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Abstract

We present a framework for grouping and recognition of
characters and symbols in free-form ink expressions. Ini-
tially each of the strokes on the page is linked in a prox-
imity graph. A discriminative classifier is used to classify
connected subgraphs as either making up one of the known
symbols or perhaps as an invalid combination of strokes
(e.g. including strokes from two different symbols). This
classifier combines the rendered image of the strokes with
stroke features such as curvature and endpoints. A small
subset of very efficient features is selected, yielding an ex-
tremely fast classifier. Dynamic programming over con-
nected subsets of the proximity graph is used to simulta-
neously find the optimal segmentation and recognition of
all the strokes on the page. Experiments demonstrate that
the system can achieve 94% segmentation/recognition ac-
curacy on a test dataset containing symbols from 25 writers
held out from the training process.

Keywords: symbol recognition, handwriting, segmenta-
tion, mathematics recognition

1 Introduction

Handwritten text recognition is a maturing technology
that has spawned many software products. In these systems
the user writes words in a structured fashion, either along
a line or in an “input region”. The recognition system can
then process the entire line of text using dynamic program-
ming to find the optimal recognition and segmentation of
the strokes. When freed from the rigid “input region” re-
quirement, users frequently generate free form handwritten
notes which include handwritten text, diagrams, and anno-
tation. These notes require significant initial processing in
order to group the strokes into “lines” of text which can
then be passed to the recognizer (see for example [10]). The
grouping process is inherently difficult, and the best perfor-
mance is achieved for simple paragraph structures in which
there are a number of longer lines physically separated from
drawing and annotations. While the grouping process could

be integrated with the recognition process, the complexity
of connected cursive recognition favors the two step pro-
cess in which grouping precedes recognition. While it is
very likely that an integration of segmentation and recogni-
tion would yield better results, the added performance does
not justify the added complexity.

There are however a number of ink recognition problems
which provide few constraints on the high-level layout of
the page (Figure 1). One example is mathematical equa-
tion recognition, which incorporates many types of geomet-
ric layouts and symbols. Other examples include chemical
structures, editing marks, musical notes, and so on. We be-
lieve that these scenarios are particularly important to pen
computing because they exploit the flexibility of a pen to
quickly express spatial arrangements, which is something
that is currently difficult using a mouse and keyboard alone.

Therefore, we pose the problem of a symbol detector
that performs integrated segmentation and classification of
symbols over a page of handwritten ink. The detector
should not constrain writing order, because it is common
to ink extra strokes to correct characters after the fact. It
should not make strict assumptions about the layout of the
page. It should also scale to large pages of ink such as
freeform notes, which can contain thousands of strokes in
some cases.

Layout and timing-insensitive character recognition and
segmentation is not an easy problem. The recognition of
symbols is a well-known problem, for which many methods
have been proposed [3]. The handwriting recognition com-
munity has developed countless techniques for optimizing
segmentation and recognition over a fixed spatial or tem-
poral order, and for recognizing isolated characters [8, 12].
The closest related systems are those that deal with the pro-
cessing of mathematical expressions [2, 4, 6, 7, 11]. Unlike
some of these systems, we are trying to solve a problem
that does not require time ordering of strokes, does not re-
quire a linear organization of strokes on the page, and deals
in a principled fashion with symbols that contain multiple
strokes, some of which can be interpreted in isolation as
another symbol.

In this paper, we propose one approach to symbol detec-



Figure 1. . The pen is a particularly useful input device when layout is unconstrained, as is the case in (a)
mathematics, (b) chemistry, and (c) document annotations.

tion in online handwritten ink. The approach uses only the
spatial information from the ink and the stroke segmenta-
tions. As a preprocessing step, it first builds a neighborhood
graph of the ink in which nodes correspond to strokes, and
edges are added when strokes are in close proximity to one
another. Given this graph, we iterate efficiently over con-
nected sets of nodes in the graph using dynamic program-
ming and fast hashing on collections of nodes. For each set
of node of up to size K, we perform a discriminative classi-
fication on the set. This allows us to incorporate non-local
information that rules out spurious answers that might result
from a generative model. We use dynamic programming to
optimize over the space of possible explanations.

The paper is organized as follows. In Section 2 we in-
troduce our problem as the optimization of a cost function
over different groupings and recognition alternatives. We
describe our optimization procedure, which leverages spa-
tial constraints, dynamic programming, and fast classifica-
tion of subsets of strokes. In Section 3 we describe our fast
classifier and its features. We use a multi-class AdaBoost
classifier and AMAP-style features. In Section 4, we de-
scribe our evaluation. We ran experiments over a corpus of
mathematical equations and symbols whose results validate
our approach. We then conclude and suggest future work.

2 Optimized Recognition and Grouping

We approach symbol recognition and grouping as an
optimization problem. From a page of ink we construct
a neighborhood graph G = (V , E) in which the vertices
V correspond to strokes, and edges E correspond to neigh-
bor relationships between strokes, as shown in Figure 2.
From this point forward, we will use the terms strokes and
vertices interchangeably.

In our system, vertices are neighbors if the minimum dis-
tance between the convex hulls of their strokes is less than a
threshold. However, we expect that any reasonable prox-
imity measure would generate similar recognition results

Figure 2. (a) A simple mathematical expression,
and (b) its corresponding neighborhood graph.

as long as the neighborhood graph contains edges between
strokes in the same symbol. We use the neighborhood graph
to spatially constrain the optimization.

Based on this representation we want to find the best
grouping and labeling of strokes that minimizes a global
cost function:

C(V, E) = min
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R(V, X(V, E)) if |V | ≤ K

min
V ′ ⊆ V

|V ′| ≤ K,

con(V ′, E)

Φ(R(V ′, X(V ′, E)), C(V − V ′, E − E′))

In this function:

• C(V, E) represents the best cost of grouping a set of
vertices V .

• R(V ) is the cost of symbol recognition on that set of
strokes, such as the negative log likelihood according
to a classifier. We constrain all symbols to be less than
a constant K strokes.

• Φ(c1, c2)is a combination cost of two sets of nodes,
such as c1 + c2. We have explored several cost func-
tions and describe these below.
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• The constraint con(V ′, E) requires that the vertices V ′

be connected in the neighborhood graph G.

• X(V , E) is the context of the vertices, which is ex-
plained below in Section 2.3.

• E′ is the subset of edges in E that touch any of the
vertices in V ′.

To implement this optimization efficiently, we need a way
to iterate over valid sets V ′ (graph iteration), an efficient
and accurate symbol recognizer R(recognition cost),a cost
function to combine the cost of two subgraphs (combination
cost), and a way to reuse computation (dynamic program-
ming). A prerequisite for both graph iteration and dynamic
programming is fast hashing on strokes, and we describe
this first. In the remainder of this section we explain the
rest of our optimization. In the next section we cover the
details of our recognizer.

2.1 Stroke Hashing

A useful utility for both graph iteration and dynamic pro-
gramming is a method for constant-time lookup of subsets
of the graph. To hash on strokes, we use an XOR-based
hash function on the stroke ID’s. XOR is useful because it
can be used to quickly add or remove strokes from an exist-
ing hash key.

H(V ) = v0 ⊕ v1 ⊕ · · · ⊕ vN where V = {v0, v1, · · · , vN}
H(V ′′) = H(V ) ⊕ H(V ′) where V ” = V ∪ V ′

Thus we can incrementally compute the hash function on
subsets of the strokes, requiring minimal computation for
each lookup.

2.2 Graph Iteration

The first implementation detail of the optimization is a
technique to enumerate connected subgraphs of the neigh-
borhood graph. We wish to enumerate all connected subsets
of the nodes V ′ in V where |V ′| ≤ K. Each subset V ′

becomes a symbol candidate for the recognizer.
To our knowledge, there is no efficient way to enumer-

ate subsets of up to size K without duplicating subsets.
Stroke hashing allows us to quickly remove duplicate sets,
so one naı̈ve approach is to perform a bounded depth-first
search from each vertex in the graph. A more sophisti-
cated approach is to enumerate all subsets of size 1, ex-
pand each subset by all of the edges on its horizon, elim-
inate duplicates, expand again, and so on, up through size
K. This eliminates the propagation of duplicates through
each round.

Consider the graph from Figure 2. The subsets that get
generated for this graph are {1}, {2}, {3}, {4}, {1, 2}, {2,

3}, {2, 4}, {3, 4}, {1, 2, 3}, {1, 2, 4}, {2, 3, 4}, {1, 2, 3,
4}.

2.3 Recognition Cost

The second implementation detail of the optimization
process is the recognition cost R( ) (see Section 3 for a
detailed discussion). The simple requirements are that R

should return relatively low costs for subsets of the graph V ′

that correspond to symbols (such as in Figure 3(a)). Simi-
larly, R should return relatively high costs for subsets of the
graph that do not correspond to symbols (such as in Figure
3Figure 3Error! Reference source not found.(b) ).

In fact, this is not as easy as it sounds. Many of the sub-
sets V ′ that are passed to the recognizer are invalid, either
containing strokes from multiple characters or do not con-
tain all the strokes of a multi-stroke symbol. We call such
subgraphs garbage. While some of the garbage doesn’t look
like any symbol in the training set, some invalid examples
are indistinguishable from training samples without the use
of context. For example a single stroke of an X can be easily
interpreted in isolation as a back-slash (Figure 3(c)).

Therefore we also pass the context X(V ′, E) into the
recognizer to help it spot garbage. We define the context to
be the set of nodes in V − V ′ that are connected to V ′ in I,
and show an example in Figure 3(d).

2.4 Combination Cost

The third implementation detail of the optimization is
the combination cost, Φ(c1, c2). The combination cost is a
function of the costs of the two subsets of the graph. We
considered several alternative costs:

• Sum. Φ(c1, c2) = c1 + c2 + ε. The sum of the
costs makes intuitive sense: if the costs are negative
log likelihoods then the sum corresponds to a product
of probabilities. The ε penalty can be used to control
over/under segmentation (higher values of ε force seg-
mentation into fewer symbols).

• Max. Φ(c1, c2) = Max(c1, c2). This function penalizes
the worst hypothesis in the set.

• Average. Φ(c1, c2) = (c1 + ωc2)/(1+ω). This function
averages the scores across all of the symbols in the hy-
pothesis. ω is a weight corresponding to the number of
symbols in the best interpretation for V − V ′.

2.5 Dynamic Programming

Finally, Because the function we wish to optimize
cleanly partitions the graph into a combination of R(V ′)
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Figure 3. . Results on 3840 symbols in the context of generated mathematical expressions.

Figure 4. A set of inputs to the recognizer. (a) A full symbol that is passed as a candidate to the recognizer. (b)
Undersegmented garbage that is passed as a candidate to the recognizer. (c) Garbage that is ambiguous with a
back-slash when passed to the recognizer without context. (d) Neighborhood context that makes the stroke in
(c) unambiguously garbage.

and C(V − V ′,E − E′), we are able to use dynamic pro-
gramming to avoid redundant computation. In other words,
if we have already computed C for a subset of strokes in
the neighborhood graph, we can reuse the result. Using
the stroke hashing technique described above, dynamic pro-
gramming is simply implemented with a hash table (also
known as memoization).

3 AdaBoost Discriminative Symbol Recog-
nizer

The recognizer utilized in the dynamic programming
system described above is based on a novel application of
AdaBoost [5]. The primary input to the classifier is a ren-
dered image of the strokes that comprise the hypothetical
character (recall that since we do not yet know the segmen-
tation of the strokes, strokes may not make up a character at
all).

The basic framework used is most closely related to the
work of Viola and Jones, who constructed a real-time face
detection system using a boosted collection of simple and
efficient features [13]. The Viola-Jones approach is distin-
guished because it classifies images extremely rapidly and
reliably. We chose this approach both because of its speed
and because it is easily extensible to include additional fea-
ture information.

We have generalized Viola-Jones in two ways: our clas-
sification problem is multi-class, and we have added ad-
dition input features to the image map. These additional
features are computed directly from the on-line stroke in-
formation and include curvature, orientation, and end-point
information. While we believe that this information could
be computed directly from the image, this information is
only currently available from on-line systems.

The input to the recognition system is a collection of
images. The two principle images are the candidate im-
age and the context image. The candidate image is quite
conventional, the strokes of the current candidate sub-graph
are rendered into an image which is 29x29 pixels. The ge-
ometry of the strokes is normalized so that they fit within
the central 18x18 pixel region of the image. Strokes are
rendered in black on white with anti-aliasing. The context
image is rendered from the strokes which are connected to
some candidate stroke in the proximity graph. As described
above the context strokes are useful in the interpretation of
multi-stoke characters such as ‘=’ (equals), ‘+’ (plus), and
‘4’ (four). Since the DP process enumerates all subsets of
strokes, it will generate candidates which include only 1 of
the strokes in the before mentioned two stroke characters. In
these cases it is the task of the recognizer to determine that
this single stroke is not any valid symbol. Without context,
these single strokes are easily interpretable as valid symbols
(for example, the plus is comprised of a ‘-‘ (minus) and a ‘1’
(one) ). See 3.2 for an example of these principle images.

3.1 Additional Feature Images

Each of the principle images are augmented with addi-
tional stroke feature images. This is much like the earlier
work on AMAP [3].1]. Each additional image is associated
with a type of stroke feature which has been determined
empirically. Currently there are four such images, though
it is easily possible to add more. The first additional image
records the curvature at each point along each stroke. The
curvature is measured as the angle between the tangent at
the current point and the tangent at the previous point. Both
of these tangents are measured using a pair of nearby points
along the stroke path that are at least 1.5 pixels distant from
the current point (note that after geometrical normalization
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Figure 5. The left most images in each row are the
candidate and context images rendered at 29x29
pixels. The remainder of each row shows various
feature images computed from these principle im-
ages. From left to right: stroke curvature, stroke
normal X, stroke normal Y, and endpoints.

the strokes are represented using floating point coordinates).
The angle between the tangents is a signed quantity that de-
pends on the direction of the stroke, which is undesirable.
The absolute value of this angle provides direction invariant
curvature information (see 3.2).

Two additional feature images measure orientation of the
stroke. Orientation is a difficult issue in image processing,
since it is naturally embedded on a circle (and hence 2π

is identical to 0). We have chosen to represent orientation
in terms of the normal vector (perpendicular vector) to the
stroke (which is measured from the same nearby points used
to measure curvature). The normal is a vectorial quantity
and its two components are represented as two images the
normalX image, and the normalY image. Note, each point
on the stroke has two normals (which are opposite in di-
rection). We choose the normal which has a positive dot
product with the previous tangent (see 3.2).

The final additional feature image contains only the end-
points of the strokes, rather than the entire stroke. This mea-
sure can be useful in distinguishing two characters which
have much ink in common, but have a different start and
end point, or a different number of strokes (for example ‘8’
and ‘3’) (see 3.2).

3.2 The Viola-Jones Filters

The feature images described above are not used directly
by the classification process, instead a very large set of sim-
ple linear function are computed from these images. These
filters were proposed by Viola and Jones for the rapid de-
tection of faces in natural images. They call each of these
linear functions a ‘rectangle filter’, and each can be eval-
uated extremely rapidly at any scale (see 3.3). The filters
measure the differences between region averages at various
scales, orientations, and aspect ratios. The rigid form of
these features arises from the fact that each can be computed

Figure 6. Example rectangle filters shown relative
to the enclosing classificationwindow. The sum of
the pixels which lie within the white rectangles are
subtracted from the sum of pixels in the grey rect-
angles. Rectangle filters which contain two rect-
angles are shown in (A) and (B). Figure (C) shows a
three-rectangle filter, and (D) a four-rectangle filter.

extremely rapidly, in 6 or fewer add/multiplies. Though the
form of these features makes them somewhat limited, ex-
periments demonstrate that they provide useful information
that can be boosted to perform accurate classification.

For these experiments a set of one and two rectangle fil-
ters were constructed combinatorially. A set of filters of
varying location, size, aspect ratio, and location are gener-
ated. The set is not exhaustive; some effort is made to min-
imize overlap between the filters, but it does contain 5280
filters. Such a large set is clearly overcomplete in that re-
quires only 841 linear filters to reconstruct the original 29
by 29 image. Nevertheless this overcomplete basis is very
useful for learning.

Since a rectangle filter is a function of single input im-
age, the 5280 filters can be evaluated for each of the 10 fea-
ture images, yielding a set of 52,800 filter values for each
training example. Clearly some approach for selecting a
critical subset of these will improve performance.

3.3 AdaBoost Feature Selection and Learning

The above sections describe a processing pipeline for
training data: a rendering process for candidate and con-
text, a set of additional feature images, and set of rectangle
filters. The machine learning problem is to generate a clas-
sifier for this data which correctly determines the correct
symbol of the candidate strokes, or possibly that the set of
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strokes is garbage. We use AdaBoost to learn a classifier
which selects a small set of rectangle filters and combines
them.

For these experiments the “weak learner” is a classifier
which selects a single rectangle filter and applies a threshold
(this is a type of decision tree known as a decision stump).
In each round of boosting the single best stump is selected,
and then the examples are reweighted. We use the multi-
class variant of confidence rated boosting algorithm pro-
posed by Schapire and Singer [9].

After N rounds, the final classifier contains N weak
classifiers. Since each weak classifier depends on a single
rectangle filter only N filters need to be evaluated. Excel-
lent performance is achieved with between 75 and 200 fil-
ters. On a training set of 3800 examples from 25 writers, 0
training errors is observed with 165 weak classifiers. On a
test set of 3800 examples from a different set of 25 writers
96% of the characters were classified correctly.

4 Evaluation

To evaluate our approach, we ran tests on a corpus of
automatically-generated mathematical expressions. We col-
lected a very modest set of handwritten characters, digits,
and mathematical operators from 50 users with 5 exam-
ples per class. Of these examples, we synthesized short ex-
pressions containing digits and operators with a generative
grammar (Figure 6). Our generated expressions are inten-
tionally dense, in order to make the segmentation problem
more interesting. Also it is worth noting that although each
of our test examples is horizontally-oriented, our technique
applies independent of the layout. We have manually ap-
plied the technique to examples with more interesting lay-
outs and show that it works in practice, although our test
data does not reflect this condition.

Figure 7. Collected truth data is rendered into two
sets of mathematical expressions, which serve as
training and test data, respectively.

We separated the generated expressions into training and
test data, such that 25 users’ data made up the training set

and the other 25 users made up the test set. This split en-
sures that we are testing the generalization of the classifier
across different populations.

We applied the above system to the test data with three
different combination cost functions: sum, max, and avg, as
described in Section 2.4. For sum we varied the value of
ε to see its effect on the overall accuracy. For all of these
approaches we measured the total number of symbols in the
test data, the total number of false positives and false neg-
atives in the results. A false negative occurs any time there
is a group of strokes with a specific symbol label in the
test data, and that exact group/label does not occur in the
test data. A false positive is the converse. Our best results
are 94% accuracy for segmentation and labeling for the avg
combination cost. The full results are shown in Figure 3.

Cost False Pos False Neg Total
Sum (ε = -.2) 299 243 3840
Sum (ε = -.25) 308 248 3840
Max 267 243 3840
Avg 225 202 3840

5 Conclusion

This paper presents an integrated segmentation and
recognition system of on-line freeform ink. Segmentation,
or equivalently grouping, is a requirement for recognition
in such tasks because each symbol may have a number of
strokes. Simple heuristics that group intersecting strokes
may work in some cases. In domains which include multi-
stroke symbols such as ‘=’ (equals) or ‘π’ (pi), these heuris-
tics fail. Conversely, it is not uncommon to see strokes from
different characters come very close to or intersect each
other.

This integrated system first constructs a proximity graph
which links pairs of strokes if they are sufficiently close to-
gether. The system then enumerates all possible connected
subgraphs looking for those that represent valid characters.
The notion of proximity is defined so that strokes from the
same symbol are always connected. This definition of prox-
imity will necessarily link strokes from neighboring sym-
bols as well. These connected subgraphs are not inter-
pretable as a valid symbol, and will be discarded as garbage.
Note, a garbage subgraph can also arise if a symbol is over-
segmented: e.g. only one of the strokes in a multi-stroke
character is included. A fast classifier based on AdaBoost is
trained to recognize all symbol classes as well as a unique
class called garbage, which includes subgraphs of strokes
that are not valid. In order to address the oversegmentation
problem, the classifier operates both on the current candi-
date strokes as well as the context of the surround strokes.
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Dynamic programming is used to search for the mini-
mum cost decomposition of the initial proximity graph into
connected subgraphs, each of which can be interpreted as
a valid symbol. The set of all possible connected sub-
graphs is efficiently enumerated using an incremental hash-
ing scheme which grows subgraphs one node at a time and
efficiently removes duplicates.

The recognizer is trained on symbols which come from
25 writers. The final system achieves a 94% simultaneous
segmentation and recognition rate on test data from 25 dif-
ferent users which was not used during training.
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