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Abstract

Though touted as an excellent candidate, past work has yet to
demonstrate the value of the syllable for acoustic modeling.
One reason is that critical factors such as context-dependency
and model clustering are typically neglected in syllable works.
This paper presents fragmented syllable models, ameansto re-
alize context-dependency for the syllable while constraining the
implied explosion in training data requirements. Fragmented
syllables only expose their head/tail phones as context, and thus
limit the context space for triphone expansion. Furthermore,
decision-tree clustering can be used to share data between parts,
or fragments, of syllables, to better exploit training data for
data-sparse syllables. The best resulting system achievesa1.8%
absolute (5.4% relative) reduction in WER over a baseline tri-
phone acoustic model on a Switchboard-1 conversational tele-
phone speech task.

Index Terms: acoustic modeling, syllable, speech recognition

1. Introduction

Syllables are the basis of speech production and perception, a
building block of language, and thus the correct unit for mod-
eling speech. So cries the avid supporter of syllables, yet their
defiant cries are silenced by vain attempts to outdo the well-
established phone. Syllable approaches, to date, have made lit-
tle gains over phone systems, and particularly when applied to
real tasks such as conversational, unscripted speech. This is
paradoxical, since the close ties between the syllable and artic-
ulation, and its ability to integrate co-articulation suggest that
they should outperform the comparably naive triphone.

If all wordswere spoken as expected, therewould be no rea-
son to favour syllables over phones. Unfortunately, pronuncia-
tionin conversational speechisfar from predictable, resultingin
canonical pronunciations being ahopelessdream. Thereishow-
ever alevel of predictability in syllablesthat makes them attrac-
tive. [1] found that the deletion rates for syllables was only 1%
compared to 12% for phones. It was also found that the onset
of syllables was generally well preserved in its canonical form,
while the nucleus was almost always present though not neces-
sarily in canonical form. A longer unit length providesfor better
discriminability and robustness for co-articulation. Since co-
articulation effects can extend beyond the immediate neighbour
phones, a syllable is able to better capture this co-articulation
than a short-context triphone [2].

Fundamentally then, the syllable seems like an excellent
modeling unit. In fact, syllable models are the model of choice
in syllabic languages, such as Mandarin and Japanese. Sylla-
ble modeling in English though, is comparably more difficult
due to avery large syllable vocabulary. Whereas Mandarin has
a finite syllable set of 600 units (1500 with tones), English is
said to have more than 10000 syllables. This results in data

sparsity issues, since many of these syllables arerare. Asare-
sult, low-data syllables need to be backed-off to phones, leading
to a mismatch in modeling paradigms. Additionally, in con-
versational speech, words are frequently resyllabified, leading
to pronunciation variants and hence an increased number of
units. Furthermore, even if only a small number of syllables
are modeled, cross-word, context-dependent syllable modeling
isintractable due to data sparsity. Clustering cannot be used to
address this sparsity since the mgjority of syllables have barely
enough data to train robust context-independent models. As a
result, important methods used in triphone modeling, such as
context-dependency and model clustering are ignored for sylla-
ble modeling.

This work addresses this issue be bringing context-
dependency, cross-word modeling and model clustering to En-
glish syllable modeling, while constraining model explosion.
This is achieved by fragmented syllable models, which enable
context-dependent syllables while restricting surrounding mod-
els to using only the head/tail phones of a syllable as context.
As aresult, the number of context-dependent units is reduced
compared to a naive context-dependent syllable system. Fur-
thermore, fragmentation allows decision tree clustering to be
applied, allowing sharing between syllables as well as phones.

The paper is organized as follows. Section 2 provides a
brief introduction to syllable modeling and discusses key advan-
tages and issues. Section 3 then introduces fragmented syllable
models. Thisis followed by experiments and resultsin section
4 and finally conclusions and future work in section 5.

2. Syllable M odeling

A syllable can be defined as “a unit of spoken language consist-
ing of a single uninterrupted sound formed by a vowel, diph-
thong, or syllabic consonant alone, or by any of these sounds
preceded, followed, or surrounded by one or more consonants’
[3]. They are often represented by their consonant-vowel struc-
ture, such as CVC, VC, CV and CCV. The centra vocalic is
caled the nucleus, while the consonants before and after are
referred to as the onset and coda respectively. This paper uses
x”y” z to represent a syllable, where z, y, z are the individ-
ual phones that make up a syllable eg. b~ih"t is the syllable
represented by the phone sequence {b, ih, t}.

Studies by [1] showed consistent behaviour with respect to
the onset, nucleus, and coda, that make syllables attractive for
modeling. By definition a syllable always has a nucleus, and
this was reported to be realized amost always in real speech.
However, nuclel can undergo deviations from their canonical
forms, particularly for unscripted, conversational speech. The
onset of a syllable was found to be generally well preserved in
its canonical form when present in an utterance. In contrast,
codas were found to be frequently deleted.



As a result, two types of variations can occur: here called
inter-syllable and intra-syllable variation. Inter-syllable vari-
ation occurs for the same phone in different positions across
syllables. For example, consider the realizations of t in “del-
icateidiot: {d, eh,l,ih, k, azx,t,ih,d, iy, ih,t}" and “atidbit:
{azx,t,ih,d,b,ih,t}". Inthefirgt, t is a unreleased syllable
coda while in the second it is a stop-release syllable onset. A
triphone model would fold both into the same triphone ax-t+ih.
In contrast, they would be captured by different syllable models,
k~ah”t and t~ih"d resulting in more robust models.

Intra-syllable variation occurs across realizations of the
same syllable. Consider the sentence “i don’t understand” - the
tin“don’'t” isregularly dropped (called coda deletion). A syl-
lable Hidden Markov Model (HMM) could capture this either
implicitly by trained transition matrix probabilities, or explicitly
by skip transitions [4]. Nuclei substitution is aso common and
could be captured implicitly in the state distributions (shown to
be beneficial for pronunciation modeling by [5]) or explicitly
through multi-pathing [6]. In contrast, triphones, could only in-
directly capture this through a more complex state distribution.

Despite these benefits, prior works have shown only limited
benefits and typically over sub-optimal baselines. [2] reported
a0.7% absolute gain over word-internal triphones, while[4] re-
ported 0.5% absolute gain using a hybrid syllable-phone dictio-
nary. A 0.5% absolute gain was reported by [6] for multi-path
syllableHMMs. Finally [7] achieved a0.5% gain over triphones
using syllable feature tagging (stress, intra-syllable phone posi-
tion and intra-word syllable position) of triphones.

2.1. Key issues: sparsity and context-dependency

Why are the gains from syllable modeling so moderate? One
issue is data sparsity, a result of the large number of syllables
(10000+) in English. The mgjority of these occur rarely, and
thusit is not possible to train robust models. For example, for a
300 hour Switchboard-1 (SWBD-1) set, it wasfound that 79.6%
of the 7946 syllables had less than 100 instances, 5.8% had
more than 1000 instances and only 2.0% had more than 4000
instances. The low data syllables could be backed-off to phone
models, giving amixed syllable/triphone system, but thiswould
reduce the syllable coverage of the data. For example, to ensure
at least 4000 training instances per model, only 158 syllables
could be used for SWBD-1 with a data coveragel of 68.9%,
as shown in Figure 1. Furthermore, data allocated to syllables
could not be used for phones unless models were trained inde-
pendently resulting in less well-trained phones.

Another issue is context-dependent modeling, which re-
quires more training data that is simply not available for the
majority of syllables. Additionally, for cross-word contexts, the
size of the recognition network is increased exponentialy with
the number of syllable units. Context-dependency is important
for syllables, despite them being a more stable and longer unit
than a phone. Effects such as coda deletion and nuclei substitu-
tion are cued by phone context, as are co-articulation effects.

3. Fragmented Syllable M odels

Fragmented syllable models address the issues of data sparsity
and context-dependency for syllable models. In a fragmented
syllable model, asyllableisfirst represented by a state sequence
such as a HMM. The syllable is then decomposed into three
fragments: left, centre and right. This breakdown does not cor-

1defined as number of syllable training instances after selection over
number of training instances before selection
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Figure 1. Data coverage and min. # of training instances vs.
number of syllable units

respond to the typical onset-nuclei-coda breakdown. Rather the
centre fragment, or c-frag, is chosen to cover states that are not
affected by context ie. they are sufficiently well removed from
co-articulation and other boundary effects. States before and
after the c-frag states are allocated to the left (I-frag) and right
(r-frag) fragments respectively. Of course, it is non-trivial to
decide which states are non-context-dependent. Hence a sim-
ple heuristic is used, which isto allocate al but the first £ and
last E phones of the syllable to the c-frag. E here is termed
the fragmentation extent. For syllables of length < 2E phones,
zero states are allocated to the c-frag.

C-frags are then labeled with the syllable identity, while the
|-frags and r-frags are only labeled with the phones within their
extent. For example, the syllableb”~aa"r"n and E = 1, would
be fragmented as I-frag b!, r-frag !t and c-frag 6" aa"r"n!.
Note here the inclusion of a fragment marker, ‘" which is
used to differentiate between I-frags, r-frags, c-frags, and nor-
mal phones. Further examples are shown in Figure 2.

Triphone expansion can then be performed for all phones,
|-frags and r-frags, but maintaining c-frags as context indepen-
dent. Examples are shown in Figure 2. L/r-frags still preserve
their syllable identity indirectly through context, and thus re-
main a part of the syllable model. However, syllables will not
appear as context for phones, only I-frag and r-frags, thus con-
straining the context space. The reduction is inversely propor-
tional to the fragmentation extent - for example, for £ = 1
there was a reduction of 75% for the SWBD-1 300h training
set, compared to a pure context-dependent syllable system.

In this way, a fully context-dependent model set is real-
ized. Syllable states are distributed across multiple fragments,
but still remain isolated from phone states. Both phones and
syllables consider context: phones see only the first £ phones
of a syllable, while syllables see context via l/r-frags. Cross-
word modeling is aso possible since the growth of the number
of unitsisequivalent to the number of unique l/r-frags, whichis
much less than the number of syllables.

3.1. Decision-treeclustering

Context-dependency however is data hungry, and thus these
context-dependent models may be under-trained. Since c-frags
are context-independent, data sparsity isless of anissue, asthis
can be controlled when choosing syllable models. However 1/r-
frags are context-dependent, and thus will share only afraction
of the total training data for a syllable. Sparsity is addressed
by using decision tree clustering of |/r-frags that share the same
centre phone, thus allowing data to be shared for low-data I/r-
frags. Furthermore, |/r-frags can be shared across syllables, al-
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Figure 2: Fragmentation examples: syllable — context-independent — context-dependent. (a) fragmented, (b) fully fragmented

lowing even more data sharing, but this drops the constraint that
I/r-frag states only belong to asingle syllable.

3.2. Fully fragmented syllable models

Fragmented syllable models only allow model clustering for I/r-
frags, not c-frags. Fully fragmented syllable models lift this
restriction by alowing sharing for all fragment types. C-frags
are further fragmented on a per-phone basis, but syllable iden-
tity is maintained on each fragment. These fragments are re-
ferred to as centre-phone fragments, or cp-frags. A syllable is
now represented by al-frag, followed by a sequence of cp-frags,
and terminated by ar-frag, as show in Figure 2. Since cp-frags
maintain syllableidentity, they remain part of the syllable model
and thus this fragmentation is not equivalent to the base phone
sequence. Triphone expansion can then be done as shown in
Figure 2, followed by decision tree clustering of cp-frags with
the same base phone. For cp-frags with sufficient data, the deci-
sion tree will maintain separate states, while the remaining will
be clustered. Thus data is shared across syllables at the cp-frag
level allowing more robust low-data c-frags.

3.3. Clustered phone-syllable models

Fragments can be further exploited to share data between phone
and syllable models. An unfortunate side-effect of syllable
modeling is that training data is partitioned into two subsets:
syllable-only and phone-only. Each group of models thus sees
less training data. In fragmented syllables, I/r-frags can easily
be clustered with phones with the same base-phone, as can cp-
frags for fully fragmented syllables.

4. Experimentsand Results

Experiments were performed on the SWBD-1 conversational
telephone speech corpus. A training set of 300 hours with 39-
dimension PLP cepstral mean/variance normalized features was
used for acoustic model training. Syllabified transcripts were
created using a state-of-the-art rule-based syllabifier.

The well-known 2-hour Eval2000 set was used for evalu-
ation. A 22.6K vocabulary bigram language model trained on
SWBD-1 and broadcast news data was used for decoding. It
was not possible to use a trigram language model as certain
experiments had model unit counts that exceeded the limita-
tions of the available trigram decoder. Two baseline 40-mixture
triphone HMM system were also maximum-likelihood trained.
Thefirst used a standard setup while the second used a position-
dependent phone set, where thefirst phonein aword was tagged
with :s, thelast with : e, single-word phoneswith :mand dl oth-
ers with :n. To ensure a fair comparison, the total number of

[ Name
syl-ci-strict

| Description ]
Context-independent fragmented set. L/r-
frags were syllable-internal biphones, in-
stead of triphones. Equivalent to a stan-
dard context-independent syllable except
phones use |/r-frags as context.

syl-ci As syl-ci-strict system, except |/r-frags
with different c-frag contexts were clus-
tered ie. shared across syllables.
Fragmented context-dependent, triphone
I/r-frags, context-independent c-frags. L/r-
frags with the same c-frag context (ie.
same syllable) were clustered.

syl-cd As syl-cd system, except I/r-frags with dif-
ferent c-frag contexts were clustered ie.
sharing of |/r-frags across syllables.

syl-cd-strict

syl-cd-share As syl-cd but additionally sharing enabled
between |/r-frags and phones.
syl-cd-full Fully-fragmented context-dependent.

syl-cd-full-share | As syl-cd-full system but sharing enabled
between |/r-frags, c-frags and phones.

Table 1: Evaluated syllable configurations

System WER
Standard [ Pos. Dep.

triphone 33.2 32.3
syl-ci-strict 55.4 55.0
syl-ci 38.1 37.7
syl-cd-strict 32.7 327
syl-cd 321 31.9
syl-cd-share 319 317
syl-cd-full 320 320
syl-cd-full-share 319 317

Table 2: WER on Eval2000 set for syllable and baseline triphone sys-
tems for standard and position dependent phone sets

states (9300) and gaussians was kept the same across all base-
line and syllable systems. The syllable configurations in Table
1 were trained. Syllables were bootstrapped by concatenating
base phone sequence single-mixture monophone states. Frag-
mentation was then applied, followed by decision tree cluster-
ing and finally mixture incrementing to 40 mixtures. The num-
ber of parameters was consistent with the baseline models.
Syllable unit selection was done by thresholding on the
minimum number of training instancesin thetraining data. Any
syllables with less than M training instances were expanded
to base phones. The mgjority of experiments used a minimum
training instance count of 4000, which corresponded to 158 syl-
lable models and a coverage of 68.9%. All fragmented sys
tems used an extent of £ = 1. For systems that required
decision-tree clustering, a custom question set was created by
adding |/r-frag and/or c/cp-frag questions. Fragment questions
were adapted from both lexical group (eg. vowel, strident) and



System Min. Train # % Train/Test | WER
Instances | Syls Coverage

800 546 88.0/86.8 325

syl-cd 4000 158 68.9/66.5 31.9

8000 88 57.5/54.7 318

800 546 88.0/86.8 32.2

syl-cd-full 4000 158 68.9/66.5 320

8000 88 57.5/54.7 318

800 546 88.0/86.8 314

syl-cd-full-share 4000 158 68.9/66.5 317

8000 88 57.5/54.7 317

Table 3: WER on Eval2000 against syllable unit selection threshold for
selected syllable configurations.

single-unit context questions. Additionally, when clustering
phones and fragments, questions on the triphone centre were
added to allow separation of I/r/c-frags and phones.

Table 2 showsthe Word Error Rate (WER) for standard and
position-dependent phone sets. The context-independent syl-ci-
strict syllable systemswere the worst with WERs of 55.4/55.0%
for standard and position-dependent respectively. Thiserror rate
was unexpectedly high, but consistent with similar resultsin[2].
Clustering I/r-frags resulted in an absolute gain of 17.3% for the
syl-ci. This gain can be attributed to more data for |/r-frags as
well as the ability to capture alternate co-articulations.

Adding context-dependency resulted in a WER of 32.7%
for the syl-cd-strict systems, an absolute gain of 5.0% over
the best context-independent system. Clustering I/r-frags gave
a further 0.6/0.8% gain for the syl-cd systems. Context-
dependency and model clustering clearly delivered notable ben-
efits. Unfortunately, c-frag clustering did not appear to be ben-
eficial. The fully fragmented syl-cd-full systems resulted in in-
significant 0.1/-0.1% reductions in WER over the syl-cd sys-
tems. Thisis likely because, unlike I/r-frags, c-frags between
syllables are acoustically unique and therefore do not benefit
from clustering. This hypothesis is supported by the fact that
syllables are stable and well-discriminable units.

There were, however, benefits from phone-syllable cluster-
ing. The syl-cd-share and syl-cd-full-share systems achieved
gains of 0.2/0.2% and 0.1/0.3% respectively over their unshared
counterparts, syl-cd and syl-cd-full. Phone-syllable sharing al-
lowed the entire training data set to be observed by phone and
syllable units, resulting in better trained models.

Overall, the best syllable systems were the syl-cd-share and
syl-cd-full-share systems. Importantly, the position-dependent
syllable systems achieved a 1.5% absolute gain (4.5% rel.) over
a standard triphone system and 0.6% absolute gain (1.9% rel.)
over a position-dependent triphone system. Additionally, they
achieved absolute reductions of 23.5/23.3% respectively over
standard context independent syllable setups.

Although accuracies for the syl-cd-share and syl-cd-full-
share systems were equivalent, the latter is arguably a more
convenient configuration since fully fragmented models have a
homogeneous number of states. This homogeneity is typically
exploited by optimized decoders and other algorithms. In fact,
syl-cd-full-share is essentially atriphone system with appropri-
ate tags attached to phones, and thus could be easily incorpo-
rated into any triphone configuration.

Further experiments were performed to examine the effect
of amounts of training data per syllable. The results, as shown
in Table 3, show that any WER disparity from increased syllable
coverageisreduced for systemswith more data sharing. For ex-
ample, a0.6% WER loss was observed for the 800-instance syl-
cd configuration over the 4000-instance version. This system
only used I/r-frag sharing. In contrast, only a 0.2% WER loss
was observed for the 800-instance syl-cd-full system over the

4000-instance version, as aresult of additional cp-frag sharing.
For the syl-cd-full-share systems, a 0.3% WER gain was ob-
served (a 1.8%/0.9% gain over the baseline triphone systems).
Model clustering here allowed more data sparse syllablesto be
trained while mitigating (the quite small) WER impact.

4.1. Phone-syllableclustering

The decision tree of the 4000-instance syl-cd-full-share system
was analysed to better under which models were being clus-
tered. Clustered states that contained only a single type of unit:
phone, I-frag, r-frag, or cp-frag, were labeled as pure, while
others were labeled as mixed. Importantly, it was found that
48.2% of al states contained both phone and fragments. This
was most likely aresult of insufficient datato realize pure sylla-
ble states. It suggests that larger training sets could allow even
better syllable modelsto berealized. Additionally, it was found
that 41.5% of cp-frag states were isolated in pure states, while
another 7.0% of were clustered with r-frags of shorter syllables.
Furthermore, no two cp-frag states were found to be clustered
together. These observations support the fact that syllables are
acoustically unique units.

5. Conclusion

This paper has shown how fragmented syllable models can be
used to realize context-dependent syllable acoustic models. The
best fully-fragmented syllable system achieved a 1.8% absolute
WER reduction over a standard triphone acoustic model and
a 0.9% absolute reduction over a position-dependent triphone
model. Additionally, a 23.3% absolute WER reduction was ob-
served compared to a traditional context-independent syllable
model. The reported experiments demonstrated the value of in-
corporating both context dependency and model clustering into
syllable modeling. Nevertheless, the triphone system remains a
hard baseline to outperform. Analysis of decision trees showed
that many of the syllable units were still under-trained, and thus
needed to share data with phone models. Future work will in-
vestigate whether more robust syllable models can be realized
using even larger training sets.
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