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ABSTRACT
Executing binaries without interference by an outside adversary
has been an ongoing duel between protection methods and at-
tacks. Recently, an efficient kernel-patch attack has been pre-
sented against commonly used self-checking code techniques that
use checksumming ahead of execution. While methods based on
self-modifying code can defend against this attack, such techniques
depend on low-level architectural details and may not be practical
in the long run. An alternative defense is to use oblivious hashing
(OH). Instead of checking code integrity prior to execution, OH
can verify untampered runtime behavior continuously. However,
earlier OH approaches have some weaknesses, particularly with
binary code: Physical instruction bytes cannot be easily checked
during execution, and an attacker may be able to detect and remove
OH checks, since OH alone does not provide tamper-resistance or
obfuscation.

In our approach, we deliberately overlap a program’s basic
blocks so that they share instruction bytes. This increases tamper-
resistance implicitly because malicious modifications affect mul-
tiple instructions simultaneously. Also, our scheme facilitates
explicit anti-tampering checks via injection of OH instructions
overlapped with target code, enabling OH that can verify in-
tegrity of both runtime state and executing instructions. Thus,
our method addresses anti-checksum attacks without resorting to
self-modifying code, and also extends OH to verify physical code,
not only program state. In addition, overlapping facilitates resis-
tance against disassembly and decompilation. Our approach works
on processor architectures and byte-codes that support variable-
length instructions. To our knowledge, this is the first technique
that blends tamper-resistance into architecture and therefore sig-
nificantly improves robustness of binaries.

Categories and Subject Descriptors
D.m [Software]: Miscellaneous—Software protection; C.5.0
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1. INTRODUCTION
Protecting media players against deliberate attacks is becoming

increasingly important on today’s Internet. Software pirates often
compromise player software to remove copy-protection and wa-
termarks from digital content. In addition, computer viruses turn
normal PCs into malicious attack hosts that hit the net almost every
day, thereby slowing down servers and network access.

On open platforms such as PCs, virtual memory provides pro-
tection among processes, but an adversary with access to the OS
kernel is able to take over and tamper with any process. To pro-
tect against these attacks in software, various methods for tamper-
resistance have been developed (e.g., [8, 13, 26]). These turn a
program P into an equivalent tamper-resistant program P′ = O(P),
which detects manipulation attempts. However, P′ is commonly
based on techniques that verify code integrity before execution
takes place. With full access to the PC, an attacker can circumvent
these protection schemes – e.g., by tampering with the code af-
ter the integrity check takes place, or by executing tampered code
while passing original code to checksum and hash routines [47].
Self-modifying code can protect against this type of attack [25],
but may not always be viable, since low-level operations can be
obstructed by specific architectural features (e.g., the execute-only
bit on the x86 platform).

In contrast to other checksumming techniques, oblivious hash-
ing (OH) does not verify machine-code bytes, but computes input-
specific hashes based on program state during execution [29, 14,
35]. After initializing a hash, OH typically updates it with results
of variable assignments, as well as with unique identifiers based
on executed branches. At various points in a program, OH verifies
the current hash against a pre-computed correct hash. Alternately,
OH may compare hashes computed by two or more individualized
replicas of the same code.

While OH has been implemented for high-level code [14] and
Java byte-code [35], OH has seldom been investigated on low-



level binary code. Such code has inherent properties that com-
plicate reverse engineering, thus providing leverage for tamper-
resistance when coupled with source-level methods. In partic-
ular, anti-disassembly techniques have drawn some attention re-
cently [19]. Lack of correct disassembly increases the difficulty of
reconstructing source code and tampering with execution. How-
ever, previous anti-disassembly approaches have suffered from
some vulnerabilities [31].

In this paper, we pursue a novel direction and approach the
problem of tamper-resistance from an architectural perspective that
goes beyond anti-disassembly. As a central element of our meth-
ods, code overlapping allows pervasive sharing of code on dif-
ferent levels. This technique not only hinders code tampering,
but also provides a significant improvement for anti-disassembly
methods. In particular, we analyze and address the problem of
quick disassembly resynchronization, which is a serious drawback
of earlier techniques.

1.1 Overlapped Instruction Encodings
Code overlapping uses two different techniques:

• Code interleaving creates a new overlapped code block from
two basic blocks by injecting additional redundant instruc-
tions. This overlapped block has two different entry points,
one for each original block, and also hides one of the basic
blocks from disassembly. To ensure security against substi-
tution attacks [40], we protect the basic-block edges in the
control-flow graph with computed branches that are hard to
invert (e.g., via opaque predicates [18]).

• Code outlining increases the level of shared code in a pro-
gram by creating a new function for two or more opera-
tionally equivalent code blocks. Any instruction the adver-
sary changes in the outlined code modifies execution along
two or more distinct control-flow paths. This creates prob-
lems for an attacker wishing to patch only one path.

We propose code overlapping as a novel comprehensive design
for a binary-level tamper-resistance system. Our aim is to extend
OH-based integrity checks to binaries and byte-codes in a secure
and practical manner. Like standard OH, our construction can hash
pure program state, but code overlapping adds the capability to in-
clude code bytes in the hash. This combines traditional code-byte
checksums [13, 26] and program-state hashes, enabling more com-
prehensive tamper-resistance. In addition, our approach offers a
method to hash code bytes without explicit access to physical code
segments in memory. As with other integrity-checking methods,
however, our proposal is intended as just one building block of an
effective protection system.

Our main contributions are as follows:

• We find that commonly used anti-disassembly methods are
not effective, even against a weak adversary, and require sig-
nificant overhead. In particular, two instruction sequences
usually resynchronize after a few instructions because of the
Kruskal Count [32].

• We analyze limitations of previous approaches to OH and
roadblocks against effective usage of code sharing in com-
mon binary code.

• We introduce two techniques for code overlapping – code
outlining and code interleaving – that enable sharing of code

bytes on x86 and byte-code platforms to protect against dis-
assembly and tampering.

• In addition to checking machine state, we use code overlap-
ping to check code in memory during execution. This is an
important step to prevent anti-checksum attacks without re-
sorting to self-modifying code [47].

• Via a tool implementation, we show how to use code over-
lapping to realize secure OH for x86 native code. Using the
SpecCPU2000 benchmark suite, we verify the practicality of
this approach.

2. OBLIVIOUS HASHING FRAMEWORK
Oblivious Hashing (OH) is a state-of-the-art technique to protect

program execution against tampering. OH transforms programs
by injecting code that computes hashes over deterministic runtime
state. After hash initialization at chosen program locations, OH
updates hashes with variable assignments and unique identifiers
based on runtime control flow. At various points during execution,
a verifier checks hashes against pre-computed values to detect tam-
pering an adversary may have undertaken [29, 14, 35]. Alternately,
the verifier may compare hashes computed by two or more individ-
ualized code replicas.

OH alone does not provide a cryptographic security model with
formally analyzable properties, but complicates manual and auto-
matic reverse engineering heuristically. We assume that an adver-
sary can use disassemblers, debuggers, and other tools for both
static and dynamic analysis. This is similar to most practical
software-protection approaches that undergo the typical design-
and-attack cycle (e.g., [28, 15]). Even in cases where some security
modeling and analysis are given [44], it is often possible in practice
to avoid the need to solve any stipulated hard problems. Nonethe-
less, OH can serve as a crucial building block in certain tamper-
resistance frameworks designed for analyzable security [20].

OH and other techniques are useful as heuristic building blocks
of comprehensive protection systems, with real-life security de-
termined by quality of engineering, implementation, and penetra-
tion testing. More formally, given instructions I = {i0, i1, ..., in}
of a program, we compute an oblivious hash over the instruction
counter C, memory state M, and input parameter P. For the execu-
tion trace T , let H(T ) denote the hash:

H(T ) = H(I, M, C0, M0, P)

where C0 and M0 are the initial instruction counter and memory
state, respectively. If H(T ) is not a valid hash, additional injected
code in the program will detect this after hash computation.

Figure 1 shows an example of OH at the source-code level. The
main idea is to initialize a hash value and subsequently update it
upon every assignment and control-flow transfer in the code. For
an assignment, we update the hash by combining it with the value
being assigned; for a control-flow transfer, we combine the hash
with a unique basic-block identifier. The update operation may be
accomplished via some combination of bitwise and arithmetic op-
erations, or via a cryptographic hash function, such as SHA-256.
While the former has better performance and is easier to blend in,
the latter may be preferable for security reasons, though attacks in
practice likely will not depend on cryptanalyzing the hash. Finally,
a hash may be verified against a pre-computed “correct” hash at
various chosen locations in the code. Alternately, to avoid the need
for hash pre-computation, two or more (individualized) replicas of



int x = 123;

if (GetUserInput() > 10)
{

x = x + 1;
}
else
{

printf("Hello\n");
}

INITIALIZE_HASH(hash1);

int x = 123;
UPDATE_HASH(hash1, x);

if (GetUserInput() > 10)
{

UPDATE_HASH(hash1, BRANCH_ID_1);
x = x + 1;
UPDATE_HASH(hash1, x);

}
else
{

UPDATE_HASH(hash1, BRANCH_ID_2);
printf("Hello\n");

}

VERIFY_HASH(hash1);

1: Oblivious hashing in source code: Oblivious hashing injects hashing
instructions into the original program (top). The resulting code is shown
on the bottom.

the same code can compute and compare hashes, flagging a tam-
pering attempt if hashes fail to match.

B1 B2

C1 C2

B1 B2 C1C2

2: Checking using overlapped code: OH without overlapped code re-
quires checks to be in sequence with basic blocks (left). In OH that uses
overlapped code, the checker can be interleaved with another basic block,
thus protecting it.

The idea in code overlapping is to tie checking of one basic
block to execution of another basic block. Figure 2 shows the sce-
nario. On the left side, without code overlapping, blocks B1 and
B2 have checkers C1 and C2, respectively. However, with code
overlapping as shown on the right, the checkers are strongly inter-
leaved with the other basic blocks. Instructions of B1 and state of
B2 are checked during execution of B2; also, instructions of B2
and state of B1 are verified during execution of B1. Compared to
common approaches for checking, code overlapping has the fol-
lowing advantages:

• In-place static code-byte checks: The checker does not
need to load instruction bytes explicitly from mem-

ory, which may not even be accessible in the case
of byte-code interpreters. In code overlapping, checks
have the form ’mov eax, 0x81A1903821; call
_check’ instead of ’mov esi, _start; mov eax,
ds:esi; call _check’, where _start denotes the
start of the code segment and _check the checker func-
tion. The immediate operand of the first checking sequence
contains the code bytes at _start. This prevents attacks
in which an adversary monitors memory reads of the code
bytes, since the code bytes are essentially “read” during ex-
ecution.

• Interleaved basic blocks: During execution of one basic
block, at least one other block is checked. An interleaved
block has multiple entry points (one for every original
block), and execution automatically invokes the checkers.
Separating the original basic blocks from the checkers is dif-
ficult, because this also repositions code bytes of the original
basic block.

• Computed branches hiding edges of the control-flow graph:
Given an interleaving of basic blocks B1 and B2, execution
obtains the correct address of B1’s runtime follower only
when the code of B2 has not been tampered and the program
state during execution of B1 is correct. This significantly
limits an adversary’s attacks, because code cannot be easily
moved. When the instruction pointer EIP is incorrect for
the computed jump to the follower, the program will likely
malfunction or crash.

3. CODE OVERLAPPING
Code overlapping can share entire instructions or code blocks,

which may be outlined into separate functions that are called from
two or more distinct control-flow paths; we refer to this as semantic
overlapping. At a lower level, physical overlapping shares bytes
between two (or more) instruction encodings (e.g., via code in-
terleaving). Physical overlapping requires variable-length instruc-
tions and control-flow transfers to byte-aligned addresses, as sup-
ported by today’s popular architectures. However, semantic over-
lapping is architecture-independent and may be done at both the
binary and source-code levels.

3.1 A Simple Method for Code Overlapping
The simplest method for sharing instruction bytes by overlap-

ping is to inject fake instructions into the code. During tamper-free
execution, a fake instruction is never executed. However, when an
adversary tampers with the code, execution may encounter these
fake instructions and cause the application to malfunction.

Figure 3 shows how code overlapping with fake instructions
works: The process takes the original code snippet on the top and
injects two bytes B8 01 to generate a fake instruction. In addition,
an inserted branch instruction preserves the original execution or-
der. During a correct execution without tampering, the fake mov
instruction is always unreachable, because the outcome of the jne
instruction always circumvents it. Since the branch target is not the
address of any instruction in the straight-line disassembly, the ad-
versary may assume that the branch is not taken and may not find
the protected shl instruction.

This approach is also a popular technique against correct dis-
assembly [19]. The straight-line disassembly of the previous ex-
ample code never shows the protected shl instruction in the clear.



I: C1 E1 02 shl eax, 2
41 inc eax

O: C3 ret

I: 3D FF 00 00 00 cmp eax, 0xff
EB 02 jne X

I1: B8 01 mov eax, ...
X: C1 E1 02 shl eax, 2

90 nop
41 inc eax

O: C3 ret

I: 3D FF 00 00 00 cmp eax, 0xff
EB 02 jne <invalid>

I1: B8 01 C1 E1 02 90 mov eax, C1E10290
41 inc eax

O: C3 ret

3: Code overlapping with fake instructions: Code overlapping injects
fake instruction into the original instruction sequence (top), resulting in the
code sequence in the middle. An adversary sees the broken instruction
sequence on the bottom.

However, it is relatively easy to circumvent this protection – a dis-
assembler simply needs to probe different byte offsets following a
suspicious branch instruction [31].

In addition, the number of instructions that code interleaving is
able to protect with fake instructions is very limited. Disassem-
bly resynchronizes very quickly – in only 2-3 instructions on aver-
age – because of a mathematical phenomenon called the Kruskal
Count [32]. This models resynchronization in a random sequence
of instruction lengths. Initially, disassembly and program execu-
tion may be off by k bytes. However, when a disassembler contin-
ues decoding instructions in a straight-line sequence, the instruc-
tion streams resynchronize after an expected O(logk) steps.

3.2 Resynchronization of Disassembly
At first glance, constructing overlapped code seems to be an

art by itself. First of all, generating instructions that are part of
other instructions is limited on most architectures. In general,
this is only possible with variable-length instruction sets like x86.
Even after constructing one overlapped instruction, the next one
needs to follow soon in the code, because the code will eventu-
ally resynchronize. This has been assumed in previous work on
anti-disassembly [19, 31], but here we give a precise mathematical
explanation – The Kruskal Count.

The Kruskal Count is best explained as a card trick: Given a
shuffled card deck, a magician asks a subject to choose a secret
number between 1 and 10. The magician turns around card af-
ter card, and every time the subject decreases the counter by 1.
When the count reaches 0, the first tapped card occurs in the stack,
and the subject sets the counter to the value on the card. The ma-
gician also secretly picks a number and follows the same proce-
dure as the subject. They continue with this procedure until the
card deck is exhausted. Surprisingly, they eventually both end at
the same card, and the magician is able to “guess” the subject’s
last tapped card. In code interleaving with fake instructions, the
game is similar. The correct offset for disassembly is hidden in
the code, while disassembly begins at a different nearby offset.
When the instruction lengths are drawn unpredictably, as is the

case with compiler-generated code, the correct and actual disas-
semblies eventually resynchronize. The question is how we can
achieve the best strategy to prevent this resynchronization.

The model of the Kruskal Count is similar to a leapfrog game on
two differently shuffled card decks. Player 1 has a white leapfrog
and player 2 has a black leapfrog. Both leapfrogs mark the next
tapped card. We now use a Markov Chain to model the game – the
difference between the white and the black leapfrog is basically
the state information of the Markov chain. If we model the card
deck as a uniformly distributed card deck as shown in [32], the
probability for resynchronization at step t after N cards of a card
deck that has B different values is about

P[t > N] = e−
4

B2 +O
(

1
B3

)
when N → ∞. This is basically the distribution for the cou-
pling time of a rapidly mixing Markov chain, and it takes about
fR(B) = B2

16 steps until resynchronization on average. The is the
resynchronization frequency fR that depends solely on B, the aver-
age number of bytes per instruction. The disassembly code resyn-
chronizes every f−1

R instructions. For further details, we advise
the interested reader to investigate the very involving paper on the
Kruskal Count by Lagarias et al [32].

3.3 Code Interleaving
The theoretical limitation in the Kruskal Count complicates

the task of efficiently implementing strong anti-disassembly tech-
niques via overlapped code, because such code requires many in-
direct jumps. In addition, this anti-disassembly is weak and can
be easily broken [31]. Therefore, we extend idea of overlapping
to enhance both anti-disassembly and tamper-resistance by code
interleaving.

Simply sharing code generally improves tamper-resistance, be-
cause an adversary modifies multiple control-flow paths when
changing a single instruction. Code interleaving pushes the idea
of code sharing further, and shares instruction sequences at a finer
granularity. Similar to memory-space-preserving implementations
of error tables in Microsoft Basic on the Altair, interleaved instruc-
tions even mutually share their instruction bytes [24].

In contrast to our earlier anti-disassembly example, we take a
new approach to interleaving instructions and explicitly construct
overlapped code using misaligned instructions. Instead of injecting
only fake instructions, code interleaving includes these instructions
in the actual execution, thereby making it hard to distinguish the
fake instruction from a real one. The branch condition depends on
an opaque predicate to protect against static analysis.

Instead of overlapping the instruction stream with fake instruc-
tions, code interleaving mutually overlaps two basic blocks B1
and B2 of the program into a super-block with multiple entry and
exit points. This construction never resynchronizes; moreover,
when an adversary tampers with the super-block, at least one other
basic block of the program breaks. Furthermore, basic blocks are
hidden within the super-block, and an adversary needs to locate
all the different entry and exit points to discover all hidden basic
blocks.

The essential idea of this integrity-checking method is to inter-
leave (or merge) two instruction sequences in a program, creating
a code block that contains both sequences and two correspond-
ing entry points. The scheme injects jump instructions to preserve
original sequential execution when the program reaches one of the
entry points. The method subsequently replaces these jump in-



structions with special hashing instructions that maintain the same
control flow.

We illustrate this process with the following example in an ab-
stract assembly pseudocode. We assume an assembly language
of instructions encoded via variable-length byte sequences, along
with an architecture that supports control transfer to arbitrary byte
addresses (i.e., we can jump into the middle of instructions). Con-
sider the two instruction sequences below:

SEQ1: INST_1
INST_2

SEQ2: INST_A
INST_B

SEQ1 and SEQ2 denote address labels, while (INSTR_1, IN-
STR_2) and (INSTR_A, INSTR_B) represent arbitrary instruc-
tions in some assembly language or custom byte-code. For clar-
ity, each sequence contains only two instructions. The interleaving
procedure creates the code block below:

SEQ1: INST_1
JMP L2

SEQ2: INST_A
JMP LB

L2: INST_2
JMP L3

LB: INST_B
L3:

Depending on the entry point into this block (SEQ1 or SEQ2),
one of the original instruction sequences will execute. The next
step is to replace the jump instructions with special hash instruc-
tions that do not affect control flow. For example, JMP L2 may
be replaced by an instruction whose size in bytes matches the sum
of the lengths of JMP L2, INST_A, and JMP LB. In the resulting
execution path below, HASH_1 denotes such an instruction:

SEQ1: INST_1
HASH_1
INST_2
HASH_2

SEQ2: INST_A
HASH_A
INST_B

The exact byte encodings of instructions now become important.
We assume that HASH_1 actually contains the bytes of INST_A,
and the address specified by SEQ2 lies somewhere within the en-
coding of HASH_1. Consequently, transferring control to SEQ2
should yield the execution path in SEQ2 on the right-hand side.

As part of their encodings, the hash instructions HASH_1 and
HASH_A contain bytes of the original instructions INST_A and
INST_2, respectively. The hash instructions also may or may not
operate on program state, such as working registers and memory
locations. Thus, execution of the hash instructions can effectively
update hash values based on either the code bytes or both code
bytes and state. Note that this yields code-byte checksums without
explicit reads of code bytes.

As with OH, integrity checks may be performed by verifying
runtime hash values. However, our approach also makes patching
more difficult by using the same bytes to encode two (or more) in-
structions. Thus, attempting to tamper with a particular instruction
may inadvertently alter other instructions, creating problems for a
hacker.

To achieve the overlap properties described above, suitable in-
struction encodings are necessary. Under the x86 architecture, we
have found that usable encodings exist to implement a variety of

possible hash instructions, as described later. However, to maxi-
mize the effectiveness of overlapping instructions, we may also de-
sign our own custom byte-code geared towards self-checking and
other desired security properties [7].

B1:
I10: C1 E0 02 shl eax, 2
I11: 40 inc eax

C3 ret

B2:
I20: 48 dec eax
I21: C1 E8 03 shr eax, 3

C3 ret

I10: C1 E0 02 shl eax, 2
EB 03 jmp I11

I20: 48 dec eax
EB 04 jmp I21

I11: 90 nop
40 inc eax
EB 03 jmp O

I21: C1 E8 03 shr eax, 3
O: 90 nop

C3 ret

4: Interspersing step in code interleaving: Code interleaving takes the
original basic blocks on top and alternates their instructions in the merged
basic block on the bottom.

The above construction consists of two basic steps – interspers-
ing and merging. Figure 4 shows the interspersing step in con-
structing interleaved code. This step combines consecutive in-
structions from B1 and B2, alternating between the blocks, and in-
jects branch instructions to maintain original instruction sequenc-
ing. When execution arrives at I10:, the program executes the
shl instruction and branches to I11:. Alternately, when execu-
tion arrives at I20:, the program executes the dec instruction and
branches to I21:.

Op.-len. Mask-instr. Mask-op. Opcode size Inst.-size
1 byte and al,... 24 ... 1 bytes 2 bytes
2 bytes and ax,... 66 25 ... 2 bytes 4 bytes
4 bytes and eax,... 25 ... 2 bytes 6 bytes
8 bytes and [...],... 23 ... 1 bytes 9 bytes

5: Masking instructions: The number of opcode bytes of the original
instruction followed by the best mask instruction, and the total number
of opcode bytes for the whole masked instruction. The mask instruction
is only an example; many different but equivalent mask instructions are
possible.

In the merging step, code interleaving replaces the interspersed
branch instructions with overlapping instructions that mask out the
instructions from the other basic block. Figure 5 shows examples
for the different instruction patterns that can be used to mask over-
lapped instructions. For the last class of masking instructions, the
code needs to handle exceptions to proceed to the next valid in-
struction. On AMD-64, it is even possible to use up to 64 bits in



the immediate operand. In the last instruction category, this leaves
up to 12 bytes to be used for overlapped code.

In addition, code interleaving needs to align instructions with
NOPs for padding to the next available operand length. During
the instruction selection process for the overlapping instructions,
a register allocator may need to spill registers into memory, but
this paper does not address optimizing performance by limiting
the amount of registers used in these masked instructions.

I10: C1 E0 02 shl eax, 2
81 F1 xor ecx, ...

I20: 48 dec eax
81 E9 sub ecx, ...
90 nop

I11: 40 inc eax
81 C1 add ecx, ...

I21: C1 E8 03 shr eax, 3
90 nop

O: C3 ret

B1:
I10: C1 E0 02 shl eax, 2

81 F1 48 81 E9 90 xor ecx, 90e98148
I11: 40 inc eax

81 C1 C1 E8 03 90 add ecx, 9003e8c1
O: C3 ret

B2:
I20: 48 dec eax

81 E9 90 40 81 C1 sub ecx, c1814090
I21: C1 E8 03 shr eax, 3

90 nop
O: C3 ret

6: Merging step in code interleaving: In the final step code interleav-
ing replaces the branches with overlapping instructions to merge the basic
blocks into one super-block (middle). The original basic blocks have differ-
ent entry points I10 and I20 into the super-block, respectively (bottom).

Figure 6 shows how code interleaving merges two basic blocks
into one super-block. The super-block on the left-hand side con-
tains all instructions, including the overlapping instructions. The
actual execution on the right-hand side traverses only instructions
of either B1 (top) or B2 (bottom).

It is straightforward to apply code interleaving iteratively. In-
stead of a basic block, code interleaving can also process a super-
block and a basic block to generate a new super-block. However,
this technique is not a silver bullet. The maximum number of ba-
sic blocks that we are able to generate iteratively depends on the
maximum number of bytes per instruction. For example, if the
maximum instruction length is six bytes, it is possible to overlap at
most six basic blocks within one super-block.

3.4 Code Outlining
The goal of code overlapping is to share code among multiple

parts of a program. Code interleaving showed us how to merge two
basic blocks to make them dependent on each other. However, this
is most effective when these blocks are frequently used on active
program paths. To help with this, we use semantic overlapping,
which we show how to implement via code code outlining.

As a generalization of tail merging, code outlining generates
shared code on the function level. General outlining is not lim-

ited to procedure epilogues. Similar to common-subexpression
elimination, code outlining locates common instruction sequences
throughout the program, moving them into a new replacement pro-
cedure shared by all callers of the instruction sequence. This oper-
ation is essentially the inverse of inlining. An instruction is outline-
able if it is part of a common instruction sequence, and at least one
other duplicate exists somewhere in the program. As with inlining,
code outlining can take place locally within the same procedure or
globally across multiple procedures.

I: 83 C0 01 add eax, 1
D1 E0 shl eax
33 C1 xor eax, ecx
83 C0 01 add eax, 1
D1 E0 shl eax

O: C3 ret

F: 83 C0 01 add eax, 1
D1 E0 shl eax
C3 ret

I: E8 F5 FF FF FF call F
33 C1 xor eax, ecx
E8 EE FF FF FF call F

O: C3 ret

7: Code outlining: Original instruction sequence with repeating code
patterns (top) versus outlined instruction sequence (bottom).

Figure 7 shows an original instruction stream that contains re-
peating code patterns. Code outlining detects common code pat-
terns and moves them into a separate procedure. The process re-
places the original code patterns by calls to this procedure. After
code outlining, the original basic block looks similar to the one on
the right-hand side in figure 7. Code outlining replaces the code
patterns with calls to the replacement procedure F.

In most cases, code outlining works by simply moving the code
from the program into the replacement procedure F. However,
there are several cases that require special treatment. First, be-
cause of the call statement, the stack pointer is off by one position.
Any code that accesses the stack pointer in F must be adjusted and
rewritten. Similarly, when F contains a branch outside of F, code
outlining needs to insert an instruction that adjusts the stack be-
fore the branch can take place. Second, the destination addresses
of branches into instructions of F must be adjusted properly and
turned into a call statement to ensure that execution returns to the
right place. When the branches are indirect, code outlining needs
some additional information from the compiler to find the correct
instructions for rewriting.

Obviously, code outlining increases the connectivity in the CFG,
because it increases the number of commonly used blocks. Unfor-
tunately, code outlining operations are easily reversible – a com-
mon inlining tool can simply copy the replacement procedures
back into the original instruction sequence. The code contains the
mapping between the caller and the callee in the clear.

To hide these mappings, code outlining uses opaque predicates
or computed branches [18]. The branch function Ψ(x) is hard to
invert, given the outcome of Ψ(x). Given Ψ(x0) = 1, it is diffi-
cult to find an x0 that fulfills the condition; in the case of a com-
puted branch, given an address y, it is hard to find an x0 such
that Ψ(x0) = y. For example, given a one-way function h(x) and



Ψ(x0) = 1 iff Ψ(x0) = {h(x) = x0}, it is hard to invert Ψ(x0), be-
cause inversion of Ψ requires inversion of h(x). Security of opaque
predicates depends on the computational complexity that is neces-
sary to invert them.

_jmp: ...
C3 ret

I: E8 F9 FF FF FF call _jmp
J1: E8 ... call G

...
J2: E8 ... call F

C3 ret

8: Code outlining with computed branches: The computed branch
_jmp stops the static analysis tool and prevents the outlined code in F
to be inlined again.

Figure 8 shows the construction of code outlining with a com-
puted branch function _jmp. First, program execution encounters
the call to _jmp and computes the branch destination, which in this
case is either J1 or J2.

Computed branches protect code outlining against static-
analysis tools. The only way to determine call destinations effi-
ciently is exhaustive testing of the outlined program P′. This de-
pends only on the dynamic input-output behavior of the original
program P and is beyond the scope of this paper.

Generally, code outlining has its weaknesses as a standalone
technique, because it relies heavily on individual code character-
istics. However, outlining can significantly complicate the CFG of
the program, thus increasing the security of code overlapping. In
combination with peephole optimizations, outlining becomes more
powerful, but this is beyond the scope of this paper.

3.5 Applications of Code Overlapping

3.5.1 Overlapping Instruction Sequences in Oblivi-
ous Hashing

This section provides some examples of using overlapping in-
struction sequences in OH. Overlapping instruction sequences
have two goals, namely protecting overlapped code against detec-
tion by static analysis, as well as protecting overlapped code (and
therefore the hashing code) against tampering.

Checksumming Code.
The first example for an overlapping instruction sequence is

code that computes checksums over a basic block. Instead of jump-
ing around the instruction of the second basic block of the inter-
leaved block, the code uses a spare register to compute a check-
sum over the second basic block B0 that is currently not executed.
Using overlapping instructions on one of the two interleaved basic
blocks B0 or B1, the code computes a checksum over the existing
instructions of B0, and verifies the checksum at the end.

Figure 10 shows an example of checksumming code. C1 and
C2 contain code of B0, and execution of B1 starts at START. Sum-
ming up instruction bytes from B0, the code compares the sum
with the target value in C4. When the compare operation fails,
the program runs into an infinite loop. A static-analysis tool does
not discover the overlapping instructions as irrelevant instructions
because of the def-use dependency. The disadvantage of this con-
struction, however, is that an adversary can still override the cmp
or jmp instruction to disable checksumming, therefore revealing a
single point of failure for tampering.

ST: BA mov edx,...
; load edx with bytes from C1
; and resume at C2

C1: 50 push eax
83 EC 01 sub esp, 1
<code from B1>

C2: 81 C2 add edx,...
; add bytes from C3 to the checksum

C3: 83 C0 01 add eax, 1
58 pop eax
<code from B1>

C4: 81 FA D3 43 EE 59 cmp edx,59EE43D3
; verify checksum in edx

END: 75 ... jne ST
; if checksum is wrong, go to ST

9: Checksumming code: The overlapping instruction sequence contains
the instructions that are necessary for computing the checksum of the basic
block B0 while B1 is executed.

Self-Checking Code.
To eliminate the single point of failure, the overlapping instruc-

tions can verify matching instruction sequences and stop execution
in case of a failure. This self-checking property gives real tamper-
resistance that is bootstrapped within overlapped code, thus solv-
ing a problem that is usually hard to address via standard cryp-
tography [8]. In self-checking code using overlapping instruction
sequences, the general concept is simply to take one basic block
B0 and construct an interleaved super-block by using code patterns
from B0 repetitively.

Figure 10 shows an example on how to use overlapping in-
struction sequences for self-checking. In this example, we pro-
tect the push eax; sub esp, 1 instruction sequence at C3
from tampering. When execution starts at START, the program
first loads the to-be-checked instruction bytes into edx. In C2, the
program then executes the instruction sequence and compares the
previously loaded instruction bytes at C1 to the executed instruc-
tion sequence at C3. At C5, the code jumps back and executes C3.
This construction requires an adversary to modify the code at C1
and C3 at the same time. However, compared to the earlier check-
summing technique, no second basic block B1 can be interleaved.

4. TOOL FOR CODE OVERLAPPING
To study the actual impact of code overlapping on binaries,

we implemented a code-overlapping tool using Vulcan, a binary
rewriting tool for Windows [42]. Vulcan is able to process any
binary that includes a program’s symbol tables. The output after
binary rewriting is a normal binary that can be executed without
any additional tools. The Vulcan-based tool reads in the source bi-
nary, processes the code, and writes the overlapped binary into a
new file.

Code outlining and interleaving perform different operations,
which can work together for better results. Code outlining slices a
program P into smaller basic blocks that are more strongly inter-
connected than in the original program. On the other hand, code in-
terleaving ensures transposition of outlined code into larger super-
blocks that can be split up again.

Program evolution provides a useful iterative mechanism to
achieve security. After alternating both techniques for a couple



ST: BA mov edx,...
; load edx with bytes from C1
; and resume at C2

C1: 50 push eax
83 EC 01 sub esp, 1

C2: 81 C2 add edx,...
; add bytes from C3 to edx
; and resume at C4

C3: 50 push eax
83 EC 01 sub esp, 1

C4: 74 FA je C3
; je C3 should first be taken
; (to execute target code)
; and later fall through

E8 02 00 00 00 call _jmp
; call may jump somewhere, based
; on results of comparison

END: EB ED jmp C1
; jmp C1 may never be reached;
; serves to hinder analysis

_jmp : ...

10: Self-checking code: By injecting repetitive code patterns within
the overlapped code, overlapping instruction sequences can realize self-
checking code for tamper-resistance. The checked instructions are treated
as both operands and opcodes during the same execution of the basic block.

of rounds, the resulting program P′ becomes robust against low-
cost tampering attacks. A random or secret input key q randomizes
the instruction selection for code overlapping and basic-block se-
lection in code interleaving.

Before the tool applies any of our code-overlapping techniques,
it carries out a simple peephole-optimization step to minimize the
number of bytes per instruction in the code. Note that on the x86
platform, the maximum size for an instruction in the operand of
another instruction is 8 bytes. Due to this limitation, the number
of blocks that can be overlapped simultaneously depends highly on
the number of bytes per x86 instruction.

In the next step, the tool applies code outlining. This process
accepts as input a program P, a secret q, and a security parameter
p. Outlining first computes the maximum instruction length L, and
then searches for all matching instruction patterns in P. Upon find-
ing a match, the tool decides at random whether or not to outline
the code pattern. If outlining takes place, the algorithm first checks
whether the code pattern has already been outlined. If not, the tool
copies the pattern into a replacement procedure and saves its ad-
dress. Finally, outlining overwrites the instruction pattern with a
call statement to the outlined replacement procedure.

The second main step, code interleaving, consists of two parts:
intersperse and merge. The intersperse operation takes two basic
blocks B0 and B1 and combines their instructions with interleaved
branch instructions J0 and J1. These branch instructions separate
the two instruction streams from B0 and B1, maintaining instruc-
tion sequencing in both blocks.

Our tool iterates over all basic blocks that have not yet been in-
terspersed, picking two random blocks B0 and B1 and interspersing
them into a single instruction stream B with interleaved jump in-
structions. After the tool has interspersed all basic blocks, it starts
again with a random interspersed block B0 and tries to determine

whether the operands contain enough space to fit a second instruc-
tion. The construction is basically the same as for two blocks, but
the jumps must instead traverse two basic-block instructions and
two jumps, which could exceed the 8-byte field. With the AMD64
platform’s larger operands, this happens quite frequently.

The merge operation transforms the instruction stream B into a
single basic block. The algorithm first determines two registers R0
and R1 that are not live in the two previous basic blocks B0 and B1,
respectively. The process then generates a sequence of overlapping
instructions that use R0 and R1, and have length equal or less than
J0 and J1. The main requirement for the sequence of overlapping
instructions is that R0 and R1 be on a def-use chain, mainly to avoid
detection by a static-analysis tool. A straightforward approach to
accomplish this is to load and compare R0 with the actual instruc-
tions and inject conditional branches into the code. The following
section on applications of code overlapping contains more exam-
ples. After every overlapping instruction, the algorithm needs to
pad instructions with NOP or other fake instructions that do not
touch any live registers to fit them into the operand.

In our complete code-overlapping algorithm, the number of
rounds N is a security parameter in addition to p. The overlapped
program P′ gains security when N and p increase, but also becomes
slower. The outline and interleave steps do not commute.
Once code has been interleaved, it cannot be outlined, and vice
versa. Different security parameters q provide different tamper-
hardened programs P′, thus protecting against automated attacks
and providing individualized tamper-resistance.

Peephole 
Optimization

Code 
Interspersing

Inject 
Lookup 
Table

Code
Merging

Inject 
Exception 
Handler

Repeat until all 
blocks are 

interspersed

11: Code overlapping tool: The different steps for code overlapping in
addition to code interleaving and code outlining.

Figure 11 shows the final layout of the tool. After the merging
step, the tool injects the lookup table for the computed branches.
To determine the jump target, the overlapped program first com-
putes a cryptographic hash of selected registers, and then looks up
the hash in the lookup table to find the destination address. Sim-
ilarly, the exception handler looks up the instruction length at the
current instruction and jumps directly to the next instruction. Ex-
tensive use of the exception handler should be avoided for perfor-
mance reasons, so it may be advisable to restrict interspersing to
instructions that do not exceed 4 bytes (minus 1 byte for the mask-
ing instruction byte of the next instruction) on x86.

5. EVALUATION
Theoretically, security of code overlapping depends on subgraph

connectivity in CFG(P′), the control-flow graph the adversary is
able to determine from P′. The edge weight in the corresponding
block-dependency graph BDG(P) – which describes the number
of edges for every basic block – increases linearly according to the
number of edges in CFG(P′). Therefore, the main goal in code
overlapping is to maximize the edge weights in BDG(P′). High
connectivity in CFG(P′) makes it hard to tamper with P′, because
a single program manipulation causes multiple changes in different
parts of the program. Since it is also hard for an adversary to recon-
struct CFG(P) from CFG(P′) using static-analysis tools, she is not
able to reconstruct the original program P. In contrast, in programs
with normal run-time checks, the additional checks increase only



the number of basic blocks in the control-flow graph, and can be
easily identified using static-analysis tools. We can always guar-
antee at least one interleaving step, increasing the connectivity of
a vertex in CFG(P) to at least 2; however, the strength of code
overlapping depends on code heuristics.

For our analysis, we picked the SpecCINT 2000 suite [4]. Spec-
CINT is the industry standard for code performance and is repre-
sentative for common code patterns that need to be protected in
real code. To simplify the analysis, we included only three bench-
marks: the compression engine gzip as a small benchmark with
6538 x86 instructions, parser as our medium-size benchmark
with 20716 x86 instructions, and gcc, the C compiler, as a large
benchmark. It has 275627 x86 instructions.

Code Outlining.
We first investigate the efficiency of code outlining. Note that

since code outlining matches instruction sequences, it relies on
code emitted by the compiler.
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12: Outlineable instruction sequences: For single instruction simple
code outlining without additional transformations already achieves 30%
outlineable instructions.

Most importantly, we need to measure how many repeating
instruction sequences the source binary contains. Figure 12
shows the total fraction of outlineable instructions for different
instruction-sequence lengths. Without any additional code trans-
formations, about 30% of all single instructions can already be
outlined, but outlining happens to be very limited for any sequence
of more than one instruction. To be truly resistant against tam-
pering attacks, these outlined instruction blocks must be strongly
connected. Figure 13 shows on the left graph the number of parent
blocks for the outlined instruction blocks. Even though the average
is usually around 5-10 parents, some blocks can have up to 5000
parents.

Tamper-protection of the overlapped binary also assumes that
the outlined instruction blocks are on frequently used program
paths; otherwise tampering cannot be detected immediately, and
may even not be detected at all. The right graph in figure 13 shows
the cumulative distribution function of the fraction of active paths
in the program. In gcc, for example, 20% of all active paths are in
about 94% of the program. Via Vulcan, we profiled the source bi-
nary and the overlapped binary, using the reference inputs from the
Spec benchmarks. We also measured the number of basic blocks
on active paths in the source binary, along with the number of out-
lined instruction blocks on such paths. As a result, we see that the
outlined blocks are not in inactive areas of the program.
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13: Outlined instruction sequences: These graphs show the number of
parent blocks per outlined blocks (top) and the fraction of program paths
that go through the blocks of the source binary and the outlined blocks
(bottom).

Code Interleaving.
In contrast to code outlining, code interleaving can process as

many arbitrary instructions as possible, but the restriction is the
maximum instruction length, since the address operand of the
masked instruction is only 8 bytes on x86.

In our analysis of the actual code heuristics, we found that the
average instruction length of the instructions in the three bench-
marks ranges between 2 and 4 bytes. The left graph in figure 14
shows this result. Therefore, in our code overlapping tool, it is
often possible to reuse a block at least once or twice in code in-
terleaving – on AMD-64, even more often. The right graph in
figure 14 shows the fraction of basic blocks that can be use for in-
terleaving between 0 and 4 times during typical code-interleaving
operations. Given that instruction operands can be up to 12 bytes
on x86/AMD-64, and even without any additional optimizations,
code interleaving can double or triple the connectivity and there-
fore the resistance factor in the overlapped binary.

However, the distribution alone does not answer the question on
how fast the disassembly resynchronizes with the execution. For
example, an instruction of length 1 does not necessarily resynchro-
nize, but when multiple single-byte instructions occur in a row, the
disassembly resynchronizes at most after the maximum instruction
length, which is 15 bytes. It is therefore important to investigate
the probability for the transitions between instructions of different
lengths.
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14: Interleaving instructions: The graph on the left shows the
instruction-length distribution for the different benchmark programs. Code
interleaving is able only to accommodate up to 8 bytes within a masked
instruction. As a result, the average number of interleave operations per
block is limited (right).

Overall Performance.
Finally, we measure the performance impact of code overlap-

ping. Figure 15 shows that performance of the tamper-hardened
binary can be three times slower than the original binary, but of-
ten it is not necessary to overlap the whole binary. The results
also show that overlapping provides some code compression. Nor-
mally, to improve tamper-resistance by a factor of n, a program
must run at least n times, thus slowing down performance by a
factor of n.

6. RELATED WORK
There exists a large body of related work on software protec-

tion. Two general directions involve software tamper-resistance
and code obfuscation. The origin of most related work is in Co-
hen’s paper on operating-systems evolution [16]. This paper de-
fines a set of mutations on how programs can change to make
reverse-engineering harder, implying that obfuscation must take
place iteratively. As compared to our work, however, program evo-
lution refreshes systems dynamically as a defense against attacks.
We apply all transformations instantly.

Program evolution is also strongly related to protection against
outside attacks. The general idea is to transform programs arbitrar-
ily into equivalent code with the purpose of decreasing the likeli-
hood that there are similar exploits [22]. Side-channel attacks fall
into the same category. It is often easier to derive program prop-
erties not by reverse engineering code, but by injecting faults or
measuring execution times [30, 11, 38, 41, 28, 10]. One approach
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to protect against these simple attacks is to inject regular checks
into the code [6].

Software guards are intended to accomplish software tamper-
resistance [13]. A guard is injected into code and observes pro-
gram state at runtime. The idea is that different guards create a
web of trust and watch one another. An adversary has to attack
multiple guards at the same time to avoid detection. A related but
different approach is the verification kernel [47, 8, 26]. Here the
program consists of many small kernels that are encrypted individ-
ually. When control passes to a kernel, the program verifies the
checksum of the kernel, decrypts it, and executes it. The program
distributes the checksum across multiple kernels to avoid a single
point of failure. Oblivious hashing is a different approach for com-
puting fast checksums [14]. A program computes checksums on
the fly and compares the checksum values at various points against
expected checksums to ensure that the execution was done prop-
erly. Other techniques include timing measurements of architec-
tural properties to ensure tamper-resistance of code, but these often
work only on limited platforms like embedded systems [39].

Software protection is basically a bootstrapping problem from
the operating system and the hardware architecture on which the
applications are running. In an open system like Linux or Win-
dows, little protection is offered by the operating system, and any
type of code can execute. Recent research has focused on addi-
tional protection from the operating system through attestation and
memory curtaining [21, 5, 23, 27]. The idea is that the platform
architecture verifies software before execution and then shields
the processes’ memory not only from one another through virtual
memory, but also from a kernel that is controlled by an adver-
sary. All of these approaches have a small trusted operating-system
kernel that is verifiable. There are also several hardware-only ap-
proaches to tamper-resistance. They focus either on hiding a secret
in a distributed system [48, 33] or on implementing execute-only
memory [34, 43].

Code obfuscation itself focuses on hiding program properties
from adversaries who reverse-engineer the code. As mentioned
earlier, there are tools that protect purely against static analysis us-
ing opaque predicates and control-flow-graph flattening [45, 18].
In CFG flattening, the CFG becomes one main loop with a case-
statement, but because of opaque predicates, it is difficult to deter-
mine how the single basic blocks are interconnected. Another line
of work is white-boxing block-cipher implementations. It would
be useful to have a fast public-key implementation if it were pos-
sible to obfuscate a secret key in software [15, 12, 1]. There are



also a number of ad-hoc obfuscation methods (e.g., [17, 2]). As
reported by hacker essays, one anti-disassembly scheme was im-
plemented in the Macrovision SafeDisc protection scheme [3], but
this was easily deobfuscated by custom tools and IDA scripts.

In theory, little is known about code obfuscation, but the main
reason is the difficulty of defining the notion. Informally, a ba-
sic definition involves “source code” that provides little or no ad-
ditional information over black-box access (i.e., observing only
input-output behavior of a program). In the random-oracle model,
such general obfuscation is impossible for Turing machines [9].
An active area of research is obfuscation of point functions (e.g.,
Unix password checks), where a precomputed hash is compared
to an input hash. Using the random-oracle model, it is possible
to obfuscate point functions [36]. In a weakened model based on
probabilistic hash functions, obfuscation of point functions is also
possible [46]. Point functions are not only useful for hiding pass-
words, but also for protecting privacy in databases [37].

7. CONCLUSIONS
In this work, we show how to implement a new approach to soft-

ware tamper-resistance that does not require additional hardware.
We use the concept of code overlapping to implement oblivious
hashing in native code on commodity architectures. This improves
tamper-resistance of existing binaries with reasonable performance
impact. Our methods also apply to any variable-length byte-codes
that allow control transfer inside instructions, facilitating code-byte
hashes without explicitly reading code bytes.

We demonstrate that existing applications for anti-disassembly
cannot be used extensively without high performance impact be-
cause of the Kruskal-Count phenomenon. The Kruskal Count ex-
plains why disassembly resynchronizes quickly.

To address this issue, we propose code interleaving in combi-
nation with code outlining. This is also a novel approach to pro-
tect against checksumming attacks devised to defeat self-checking
code [47]. Beyond anti-disassembly, interleaved machine instruc-
tions complicate an adversary’s attempts to tamper with code or re-
place complete code patterns, since changing one instruction may
inadvertently alter others. Via code outlining, we also use a sim-
ilar principle at a semantic level; an attacker who patches an out-
lined code fragment may experience difficulties if multiple distinct
code paths execute the same fragment for different semantic pur-
poses. Like oblivious hashing, our methods are intended not to
be “uncrackable,” but to serve as an element of a comprehensive
software-protection solution.
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