic analysis, we use all of the (more than 20)

signal strength samples collected for each of the 70*4 = 280
combinations of user location and orientation. In the
analysis, we pick one of the locations and orientations at
random, and then conduct an NNSS search for the
corresponding signal strength tuple in the space defined by
the remaining 69 points times 4 orientations. This emulates
the process of locating a (stationary) user during the real-
time phase. Note that the exclusion of one of the 70 physical
points from the search space would result in a somewhat



worse measured accuracy than would be obtained with the
RADAR system in real use. In this sense, the accuracy
results presented here are somewhat conservative.

We compare the empirical method with two other
methods: random selection and strongest base station
selection [Hod97]. With random selection, we estimate the
user’s location by picking one of the 70 points at random,
regardless of the SS information. With strongest base station
selection, we guess the user’s location to be the same as the
location of the base station that records the strongest signal.
A comparison with these simple methods enables us to
evaluate how worthwhile the increased sophistication of our
techniques is.

Figure 3 shows the cumulative distribution function
(CDF) of the error distance for the empirical, strongest base
station, and random methods. The empirical method
performs significantly better than both of the other methods.
Table 1 summarizes the information in the figure in terms of
the 25th, 50th (median), and 75th percentile values of the error
distance for each method.
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Figure 3 CDF of the error in location estimation.

Considering the median (50th percentile), for instance,
the empirical method has a resolution of under 3 meters,
which is about the size of an office room in our building. In
terms of linear resolution, it is 2.8 times better than the
strongest base station method and 5.5 times better than the
random method. In terms of spatial resolution, the
improvement is even greater: 7.7 and 30.6 times,
respectively. We use the percentile values for the empirical
method in Table 1 as a basis for comparison in the rest of the
analysis.

Method 25th  (meter) 50th (meter) 75th (meter)

Empirical 1.92 2.94 4.69

Strongest 4.54 (2.4x) 8.16 (2.8x) 11.5 (2.5x)

Random 10.37 (5.4x) 16.26 (5.5x) 25.63 (5.5x)

Table 1 The 25th, 50th, and 75th percentile values of the
error distance. The numbers in parentheses  indicate the
degradation of the strongest BS and random methods
compared to the empirical method.

In summary, the empirical method performs quite well.
We now discuss ways of making it perform even better.

4.1.2 Multiple Nearest Neighbors
Unlike the basic analysis where we only considered the

single nearest neighbor in signal space, we now consider k
nearest neighbors, for various values of k. The intuition is
that often there are multiple neighbors that are at roughly the
same distance from the point of interest (in signal space).
Given the inherent variability in the measured signal strength
at a point, there is fundamentally no reason to pick only the
closest neighbor (in signal space) and reject others that are
almost as close.

A second, and equally important, reason for considering
additional neighbors is that it is likely that the error vector
(in physical space) corresponding to each neighbor is
oriented in a different direction. So averaging the coordinates
of the neighbors may yield an estimate that is closer to the
user’s true location than any individual neighbor is. Figure 4
illustrates this for k=3 nearest neighbors.

Our experimental analysis of averaging over k nearest
neighbors shows that for small k, averaging has some benefit
though not very significant. For instance, for k=5, the 25th

percentile of error distance is 1.5 m (22% better than the
1.92 m in Table 1) and the 50th percentile is 2.75 m (9%
better). For large k, accuracy degrades rapidly because points
far removed from the true location also are included in the
averaging procedure, thereby corrupting the estimate.

Figure 4 An illustration of how averaging multiple nearest
neighbors (N1, N2, N3) can lead to a guess (G) that is closer to
the user’s true location (T) than any of the neighbors is
individually.

The reason why the benefits of averaging are not very
significant even for small k is that often the k nearest
neighbors in signal space are not k physically distinct points.
In many instances, multiple nearest neighbors in signal space
correspond to different orientations at the same point in
physical space. So averaging in physical space does not
improve the location estimate by very much.

4.1.3 Max Signal Strength Across Orientations
Since the dependence of signal strength on orientation

creates a challenge for location estimation, we analyze how
well the empirical method would perform if orientation were
not an issue. For each user location in the off-line data set,
we compute the maximum SS at each base station across the
four possible orientations at that location6. Note that the
maximum for each base station may correspond to a different
orientation of the user. The goal is to emulate the case where

                                                          
6 For each base station and user location, we first compute
the mean SS for each of the four orientations at that location,
and then pick the maximum among the four means.
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the signal generated by the mobile host is not obstructed by
the user’s body. While this may not be realistic given the
antenna design and positioning for existing wireless LANs, it
may be possible to approximate this “ideal case” with new
antenna designs (e.g., omnidirectional wearable antenna)

We repeat the analysis of the previous sections with the
smaller “maximum signal strength” data set of 70 data points
(instead of 70*4=280 data points in the original data set). In
Figure 5, we plot the 25th and the 50th percentile values of the
error distance with averaging over neighbor sets of various
sizes.
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Figure 5 The error distance for the empirical method with
averaging on the data set containing the max signal strength
measurement for each location.

We make a couple of observations. First, just as
expected, the use of the maximum SS data set improves the
accuracy of location estimation slightly even in the absence
of averaging (k=1). The 25th percentile value of the error
distance is 1.8 m and the 50th percentile 2.67 m, 6% and 9%
better, respectively, compared to Table 1. Second, averaging
over 2-4 nearest neighbors improves accuracy significantly;
the 25th percentile is about 1 m (48% better) and the 50th

percentile is 2.13 m (28% better). Averaging is more
effective here than in Section 4.1.2 because the set of k
nearest neighbors in signal space necessarily correspond to k
physically distinct locations.

4.1.4 Impact of the Number of Data Points
We now investigate how the accuracy of location

estimation would be impacted if we had data from fewer
than the 70 distinct physical locations considered thus far.

For each value of n, the number of physical locations
(ranging between 2 and 70), we conducted 20 runs of our
analysis program. In each run, we picked n points at random
from the entire data set collected during the off-line phase
and used this subset to construct the search space for the
NNSS algorithm. We collated the error distance data from all
the runs corresponding to the same value of n (Figure 6).  

For small n (5 or less), the error distance is a factor of 2
to 4 worse than when the entire empirical set containing 70
physical points is used. But the error distance diminishes
rapidly as n increases. For n=20, the median error distance is
less than 33% worse and for n=40, it is less than 10% worse.

The diminishing returns as n becomes large is due to the
inherent variability in the measured SS. This translates into
inaccuracy in the estimation of physical location. So there is
little benefit in obtaining empirical data at physical points
spaced closer than a threshold.
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Figure 6 The error distance versus the size of the empirical
data set (on a log scale).

In summary, for our floor, the empirical method would
perform almost as well with a data set of 40 physical points
as with a set of 70 points. In practice, we could make do with
even fewer points by picking physical locations that are
distributed uniformly over the area of the floor rather than at
random.

4.1.5 Impact of the Number of Samples
In the analysis presented so far, we have worked with

the mean of all of the samples recorded during the off-line
phase for each combination of location and orientation.
While it may be reasonable to construct the empirical data
set with a large number of samples (since it is a one-time
task), there may be constraints on the number of samples that
can be obtained in real-time to determine a user’s location.
So we investigate the impact of a limited number of real-
time samples (while retaining the entire off-line data set for
the NNSS search space) on the accuracy of location
estimation. Our analysis shows that only a small number of
real-time samples are needed to approach the accuracy
obtained using all of the samples (Table 1). With just 1 real-
time sample, the median error distance is about 30% worse
than when all samples were considered.  With 2 samples, it is
about 11% worse and with 3 samples it is under 4% worse.

4.1.6 Impact of User Orientation
As we have already discussed, the user’s orientation has

a significant impact on the SS measured at the base stations.
In Section 4.1.3, we did a best-case analysis using the
maximum SS across all four orientations. We now consider,
in some sense, the worst case where the off-line data set only
has points corresponding to a particular orientation (say
north) while the real-time samples correspond to the opposite
orientation (i.e., south). We compute the error distance for all
four combinations of opposing directions: north-south,
south-north, east-west, and west-east. 



 We observe a fairly significant degradation in the
accuracy of location estimation. For instance, for the north-
south case, the 25th percentile of the error distance is 2.95
meters (54% worse than in Table 1) while the 50th percentile
(median) is 4.90 meters (67% worse). This degradation
underscores the importance of obtaining empirical data for
multiple orientations to construct the NNSS search space.
However, even in this worst case, the empirical method
outperforms the strongest base station and random methods
by a factor of 2 to 4. 

4.1.7 Tracking a Mobile User
In this sub-section, we analyze the problem of tracking

a mobile user rather than locating a stationary user, as we
have done so far. For this analysis, we collected a new SS
data set corresponding to random walks by the user along the
hallways of our floor. We collected 4 signal strength samples
per second at each of the base stations. Assuming that the
user walked at a uniform pace, we are able to determine the
true location of the user at each time instant.

We reduce the problem of tracking the mobile user to a
sequence of location determination problems for a (nearly
stationary) user. We use a sliding window of 10 samples to
compute the mean signal strength on a continuous basis. This
information is then used with the basic method (Section
4.1.1) to estimate the user’s location on a continuous basis.

The error distance for tracking the mobile user is only
slightly worse than that for locating a stationary user. The
median error distance is 3.5 meters, about 19% worse than
that for a stationary user.

4.1.8 Summary of Empirical Method
The empirical method is able to estimate user location

with a high degree of accuracy. The median error distance is
2 to 3 meters, about the size of a typical office room. For our
experimental environment, much of the accuracy can be
achieved with an empirical data set of about 40 physical
points and about 3 real-time signal strength samples (at each
base station). It is important, however, that the empirical data
set contain data corresponding to multiple user orientations
at each location.

The main limitation of the empirical method is that
significant effort is needed to construct the SS data set for
each physical environment of interest (each floor, each
building, etc.). Furthermore, the data collection process may
need to be repeated in certain circumstances, e.g., when a
base station is relocated.

We now discuss a method based on signal propagation
modeling, which avoids these limitations.

4.2 Radio Propagation Model

Radio propagation modeling provides an alternative to
the empirical method for constructing the search space for
the NNSS algorithm.

4.2.1 Motivation
The primary motivation for the radio propagation model

is to reduce RADAR’s dependence on empirical data. Using
a mathematical model of indoor signal propagation, we

generate a set of theoretically-computed signal strength data
akin to the empirical data set discussed in Section 3.2. The
data points correspond to locations spaced uniformly on the
floor. The NNSS algorithm can then estimate the location of
the mobile user by matching the signal strength measured in
real-time to the theoretically-computed signal strengths at
these locations. It is clear that the performance of this
approach is directly impacted by the "goodness” of the
propagation model.  In the following subsections, we
develop the model and discuss the performance of location
determination based on the model.

4.2.2 Determination of the model
For a radio channel, signal propagation in an indoor

environment is dominated by reflections, diffraction, and
scattering of radio waves caused by structures within the
building.  The transmitted signal generally reaches the
receiver via multiple paths (termed the multipath
phenomenon). Multipath causes fluctuations in the received
signal envelope and phase, and the signal components
arriving from indirect and direct paths combine to produce a
distorted version of the transmitted signal. Since multipath
within buildings is strongly influenced by the layout of the
building, the construction material used, and the number and
type of objects in the building, characterizing the radio
channel in such an environment is challenging.

We considered three different models before settling on
one. The first model was the well-accepted Rayleigh fading
model [Has93], which describes small-scale rapid amplitude
fluctuation in the absence of a strong received component.
The Rayleigh distribution is widely used to describe
multipath fading because of its elegant theoretical
explanation and the occasional empirical justification.
However, in deriving this distribution, a critical assumption
made is that all signals reaching the receivers have equal
strength.  In general, this is unrealistic. Our empirical data
shows that for a number of sample points (along the
hallways), there exists a dominant line-of-sight (LoS)
component that is not accounted for by this distribution.
Hence, we did not use this distribution.

The second model we considered was the Rician
distribution model [Ric44].  The Rician distribution occurs
when a strong path exists in addition to the low level
scattered path. This strong component may be the LoS path
or a path that encounters much less attenuation than others.
The Rayleigh distribution is a special case of the Rician
distribution; when the strong path is eliminated, the
amplitude distribution becomes Rayleigh.  While the model
is intuitively appealing, it is very difficult to determine the
model parameters (i.e., the local mean of the scattered power
and the power of the dominant component) precisely as this
requires physically isolating the direct wave from the
scattered components. To keep the system simple and easy to
deploy, we decided against using this distribution to model
the radio channel.

We found a good compromise between simplicity and
accuracy in the Floor Attenuation Factor propagation model
(FAF) suggested by [Sei92].   We like this model because it
provides flexibility in accommodating different building
layouts while taking into account large-scale path loss. We



adapted the original model proposed by Seidel and
Rappaport, which included an attenuation factor for building
floors, to disregard the effects of the floors and instead
consider the effects of obstacles (walls) between the
transmitter and the receiver.   The Wall Attenuation Factor
(WAF) model is described by

where n indicates the rate at which the path loss
increases with distance,  P(do) is the signal power at some
reference distance do and d is the transmitter-receiver (T-R)
separation distance. C is the maximum number of
obstructions (walls) up to which the attenuation factor makes
a difference, nW is the number of obstructions (walls)
between the transmitter and the receiver, and WAF is the wall
attenuation factor. In general the values of n and WAF
depend on the building layout and construction material, and
are derived empirically. The value of P(do) can either be
derived empirically or obtained from the wireless network
hardware specifications.
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Figure 7 SS as a function of T-R separation derived from the
empirical data collected in Section 3.2

Figure 7 illustrates how the signal strength varies with
distance between the transmitter and the receiver. The wide
difference in signal strengths between points at similar
distances is explained as follows: the layout of the rooms in
the building, the placement of base stations, and the location
of the mobile user all have an effect on the received signal.
Signals transmitted from two locations at the same distance
from the receiver (base station) may be attenuated by
different amounts due to the differences in the number and
types of obstructions they encounter. For instance, in Figure
7, we observe that the strength of the signal from two
locations approximately 36 meters from the receiver (base
station) were approximately 10 dBm apart.  This is because
there were several walls between one of the locations and the
base station, while the other location had line-of-sight to the
base station.

 Previous work in indoor radio propagation modeling
has included extensive characterization of signal loss for
various materials and at different frequencies [Rap96].
However, using this information in a practical setting is
difficult because the obstructing materials vary considerably

in their physical and electrical characteristics. For example,
water causes signal attenuation and the human body is made
up of water, so the size of a human body and its orientation
can result in different amounts of signal loss. It is virtually
impossible to characterize such loss precisely since the
number and sizes of humans in the building at any time is
generally a finite but random number. Thus, despite their
complexity, these extensive models fall short in terms of
accuracy. So we decided to go with the much simpler WAF
propagation model.

We determined the attenuation caused by a wall
empirically (described next) and used this in conjunction
with the number of intervening walls (determined using the
Cohen-Sutherland algorithm mentioned in Section 3.3.2) to
compensate for the attenuation caused by the walls.

We conducted the following experiment to determine
the Wall Attenuation Factor (WAF): we measured the signal
strength at the receiver when the receiver and the transmitter
had line-of-sight. We then measured the signal strength with
varying but known number of walls between the receiver and
the transmitter. We computed the average of the difference
between these signal strength values to determine the WAF.
We observed that the amount of additional attenuation
dropped off as the number of walls separating the transmitter
and the receiver increased.  This observation is consistent
with [Sei92] where the attenuation between different floors
was considered and shown to flatten out as the number of
floors between the transmitter and the receiver increased. In
general, with a large T-R separation and a large number of
intervening walls, free-space path loss dominates the loss
due to obstructions.  Based on our measurements, we chose
WAF to be 3.1 dBm and C to be 4 (where C represents
number of walls that are factored into the model).  Figure 8
shows the result after the measured signal strength has been
compensated for signal loss due to the intervening walls
between the transmitter and the receiver.   We observe that
the resulting plot shows a trend similar to the free-space loss
trend. This demonstrates that the WAF propagation model
compensates effectively for attenuation due to obstructions.
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Figure 8 Effect of applying correction for intervening walls
between the base station and the mobile user.

After compensating for the effect of walls and creating
the “corrected” data for all three base stations, we proceeded
to determine the two other parameters, n and Pdo, of our
model.  We reduced the propagation model to a form where
it exhibits a linear relationship between the theoretically-
predicted signal strength and logarithm of the distance
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between the transmitter and the receiver, and then applied
simple linear regression to determine the parameters of the
model [Jai91]. 

Table 2 contains the numerical values of the model
parameters for the three base stations considered separately
and when taken together.  We note that the   values for the
path loss exponent (n) and the reference signal strength (Pdo)
for all three base stations are similar despite their different
physical locations and surroundings. This result is
encouraging since it indicates that the parameter values are
not tied to the specific location of the base stations. The
values of Pdo are higher than those published by the
manufacturer [Roa96] (for d0 = 1 meter) because our WAF
model does not account for multipath propagation. The
values of the path loss exponent are smaller than those
reported in previous work on indoor radio propagation
modeling [Rap96].  However, they are consistent with our
expectations since we compensate the measured signal
strength for attenuation due to obstructions, and since we do
not consider multipath (which can boost the signal strength
at a given location).  R2 represents the coefficient of
determination, which is a useful measure for indicating the
goodness of regression [Jai91]. The high values of R2 (on a
scale of 0 to 1) suggest that there is a good match between
the estimated and the measured values of the signal strength.
Another value of interest shown in the table is the mean
squared error (MSE).  These numbers reinforce the
observation that the WAF propagation model fits the
measured data well.

BS1 BS2 BS3 All

Pdo 57.58 56.95 64.94 58.48

n 1.53 1.45 1.76 1.523

R2 0.81 0.65 0.69 0.72

MSE 10.49 13.98 7.34 9.82

Table 2 Parameter estimates using linear regression

The final column in Table 2 shows the values for Pdo

and n when the data from all the transmitter-receiver pairs
(i.e., all three base stations) was combined.  The motivation
for this was to determine a value of Pdo and n that could be
used for all base stations without overly affecting the result.
The advantage of using a common value is that it avoids the
need for individual measurements of each base station as
they are installed in the network, thus greatly reducing the
cost of system setup.  We can then use these values to
estimate the signal strength at various points within the
building.

Figure 9 illustrates how the predicted values of the
signal strength generated with the propagation model (after
compensating for wall attenuation) compares with the actual
measurements.  We observe a good match between the two.
While this plot is for one of the three base stations, plots for
the other two base stations exhibit a similar match.

4.2.3 Results using the Propagation Model
To determine the performance of location estimation

with the signal propagation modeling method, we used the

model to compute the signal strength at a grid of locations on
the floor. We then used this data set as the search space for
the NNSS algorithm.

Considering the median (50th percentile), the
propagation method provides a resolution of about 4.3 m,
compared to a resolution of 2.94 m for the empirical method
and 8.16 m for the strongest base station method (Table 1).
For the 25th percentile the propagation method provides a
resolution of 1.86 m compared to 1.92 m for the empirical
method and 4.94 m for the strongest base station method.
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Figure 9 Predicted versus measured signal strength.

While the propagation method is not as accurate as the
empirical method, it is significantly better than the strongest
BS and random methods.  Thus, even without extensive
empirical measurements, RADAR based on the propagation
model alone would significantly outperform the strongest
base station method proposed in [Hod97].

4.2.4 Summary of Radio Propagation Method
The WAF propagation model provides a cost effective

means for user location and tracking in an indoor RF
wireless network.  The model is cost effective in the sense
that it does not require detailed empirical measurements to
generate a signal strength map and consequently has a low
set up cost.  A significant result from Section 4.2.2 is that the
parameters for the wall attenuation propagation model are
similar across base stations despite the latter being in
different locations.  This suggests that the entire system can
be relocated to a different part of the building, but the same
parameter values can be used to model propagation and
thereby determine a user’s location.

5 Discussion and Future Work

We discuss extensions to the RADAR system that
would help improve its robustness and accuracy. Due to
space constraints, we keep our discussion brief.

We are investigating how user-mobility profiles can
supplement signal strength information in locating and
tracking users. A profile specifies a priori likelihood of user
location and/or movement patterns, which can be derived
from history [Liu98], calendar information, building layout,
etc.

 We are also investigating base station-based
environmental profiling to make RADAR robust in the face



of large-scale variations in the RF signal propagation
environment (caused, for instance, by the varying number of
people in a building during the course of a day). Instead of
recording just one set of signal strength measurements, we
record multiple sets at different times of the day. The base
stations probe the channel periodically to determine the
current conditions, and accordingly pick the data set that is
most appropriate for these conditions.

6 Conclusions

In this paper, we have presented RADAR, a system for
locating and tracking users inside a building.  RADAR is
based on empirical signal strength measurements as well as a
simple yet effective signal propagation model. While the
empirical method is superior in terms of accuracy, the signal
propagation method makes deployment easier.

We have shown the despite the hostile nature of the
radio channels, we are able to locate and track users with a
high degree of accuracy. The median resolution of the
RADAR system is in the range of 2 to 3 meters, about the
size of a typical office room.

Our results indicate that it is possible to build an
interesting class of location-aware services, such as printing
to the nearest printer, navigating through a building, etc., on
an RF wireless LAN, thereby adding value to such a
network. This, we believe, is a significant contribution of our
research.

Our eventual plan is to combine location information
services with the RADAR system and deploy this within our
organization.
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