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Abstract

Scientific problem solving often involves concordance (or discordance) analysis among the result sets from different approaches. For
example, different scientific analysis methods with the same samples often lead to different or even conflicting conclusions. To reach a
more judicious conclusion, it is crucial to consider different perspectives by checking concordance among those result sets by different
methods. In this paper, we present an interactive visualization tool called ConSet, where users can effectively examine relationships
among multiple sets at once. ConSet provides an overview using an improved permutation matrix to enable users to easily identify rela-
tionships among sets with a large number of elements. Not only do we use a standard Venn diagram, we also introduce a new diagram
called Fan diagram that allows users to compare two or three sets without any inconsistencies that may exist in Venn diagrams. A qual-
itative user study was conducted to evaluate how our tool works in comparison with a traditional set visualization tool based on a Venn
diagram. We observed that ConSet enabled users to complete more tasks with fewer errors than the traditional interface did and most
users preferred ConSet.
� 2007 Elsevier B.V. All rights reserved.
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1. Introduction

Visualization of the concordance or discordance of dif-
ferent empirical analysis methods can help integrate impor-
tant knowledge from different perspectives. Researchers
can have a more judicious view on their research problems
by comparing different analysis results on the same
dataset. This paper presents an interactive visualization
tool called ConSet that enables researchers to visually ana-
lyze concordance of different empirical analyses that pro-
duce sets.

When scientists run an experiment, there may be several
semi-standard methods (or algorithms) to acquire numeri-
cal values from a measurement device. Since the choice of a
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data acquisition method can profoundly change the result
values, it is crucial to check the concordance of the results
from different acquisition methods to avoid high false posi-
tive rates. For example, for an Affymetrix microarray
experiment, biologists can use several algorithms (e.g.,
probe set signal algorithms) to acquire numerical values
from microarrays, which represent gene activities (Seo
et al., 2006). Subsequent analyses such as identification of
important genes and power analysis depend on these
numerical values. Using set operations and various concor-
dance measures to compare result sets from different signal
algorithms, biologists can identify concordant/discordant
genes across different signal algorithms. While this can help
significantly lower false positive rates, there is no interac-
tive visualization tool for this purpose yet.

Similar problems occur after the data acquisition step.
Biologists may use clustering algorithms to identify impor-
tant patterns in the acquired dataset. Different algorithms
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might come up with very different patterns depending on
how they detect clusters. Therefore, using only one cluster-
ing algorithm could bias the result. Comparison between
two clustering algorithms can be formulated as a set con-
cordance problem since most clustering algorithms gener-
ate disjoint sets (or clusters). For example, if we look at
all sets together from the two clustering algorithms, the
concordance can be checked by how many sets from one
clustering result are similar to those from the other result.
A detailed example will be presented in Section 5 to show
how set concordance analysis helps compare clustering
results.

Another example is when one data element can be clas-
sified into multiple categories. For example, a gene or a
protein can be related to many gene ontology categories.
Similarly, a web resource can be mapped to multiple cate-
gories in the Open Directory (www.dmoz.org). Treating
each category as a set containing many elements, concor-
dance analysis to see how individual data elements are dis-
tributed in the categories helps users identify important
categories as well as unveil the features of unknown
elements.

In existing information visualization tools, brushing and
linking techniques (Becker and Cleveland, 1987) were used
to show concordance. Coordinated highlighting of different
representations for the same (or similar) dataset helps users
reveal intersection and difference of those representations.
For example, HCE (Hierarchical Clustering Explorer)
compared hierarchical clustering results using paired
dendrograms (Seo and Shneiderman, 2002) and TreeJuxta-
Fig. 1. ConSet with 16 sets and 31 elements. (a) Permutation Matrix view show
Control view enables users to filter sets and elements. (c) Diagram Ordering v
ranking criterion. The elements list shows the names of the selected elements
poser compared phylogenic trees using paired tree views
(Munzner et al., 2003). However, they were specifically
designed for comparing two binary hierarchical structures.
Graph visualization can also be used to show concordance
if we represent each set as a node and the relationship (sim-
ilarity) between sets as links. While graph drawing tech-
niques combined with a clustering approach can show an
overview of relationships, such as similarities among sets,
it is not easy to support important set operations. We
thought that a more general set visualization tool was nec-
essary to support concordance analysis for multiple sets
with a large number of elements: (1) to show an overview
of relationships among sets, (2) to aggregate and filter
sets/elements according to users’ interests, (3) to efficiently
perform fundamental set operations such as intersection
and difference, and (4) to generate a deeper insight into
the original problem from the concordance visualization.

ConSet (Fig. 1) supports those tasks for set concordance
analysis with an improved permutation matrix (Bertin,
1981) and a novel diagram – Fan diagram. We organize
this paper to present ConSet as follows. In the next section,
we present related work and possible improvements. We
then present our approach using permutation matrices,
Fan diagrams, and matrix reordering techniques. Followed
is the detail on how that approach is implemented in Con-
Set using various interaction techniques and the rank-by-
feature framework (Seo and Shneiderman, 2005). After
presenting an application example with two different clus-
tering results, we summarize the result of a preliminary
qualitative user study that we performed to identify usabil-
s an overview of the relationships among sets and elements. (b) Dynamic
iew shows the top 10 ranked diagrams of two or three sets by a selected

and their set membership information.
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Fig. 2. VennMaster with the same dataset as in Fig. 1. We manually
placed labels of some sets using VennMaster.
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ity problems of ConSet. We conclude this paper with dis-
cussion and future work.

2. Related work

Many classical information visualization techniques
have been used to reveal concordances between datasets.
For example, coordinated multiple views provide users
with ways to understand relationships between datasets
behind the views (Baldonado et al., 2000). HCE shows
two hierarchical clustering results (or dendrograms) at
once. When users click on a branch of a dendrogram,
HCE highlights the corresponding terminal nodes in the
two dendrograms and shows the mapping between match-
ing nodes with connecting lines (Seo and Shneiderman,
2002). TreeJuxtaposer (Munzner et al., 2003) applies
brushing and linking techniques as well as Focus+Context
techniques (Furnas, 1986) to compare two large phylogenic
trees with guaranteed visibility. Users can easily see the dis-
cordance of the two hierarchical structures by examining
the highlights and/or connections. Sometimes, the main
purpose of selecting an internal node on a tree visualization
is to select a set of terminal nodes reachable from the inter-
nal node. This problem can be generalized as a set visuali-
zation problem and the main task can be checking
concordance between sets.

Visualization tools to show results from multiple search
engines have been developed. MetaCrystal (Spoerri, 2004)
based on the InfoCrystal layout (Spoerri, 1993) helps users
fuse together search results from different search engines. It
utilizes various visual features such as shape, size, color,
proximity, and orientation to show the degree of overlap
among different search results. Overlapping search results
are expected to provide a more comprehensive, relevant,
and effective view on the subjects delivered by the search
terms. While these tools tackle the problems that can be
interpreted as set concordance problems, they are not
designed for general set visualizations.

The Venn diagram is the de facto standard in set visual-
ization. A Venn diagram is a special case of an Euler dia-
gram. Venn diagrams, by definition, should have areas to
represent all possible combinations of sets regardless of
whether that area is actually empty or not. This restriction
is loosened in Euler diagrams, where empty areas do not
have to appear. These diagrams are applied to various
problems in bioinformatics, information retrieval, and
information visualization. Some applications may require
additional restrictions on how to draw Euler diagrams.
For example, the shape of the contour should be a circle
and more information such as cardinality is coded as size
(area). It is important to mention that the terms Venn dia-
gram and Euler diagram are often used in a confusing way.
Euler diagrams, where each contour is a circle, are often
called Venn diagrams. Even though this is theoretically
not correct, in this paper, we follow this general perception
of Venn diagram and use the term Venn diagram for the
Euler diagram, in which each contour is a circle.
Venn diagrams usually have three sets, but there have
been many approaches to represent many more sets in
Venn diagrams. Recently, Verroust and Viaud showed that
there was a way to draw extended Euler diagrams for up to
8 sets (Verroust and Viaud, 2004). VennMaster (Fig. 2) is
to our knowledge the only visualization tool that shows
an arbitrary number of sets in Venn diagrams, where each
set is represented as a polygon with a user-defined number
of edges (Kestler et al., 2005). When there are enough
edges, each set looks like a circle. The size of each polygon
is proportional to the cardinality of the corresponding set.
All properly size-coded polygons are placed in a way that
the size of each intersection area is also proportional to
the number of elements in the intersection. Since the opti-
mal size coding and layout determination are too expensive
to be solved in a pure analytical way, they resort to genetic
algorithm techniques.

VennMaster was developed to improve users’ interpreta-
tion and visualization of the output of the bioinformatics
tool GoMiner (Zeeberg et al., 2003). GoMiner enables
researchers to query the gene ontology database
(www.geneontology.org; comprehensive annotation of
genes or gene products) for associated categories in a cellu-
lar context. Given the fact that one gene can be associated
with multiple gene ontology categories, the associations
between the vast amount of genes and categories could
be very complex and their interpretation is a challenging
task. VennMaster translated this problem into a set-rela-
tionship visualization problem by treating a gene ontology
category as a set and a gene product as an element. Since
this approach turned out to be very useful, VennMaster
was integrated into GoMiner. However, it has significant
drawbacks from an information visualization perspective:

http://www.geneontology.org


Fig. 3. Permutation Matrix view shows the concordance of three power
analysis results by three probe set signal algorithms with 7643 genes. Each
row represents a power analysis result (SET) and each column represents a
gene (ELEMENT). Aggregation drastically reduced the number of
columns from 7643 to 7. The degree of aggregation is shown as histograms
in log scale and as the intensity of cell darkening.
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(1) since it uses regular convex polygons, there are intersec-
tions of polygons where no element is mapped, which will
be explained in the next section, (2) it is not guaranteed
that all possible intersections are visible in the generalized
Venn diagram display, so those inconsistent intersections
are shown in a separate list view, and (3) the resulting lay-
out of diagrams can be different in each run of the program
because it uses a genetic algorithm to optimize the layout.

A matrix-based representation was often used to show
relationships between items by using both rows and col-
umns to represent items, and values in each cell to show
the relationship. For example, Abello and Korn presented
matrix and color map based techniques to visualize phone
calls made between states (Abello and Korn, 2002). Van
Ham used multilevel call matrices in the management of
large software projects (van Ham, 2003). Kincaid applied
an extended permutation matrix to the task of exploratory
data analysis of multi-experiment microarray studies
(Kincaid, 2004). Ghoniem et al. used adjacency matrices
to interactively visualize and explore relations between con-
straints and variables in constraint problems (Ghoniem
et al., 2004). Henry and Fekete recently developed a visual-
ization system called MatrixExplorer that combines node-
link diagrams with matrices to support the exploration of
social networks (Henry and Fekete, 2006). Since previous
works showed the potential of the matrix-based approach,
we decided to use a matrix-based representation to visual-
ize set relationships. We also evaluated how our tool works
because none of the previous works have been evaluated.

We help users improve experience in interpreting com-
plex set relationships without the overburden of drawing
a lot of circles in proper scale and location. We apply the
permutation matrix display to set concordance visualiza-
tion to address the drawbacks mentioned above while pro-
viding a better overview of sets and elements. We also
maintain the familiarity of simple diagrams such as Venn
diagrams. Interaction techniques such as dynamic filtering
enable users to narrow down to a handful of sets. The
detail is shown as a general Venn diagram or our new
Fan diagram once users select two or three sets.

3. Visualizing set concordance

In this section, we present issues and problems that we
try to address in this paper as well as system capabilities
required to resolve those problems. At first, we present a
new diagram called ‘‘Fan Diagram’’ to address problems
in Venn diagrams. Then we describe our improved permu-
tation matrix, which provides a special aggregation func-
tion for a large number of elements. Lastly, we discuss
various reordering methods to support important set oper-
ations in the permutation matrix.

3.1. Avoiding inconsistencies with fan diagrams

Venn diagrams are widely used to represent set rela-
tionships. While they are intuitive and familiar to users,
Venn diagrams have the drawback of inconsistencies: (1)
showing invalid areas (2) missing valid areas, and (3) size
inconsistency. First, let’s assume relationships among
three sets A, B and C; where A \ B = Ø and A [ B = C.
If we represent this relationship in a Venn diagram, an
empty set (C � (A [ B) = Ø) is shown as a region (a gray
region in Fig. 4a). If we loosen the constraint that each
set should be a circle, this relationship can be represented
in a Venn diagram without such inconsistency (Fig. 4b).
Then, however, the diagram loses the advantage that
users are used to it. The second inconsistency is incurred
by the fact that it is almost impossible to achieve a valid
Venn diagram when there are a large number of sets.
Thus, it is common that some valid areas are missing in
Venn diagrams especially when many sets have intersec-
tions with many others. The last inconsistency, or the size
inconsistency is due to not being able to accurately size-
code all possible zones.

To maintain users’ familiarity with Venn diagrams while
avoiding the three inconsistencies, we suggest applying the
Visual Information Seeking Mantra (overview first, zoom
and filter, then detail-on-demand) (Shneiderman, 1996).
We use a permutation matrix view to show an overview.
Dynamic queries, manual selections, and ranking of sets
allow users to narrow down to two or three sets to have
an easy-to-understand diagram. However, even with three
sets, Venn diagrams still suffer from the inconsistencies
explained above. To address these issues, we propose a
new diagram called Fan diagram (Fig. 5). It looks like a
roulette wheel, where each set is represented as a fan-like
shape. Fan diagrams have two major advantages over
Venn diagrams.

(1) They do not contain any invalid intersection areas.
(2) They accurately size-code every sub-region by the

number of elements in the sub-region.

For example, inconsistency in a Venn diagram shown in
Fig. 4a can be easily resolved with a Fan diagram (Fig. 4c).



(a) Venn Diagram with inconsistency (b) Euler Diagram without inconsistency 

(c) Fan Diagram without inconsistency 
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Fig. 4. Inconsistency of Venn Diagrams. (a) and (b) show the same set
relationships (A \ B = Ø & A [ B = C). There is no element in the gray
area at (a), but there is no way to avoid this inconsistency in Venn
Diagrams. By loosening the constraint that each set should be a circle, it is
possible to avoid the inconsistency in Euler Diagrams (b) and in Fan
Diagrams (c).

Fig. 5. Fan Diagrams for two sets (a) and for three sets (b). Each set is
exactly size-coded by the number of elements in the set. In (b), the size of
the inner circle clearly visualizes the amount of intersection of three sets.
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We achieve the accurate size coding as follows. For two
sets A and B, a circle represents the union (A [ B). The cen-
ter angle of the fan for A is calculated as follows:

hA ¼ 2p� nðAÞ
nðA [ BÞ ;

where n(A) is the cardinality of set A. The center angle of
the fan for B is calculated in the same way. If the intersec-
tion (A \ B) is not empty, the two fans for A and B overlap.
The center angle for the overlapping fan is calculated as
follows:

hðA\BÞ ¼ 2p� nðA \ BÞ
nðA [ BÞ :

Therefore, all regions split by the fans of the sets A and
B are accurately size-coded.

For three sets A, B and C, a circle represents the union
(A [ B [ C). The intersection (A \ B \ C) is represented as
a smaller concentric circle. If the outer circle has the radius
of R, the radius of the inner circle (r) is calculated as
follows:

nðA \ B \ CÞ
nðA [ B [ CÞ ¼

pr2

pR2
) r ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
nðA \ B \ CÞ
nðA [ B [ CÞ

s
� R:

Thus, the area of the center circle for the set (A \ B \ C)
is exactly proportional to the cardinality of (A \ B \ C). A
doughnut-shaped region between the inner and outer cir-
cles represents the set ((A [ B [ C) � (A \ B \ C)). In the
doughnut-shaped region, there are three doughnut seg-
ments for the three sets (A � (A \ B \ C)),
(B � (A \ B \ C)), and (C � (A \ B \ C)). Each doughnut
segment has a center angle in proportion to the cardinality
of the corresponding set. The center angle of the doughnut
segment for the set (A � (A \ B \ C)) is calculated as
follows:

hðA�ðA\B\CÞÞ ¼ 2p� nðAÞ � nðA \ B \ CÞ
nðA [ B [ CÞ � nðA \ B \ CÞ :

Thus, we can accurately size-code all regions split by the
inner and outer circles and three doughnut segments.

While Fan diagrams have advantages such as no incon-
sistencies and accurate size-coding as shown above, there
are some problems with this approach. For example, circles
and doughnut-shape regions are, in theory, drawn within a
circle and a part of some outer arcs can overlap each other.
Thus, sometimes it is difficult to know the exact bounds of
a region. This problem can be attenuated by drawing
region boundaries with a tiny displacement as shown in
Fig. 5.

3.2. Untangling overlaps with permutation matrices

While significant overlaps of many sets in the general
Venn diagram visualization tool clearly show high similar-
ity among sets, those overlaps make it difficult to see the
details on set memberships of the elements. Moreover,
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non-overlapped areas are hard to select when overlaps
cover most of the elements. We thought that a permuta-
tion matrix, a proven multidimensional visual structure,
could help untangle overlaps while carrying similarity
information. For our set concordance visualization, each
column represents an element and each row represents a
set (Fig. 3). If an element ej belongs to a set Si, we fill
the cell C(i, j) with gray, otherwise C(i, j) is empty. Each
set is given a distinctive color and the set name is dis-
played at the end of its corresponding row in its own
color. We make a pool of 32 colors to paint set names
and we use bit vector operations on 32 bit integer to per-
form set operations. Thus users can deal with up to 32
sets in our permutation matrix based visualization. While
human eyes can distinguish many more colors, they are
not reliable matching more than 11–20 colors on a geo-
graphic map with legend (Davies and Medyckyj-Scott,
1994). We also found that using more than 20 colors
made users confused differentiating sets in the permuta-
tion matrix view.

We summarize information regarding elements in col-
umn headers. These include, from top to bottom, Element
Name, Set Membership, and Degree of Aggregation, each in
a separate row. The set membership row shows pie-chart-
like glyphs, where each pie piece represents a set to which
the corresponding element belongs and is filled with the
color of the set. With the color-coded set membership
information, users can easily grasp how many sets an ele-
ment belongs to.

Since all elements are visible unlike Venn diagram visu-
alizations, it is necessary to implement a method to
accommodate a large number of columns. When the num-
ber of elements is significantly larger than the number of
sets, it is reasonable to assume that many elements will
share the same set membership. Thus, by aggregating
those elements into a single column, it is possible not only
to save a significant amount of screen space but also to
have a clear overview in a compact form. When several
elements are aggregated to a single column, only the rep-
resentative element that comes first in alphabetical order
is shown in the permutation matrix, and other aggregated
elements are hidden (Fig. 3). The name of the representa-
tive becomes the corresponding column name. The num-
ber of aggregated elements is not only given in
parentheses at the end of the representative element’s
name but also visualized as a blue bar in the Degree of
Aggregation row. The height of each bar is proportional
to the number of aggregated elements and users can show
the bars either in log scale or in linear scale. The intensity
of a cell in the permutation matrix is also proportional to
the number of aggregated elements. We linearly map the
number of aggregated elements to the cell intensities in
a RGB gray scale range from 50 to 170. Since human eyes
can distinguish many less gray tones than colors (Davies
and Medyckyj-Scott, 1994), we decided to use an interme-
diate range instead of the full range (0–255), where it
made a more aesthetic impression.
3.3. Ordering sets and elements

The ordering of columns and rows significantly influ-
ences the observable pattern in a permutation matrix. Gen-
erally, the goal of reordering in a permutation matrix is to
move significant cells to the diagonal of the matrix (Card
et al., 1999). Set concordance analysis requires more flexi-
ble rearrangement to support important concordance anal-
ysis tasks. Thus, we propose four reordering methods for
sets: HAC (Hierarchical Agglomerative Clustering) order-
ing (Eisen et al., 1998), moving a row to the top, order
by name, and order by cardinality. For elements reorder-
ing, we also propose similar methods: HAC ordering, mov-
ing a column to the right end, order by name, and order by
the number of set memberships. By putting similar ele-
ments (sets) close together, a permutation matrix display
can provide users with a succinct and clear overview of sets
and elements. We use a hierarchical agglomerative cluster-
ing algorithm to determine the order of rows and columns
(Seo and Shneiderman, 2002). We define two different sim-
ilarity functions, one for rows (or sets) and the other for
columns (or elements). The similarity function for elements
is defined as follows:

similarityðem; enÞ ¼
ðNo: of sets with both em and enÞ

ðNo: of all setsÞ :

As the number of sets that have both em and en

increases, the similarity value becomes larger (i.e., two ele-
ments are more similar). Once the clustering is done, we use
the ordering of leaf nodes of the binary tree (or a result of
the clustering) as a linear ordering for columns of the per-
mutation matrix view, so that similar elements are close
together in the view.

For sets reordering, sets are ordered in the same way as
elements except for the similarity function, which is defined
as the following:

similarityðSi; SjÞ ¼
nðSi \ SjÞ
nðSi [ SjÞ

:

Since HAC orderings of sets and elements significantly
improve the overview of the permutation matrix, users
can start a concordance analysis among sets and among
elements with a better overview. Other clustering algo-
rithms such as OPTICS (Ankerst et al., 1999) that give a
linear ordering can be used instead of HAC. Heuristic reor-
dering methods for permutation matrix (or ‘‘reorderable
matrix’’) (Mäkinen and Siirtola, 2005) can also be used
to generate a linear ordering to achieve a similar goal.
Henry and Fekete recently suggested an automatic reorder-
ing method for a symmetric matrix based on HAC and
TSP (traveling salesman problem) (Henry and Fekete,
2006). Since their ordering is performed on each connected
component separately, it can also be a good alternative to
generate block-based linear ordering.

While HAC ordering helps users identify similar ele-
ments and sets, more reordering methods are needed for
other important tasks. The ability to select a row or column
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and move the row to the top or the column to the right end
can help users efficiently figure out where the element
belongs or what elements the set has, respectively. Ordering
by names facilitate users’ search on a set (or element) with a
specific name. Ordering by cardinality (or the number of
set memberships) speeds up frequent queries based on the
quantity.
4. ConSet interface

ConSet enables users to examine the concordance of sets
visually and interactively. ConSet consists of three views:
Permutation Matrix view, Dynamic Control view, and
Diagram Ordering view (Fig. 1). The Permutation Matrix
view shows an overview of all the visible sets. The Dynamic
Control view on the right contains the sets list, the diagram
area, and the filter controls. The Diagram Ordering view at
the bottom shows the top 10 ranked diagrams. The ele-
ments list in the Diagram Ordering view shows the name
of the selected elements and their set membership
information.
4.1. Interaction, brushing and linking for sets and elements

ConSet, by default, rearranges the sets by HAC order-
ing. Since this places sets with more common elements clo-
ser to each other, users can easily find similar sets. In
addition, the sets can also be ordered by their name and
cardinality either by clicking on column-headers of the sets
list in the Dynamic Control view or by using a pop-up
menu on the Permutation Matrix view.

ConSet also provides four element reordering methods.
When users right-click on a column header, a pop-up menu
for element reordering shows up. Selecting the first menu
Fig. 6. When users mouse over on a column header for an element, names of th
names.
item (‘‘move to the right end’’), users can move the corre-
sponding element to the right end of the column. This
enables users to easily compare several elements of interest
by putting them side by side and right next to the set
names. Elements can also be sorted by three criteria; alpha-
betically, by the number of set memberships, and by HAC
ordering.

When users move the mouse over a column header of an
element, ConSet highlights the corresponding column with
a greenish-gray rectangle. In addition, the names of sets
that do not contain that element are grayed out (Fig. 6).
This helps users identify all the sets that an element belongs
to. The name of the element is also shown in the elements
list in the Diagram Ordering view along with their set mem-
bership information. If the column is aggregated, the
names of all the aggregated elements are shown.

Similarly, if users move the mouse over a set name, the
corresponding row is highlighted with a rectangle in the
set’s own color. The names of elements that do not belong
to the highlighted set are grayed out (Fig. 7). The names of
all the elements of the highlighted set come in the elements
list. If users move the mouse over a gray-filled cell C(i, j) in
the Permutation Matrix view, the cell is highlighted by a
red rectangle with the j-th element’s name highlighted in
red and the i-th set’s name underlined in red. The name
of the j-th element and the names of its aggregated, if
any, elements are shown in the elements list.
4.2. Dynamic filtering of sets and elements

ConSet, by default, shows the names of all the sets in the
sets list in the Dynamic Control view (Fig. 1b). It allows
users to change the visibility of sets in the Permutation
Matrix view. For example, if users check (or uncheck) a
e sets (rows) containing the element are highlighted by diluting all other set



Fig. 7. When users mouse over on a set name, names of all elements in the set are highlighted by diluting all other element names.
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check box right before a set name in the sets list, ConSet
shows (or hides) the set in the Permutation Matrix view.
This enables users to manually filter out uninteresting sets
to reduce the number of sets to examine. For example, the
number of sets was reduced from 21 (Fig. 8a) to 10
(Fig. 8b) when we hid the sets whose cardinality is less than
30. This task can be easily done after sorting the list by the
‘‘size’’ column. The aggregation of elements is based on
their memberships to the visible sets, not to all the sets.
So, whenever the visibility of sets changes, ConSet re-com-
putes the aggregation of elements. In addition, ConSet
reassigns the set colors. It was because we do not expect
users to remember the color for each set. We use colors
to help users differentiate sets.

ConSet also enables users to dynamically filter elements
to be shown in the Permutation Matrix view. For example,
the ‘‘Filter elements to show’’ slider control with a value t

filters to show only elements that belong to at least t sets.
Filtered elements or sets can either be removed from or
be grayed out in the Permutation Matrix view. The number
of elements was further reduced from 133 (Fig. 8b) to 24
(Fig. 8c) when we filtered out the elements that do not
belong to at least 5 sets.

4.3. Showing relationships between sets

ConSet visualizes the relationship of two or three sets in
the diagram area in the Dynamic Control view. Users can
add up to three sets into the diagram area from the sets list.
When users select a set in the sets list, the corresponding set
is highlighted in the Permutation Matrix view while the
names of all the elements of the selected set are shown in
the elements list (Fig. 1c). When they click the ‘‘Add’’ but-
ton at the bottom of the sets list, selected sets are added to
the diagram area. The names of added sets are displayed in
the upper window of the diagram area and a diagram of
their relationship is drawn in the lower window of the dia-
gram area. Users can remove sets from the diagram area by
clicking the ‘‘Delete’’ button after selecting them from the
upper window. They can also clear the diagram area by
clicking the ‘‘Clear’’ button.

When users move the mouse over a set in a Venn dia-
gram or a Fan diagram, a tooltip appears to show its name
and cardinality. At the same time, the set is highlighted in
the Permutation Matrix view and the elements information
in the set is shown in the elements list. When users move
the mouse over a region for an intersection, the elements
in the intersection are highlighted in the Permutation
Matrix view and their information appears in the elements
list. If users click on a region in a diagram, the correspond-
ing region is selected and the selection is toggled on another
click. This enables users to examine all elements in the ele-
ments list when scrolling is required.

4.4. Diagram ordering using the rank-by-feature framework

We applied the rank-by-feature framework (Seo and
Shneiderman, 2005) to ConSet. The Diagram Ordering
view shows the top 10 diagrams ranked by some criterion
(Fig. 1c). From the ‘‘Domain’’ combo-box at the top left
corner of the view, users can select the ordering of dia-
grams between two or among three sets. Two ranking cri-
teria are provided in the ‘‘Ranking criteria’’ combo-box.
The criterion ‘‘intersection size’’ ranks diagrams by the size
of the intersection, and the criterion ‘‘overlap metric’’
orders diagrams by the ratio of the intersection set size to
the union set size. This helps users easily capture a collec-
tion of important sets that meets the ranking criteria. Users
can see each of the top 10 ranked diagrams in two ways: as
a Venn diagram and a Fan diagram.



(a) Original data

(b) Filtering out sets whose cardinality is less than 30 from (a)

(c) Filtering out elements that belong to fewer than 5 sets from (b)

Fig. 8. Filtering of sets and elements with human muscular dystrophy dataset of 21 sets and 163 elements.
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5. Application example: Clusters as sets

We extended ConSet to help users compare clustering
results by adding a special functionality. An output of a
clustering algorithm is in most cases a group of disjoint
clusters, each of which is treated as a set in ConSet. ConSet
arranges sets to form several groups where a set from one
clustering result is put together with one or more similar
sets from the other clustering result.

In the beginning, among all clusters of two different
clustering results, say CR1 and CR2, a cluster (say
c_anchor) with the most elements is selected as an anchor
for a new group. For example, let’s assume that the first
anchor cluster c_anchor is from the clustering result CR1.
Then the clusters from CR2, all of whose elements belong
to c_anchor are added to the group. A cluster from CR2

which is not a subset of c_anchor but has more intersec-
tions with c_anchor than with any other clusters in CR1

is also added to the group. After completing a group with
the current anchor cluster c_anchor, a new group formation
begins by finding a new anchor cluster from remaining
clusters with the most elements.

ConSet arranges these groups row by row and groups
are separated by bold horizontal lines. ConSet adds a spe-
cial row called Cluster Concordance to the column header
(Fig. 9). Each matching element within a group is projected
onto the Cluster Concordance row. If an element is not
matched within its group, the corresponding cell is left



Fig. 9. Clustering results comparison when two methods produce
identical clusters. The Cluster Concordance row consists of all dark red
cells since each element (or aggregated elements) is matched in two
clustering results with the same cardinality. Gray-shaded cells are perfectly
aligned along the diagonal line.

Fig. 10. Clustering results comparison (HCLUSTER: Hierarchical Clus-
tering, KCLUSTER: K-means Clustering) with 77 breakfast cereals data.
Two clustering results are quite consistent with each other because (1) the
Cluster Concordance row is almost filled with dark red cells except for the
empty cell for ‘‘Multi_Grain_Cheerios’’ and four other thin red cells, and
(2) gray-filled cells are well aligned, though not perfectly, along the
diagonal line.
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unfilled. If it is matched, the cell is filled in red and it is
color-coded by the ratio of the cardinalities of the two sets,
one from each clustering result, that have the matching ele-
ment. This color-coding is intended to give an appropriate
penalty to the cases where one big cluster from one cluster-
ing result overlaps with several small clusters from the
other clustering result, which is a less concordance.

ConSet allows users to visually examine concordance
between two clustering results by skimming though the
Cluster Concordance row. As shown in Fig. 9, if the two
clustering results are identical (or completely concordant),
all the cells on the Cluster Concordance row should be
dark red. In addition, all gray-filled cells in the permutation
matrix should be aligned along the diagonal line. Cells
deviating from the diagonal line indicate discordant ele-
ments. Through these two display measures ConSet
enables users to examine the concordance between two
clustering results.

Figs. 10 and 11 show the concordance between the hier-
archical clustering result and K-means clustering result
with Euclidean distance measure with 77 breakfast cereals
data and with Census data of 224 US eastern counties near
MD, respectively. Many dark red cells at the Cluster Con-

cordance row in Fig. 10 indicate that those two results are
very concordant with each other despite an outlier, ‘‘Mul-
tigrain_Cheerios,’’ which does not belong to any matching
clusters pair. On the other hand, Fig. 11 shows that, over-
all, the two clustering results for the census dataset are not
so concordant even though there are several strong match-
ing counties groups with dark red cells on the Cluster Con-
cordance row. Gray cells below the diagonal line are the
ones that break down the concordance between two clus-
tering results.

The same approach can also help users identify statisti-
cal associations between categorical variables or between a
clustering result and a categorical variable. Users can par-
tition a dataset into disjoint sets according to a categorical
variable. For example, the census data for all US counties
can be partitioned into disjoint sets according to categori-
cal variables, such as ‘‘poverty level’’ and ‘‘education
level.’’ Since an integer- or real-type variable can be con-
verted to a categorical variable by a simple binning, ConSet
can be used to visualize statistical associations between a
categorical variable and an integer- or real-type variable.

In summary, clustering results comparison in ConSet
provides an overview where users can see elements as well
as sets, together with a compact one-dimensional overview
(the Cluster Concordance row) for the comparison. We
note here that there could be a simple alternative to our
approach. As presented in various information visualiza-



Fig. 11. Clustering results comparison (HCLUSTER: Hierarchical Clustering, KCLUSTER: K-means Clustering) with Census data of 224 US eastern
counties in or near Maryland. These two clustering results are not very consistent with each other. Gray cells deviating from the diagonal line with
corresponding empty cells in the Cluster Concordance row are the ones that differentiate the two clustering results.
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tion systems (Guo, 2003; Seo and Shneiderman, 2005), we
can implement a set–set matrix to show the correlation
between sets where clusters from one algorithm are
arranged in row and clusters from the other algorithm
are arranged in column. We can color-code each cell by
the number of common elements. Then users can check
the overview of the concordance of the two clustering
results on the matrix.
6. ConSet evaluation

We conducted a qualitative usability study to under-
stand how well ConSet works and to identify any usability
issues. During individual test sessions, the experimenter
took notes on usability issues that participants experienced
during the walk through of the system. We compared Con-
Set to VennMaster (Fig. 2) to augment our usability study
since VennMaster is the only comparable tool to ConSet.
We measured the time to complete each task using a stop-
watch and counted the number of wrong answers, time-
outs, and give-ups. We have to note that the number of
subjects is too small to perform a statistical analysis on
those measurements, thus we only report on raw numbers
without referring to statistical significance.

6.1. Data and participants

We used two similar datasets exported from GoMiner
for this user study. Each GoMiner dataset consists of
two text files, the category summary file and the gene sum-
mary file. ConSet combines the two text files to generate
sets of genes (gene ontology categories), as VennMaster
does. One dataset had 16 sets and 31 elements and the
other had 23 sets and 28 elements.

We recruited 8 biologists (5 males and 3 females) includ-
ing 1 male pilot subject. They had used neither VennMaster
nor ConSet before this study. The pilot data is not included
in the reporting of the experimental task data because the
interfaces and tasks were improved after the pilot.

6.2. Procedure and tasks

Each participant used both interfaces; interface order
was counterbalanced. Participants first received training
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Fig. 12. Average task completion times. Seven subjects performed nine
tasks with ConSet and VennMaster. No one could complete tasks 3, 4, and
5 within the 3 min time limit with VennMaster while 7, 6, and 5
participants answered correctly with ConSet, respectively. The error bar
represents the standard deviation.
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on the first interface and were allowed to play with the pro-
gram to learn the basic features. They were allowed to ask
questions during the training. For each interface, partici-
pants spent about 10 min on average. Next, they were
asked to conduct 9 tasks as quickly as they could. Each
task had a 3-min time limit and participants were allowed
to give up a task at any time. After a short break, the same
procedure was repeated with the second interface. Prefer-
ences, comments, and suggestions were collected during
debriefing. Each session lasted 38 min on average.

To evaluate our tool with realistic tasks, we chose the
tasks through a semester-long task analysis with biologists,
who were often required to do concordance analyses for
their research projects in a large biology laboratory. After
performing a genome wide expression profiling project or a
proteomics project, biologists usually want to know what
cellular components or biological processes in the gene
ontology database are involved in their data. In addition
to identifying which genes or proteins are associated with
a specific gene ontology term, they need to figure out asso-
ciations with more than two gene ontology terms. This
requires biologists to go through long manual tasks using
GoMiner, one of the most commonly used tools.

The list of tasks follows

1. What are the top three biggest sets?
2. What is the size of the biggest set?
3. What are the top three elements that belong to the most

sets?
4. Name the sets that have a given element.
5. Name the sets that have two given elements.
6. What are three sets that share the most elements?
7. Name the elements in the intersection of two sets.
8. Name the elements in the intersection of three sets.
9. Name the elements that are in A but not in B.

6.3. Results

6.3.1. Usability issues

We observed several usability issues in ConSet that
needed to be addressed. There was clear user frustration
around the selection of sets in the Dynamic Control view
on the right. Three participants had difficulty choosing sets
to show in the diagram view. Even though the check box in
front of the set name is to filter sets to show in the main
Permutation Matrix view, some of the participants thought
that the checked sets would be added into the diagram
area.

Another issue is that there is no way to select the differ-
ence area (A � B). This is because single click behaves dif-
ferently depending on where users select; click on the
intersection area selects the intersection but click on the dif-
ference area selects the entire set. To address this issue, we
can introduce a more consistent interaction style to select
areas in the Venn and Fan diagrams. First, a single click
should select the smallest containing area. So, if users click
on the difference or intersection area, the difference or
intersection will be selected. Second, users should be able
to combine two areas by clicking an area with the control
key. Lastly, a double click on an area should select all
the sets that contain the area. So, users can select an entire
set by double clicking on the difference area.

There is no efficient way to find elements/sets with their
names. Even though ConSet enables users to sort elements/
sets by their name, four participants did not use the sort
feature and sequentially scanned element names for task
4. This would be a bigger problem when the number of ele-
ments is large. We can address this issue by providing a
simple search on the element and set name.

The familiarity with the traditional Venn diagram makes
it hard for users to utilize the new Fan diagram. In addi-
tion, the tasks used in the study were easy enough to be
completed with the Venn diagrams. However, we believe
that instantaneous highlighting of the area on mouse-over
along with informative tooltip text helped users understand
how to interpret the diagram. It was encouraging to
observe that some users utilized the Fan diagram after a
short tutorial.

6.3.2. Error, task times, and preferences

Participants with ConSet completed more tasks with
fewer errors. Out of 63 questions across participants, while
there were only 6 time-outs and 5 incorrect answers with
ConSet, there were 30 time-outs and 10 incorrect answers
with VennMaster. With VennMaster no one could com-
plete task 3, 4, and 5 within the 3 min time limit. However,
7, 6, and 5 participants answered correctly with ConSet for
task 3, 4, and 5, respectively. We believe this is because
ConSet provides good support for showing the names of
elements. For task 6, two participants forgot how to use
diagram ordering in ConSet. Two participants were not
able to complete for task 9 and one for task 1 and 5 with
ConSet. Fig. 12 shows average task completion times
(time-outs were not included in the task time analysis).
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When asked which interface they preferred overall, 6 out
of 7 participants chose ConSet over VennMaster. The rea-
sons from participants include ‘‘I was able to complete all
tasks,’’ ‘‘I like interactive highlighting,’’ ‘‘more user-
friendly,’’ and so on. One participant who preferred Venn-
Master said that it is simple and she got used to it. She also
said that she might change her preference if she gets com-
fortable with the Permutation Matrix view by using it
more. And one other participant who preferred ConSet
said that more training time is needed to get used to
ConSet.

6.4. Limitations

As we mentioned at the beginning of this section, we
performed a preliminary usability study on ConSet, but
we also tried to augment our study by comparing the
most comparable tool, VennMaster. Since we measured
the time and accuracy, our study could be considered
as a controlled user study. From that perspective, there
are limitations of our study. First of all, seven subjects
and a total of 63 data points per UI can certainly cause
some concern over the solidity of the analysis. It is nec-
essary to increase the number of subject at least to the
double to make the findings valid and generalizable. Sec-
ondly, the emphasis on task completion time over accu-
racy in the instructions to subjects might be unrealistic
since getting an answer correctly is more important than
getting it quickly in reality. Lastly, while we allowed sub-
jects to use the two tools until they felt comfortable with
the tool after the training session, 10 min training time
still might be too short for subjects to get familiarized
with the UIs.

7. Conclusion and future work

We developed a general set visualization tool called
ConSet built upon the permutation matrix, which supports
important tasks for concordance analysis of sets and ele-
ments. ConSet shows an overview of relationships among
sets and helps users efficiently perform fundamental set
operations such as intersection and difference. It provides
the top 10 collections of sets that are most similar, mea-
sured either by the number of common items or by the
overlap metric. ConSet also enables users to aggregate
and filter sets and elements, which improves the scalability.

Permutation matrix display makes it possible to avoid
the problem that too many sets overlap in the general Venn
diagrams. Another strength of the permutation matrix is
that it provides better support for showing the names of
elements. ConSet performed much better when tasks
required users to access information through elements.
Our Fan diagram addresses the inconsistencies that may
occur in Venn diagrams: showing invalid areas, missing
valid areas, and the size inconsistency. It also provides
exact size coding of all areas. The intersection of three sets
is clearly visualized as an inner concentric circle.
We conducted a qualitative user study to evaluate how
our tool works in comparison with a traditional set visualiza-
tion tool based on a Venn diagram. In addition to the usabil-
ity problems identified in ConSet, we observed that users
completed more tasks with fewer errors with ConSet than
with the traditional interface and most users preferred Con-
Set. However, our user study had several limitations to be
considered a controlled user study. Our future work includes
improving ConSet by fixing the usability issues identified and
performing more thorough controlled user study with
enough subjects. Furthermore, we believe that Fan diagrams
alone deserve a controlled user study in comparison with tra-
ditional Venn diagrams. Another interesting future work
regarding evaluation could be a longitudinal case study with
ConSet. Such case studies can complement controlled user
studies with predefined simple tasks in a short period of time,
since they are done in more realistic settings with actual data-
sets for a long period of time.
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