
The Superdiversifier: Peephole Individualization
for Software Protection

Matthas Jacob1, Mariusz H. Jakubowski2, Prasad Naldurg3,
Chit Wei (Nick) Saw2, and Ramarathnam Venkatesan2,3

1 Nokia
2 Microsoft Research

3 Microsoft Research India

Abstract. We present a new approach to individualize programs at the
machine- and byte-code levels. Our superdiversification methodology is
based on the compiler technique of superoptimization, which performs
a brute-force search over all possible short instruction sequences to find
minimum-size implementations of desired functions. Superdiversification
also searches for equivalent code sequences, but we guide the search by
restricting the allowed instructions and operands to control the types of
generated code. Our goal is not necessarily the shortest or most optimal
code sequence, but an individualized sequence identified by a secret key
or other means, as determined by user-specified criteria. Also, our search
is not limited to commodity instruction sets, but can work over arbitrary
byte-codes designed for software randomization and protection. Appli-
cations include patch obfuscation to complicate reverse engineering and
exploit creation, as well as binary diversification to frustrate malicious
code tampering. We believe that this approach can serve as a useful
element of a comprehensive software-protection system.

1 Introduction

One element of a comprehensive program-security toolbox is code individualiza-
tion, which enables software diversity as a defense against various attacks. When
different users receive individualized copies of the same sensitive application, a
break on one system may not work on others, ideally forcing crackers to expend
the same effort on breaking each copy. Individualization also helps to alleviate
the so-called monoculture problem [15], which involves quick propagation of ma-
licious programs on networks of equally vulnerable systems. As in biology and
fault-tolerant systems, diversity can be an effective generic technique to guard
against known and unknown threats.

Software individualization uses a number of techniques to modify code at
various levels without changing its semantics [1, 2, 8]. For example, at an algo-
rithmic level, a bubble-sort function can be replaced by quicksort or heapsort. At
a syntactic level, a tool can inject inert “chaff” code, reorder basic blocks by flip-
ping branch conditions, and replace instructions with operationally equivalent
sequences. Such measures may be implemented via compilers and transformation
tools.

K. Matsuura and E. Fujisaki (Eds.): IWSEC 2008, LNCS 5312, pp. 100–120, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

The Superdiversifier: Peephole Individualization for Software Protection 101

In this paper, we focus on individualization at the instruction or byte-code
level. Our main idea is search for a large number of instruction sequences that are
semantically equivalent to an input code fragment. To accomplish this, we lever-
age and extend the compiler technique of superoptimization [4, 19, 21], which
performs brute-force searches for minimum-size code fragments that implement
a given simple function. Our work thus proposes a novel application of superop-
timization towards software security, including areas such as exploit prevention
and tamper-resistance, and leading towards code obfuscation.

1.1 Software Protection

Since the early days of the IBM PC and 8-bit home computers, software protec-
tion has been a never-ending battle between protectors and crackers. While no
secure generic solution has been demonstrated in practice, various techniques of
tamper-resistance and obfuscation have helped to delay reverse engineering and
cracking of sensitive code and data [3, 7, 9, 10, 11, 18, 24, 27]. Among such ap-
proaches are code checksums or hashes to prevent easy patching, anti-debugging
and anti-disassembly measures to hinder attack tools, and various obfuscation
measures to complicate control- and data-flow analysis. For increased security,
modern protection tools typically combine a large variety of such features.

Recent theoretical work [5, 16, 20, 28] suggests that only limited obfuscation
is possible in general. However, such modeling has been generally distant from
practice, particularly given the large variety of possible application and attack
scenarios. We note that most published work on real-world software protection
does not provide a cryptographic model or formally analyzable security. Even
in systems whose breaking reduces to solving some difficult problem, it is often
possible to “go outside the model” to produce efficient attacks. A system with
guaranteed or estimated tamper-resistance measured in days, weeks or months
may be formally insecure, yet quite sufficient for various business applications.
Thus, presently deployed protection strategies generally rely not on theoretical
models, but rather on heuristic analysis, quality of engineering, and penetration
testing on software protected by combined techniques. In this context, indi-
vidualization serves as an element of a comprehensive protection strategy or
model [12].

1.2 Superoptimization and Software Diversity

Superoptimization was introduced by Massalin as a means of minimizing size
of compiled code [21]. Though software security was not a stated goal of his
original work, his description hints at some obfuscation and individualization
inherent in superoptimized code. Massalin wrote that “startling programs have
been generated, many of them engaging in convoluted bit-fiddling bearing little
resemblance to the source programs which defined the functions” [21]. One of
his examples is a sign function superoptimized to four 680x0 instructions, where
“like a typical superoptimized program, the logic is really convoluted” [21] and
warrants the detailed explanation he provides. Such code sequences often contain

102 M. Jacob et al.

clever tricks that appear to be human-generated, yet were found automatically
by simply enumerating all possible instructions up to a certain length. In essence,
brute-force search has substituted for human cleverness.

Motivated by the above observations, we build upon superoptimization to
develop a diversification toolkit. In particular, we output not only the short-
est instruction sequence, but any sequences that implement the input function.
Additionally, we typically use a secret key and other user-specified parameters
to guide the brute-force search and control the nature of generated code (e.g.,
by changing the set of instructions and operands over which the search is per-
formed). Our search may also use other heuristics, such as instruction frequencies
collected from real-life programs. For example, the search may prefer instruc-
tion combinations observed often in real code, deferring or omitting instruction
sequences not commonly found in binaries. We also use other performance en-
hancements, such as limiting exhaustive enumeration of constant operands (e.g.,
restricting constants to small ranges or sets of values harvested from real-life soft-
ware). We refer to our approach as superdiversification or superindividualization.

The rest of the paper is organized as follows. We outline our basic methodology
of superdiversification in Section 2. Implementation details and performance
results are the topic of Section 3. In Section 4, we show several applications of our
basic methodology. Finally, Section 5 summarizes our approach with directions
for future work.

2 Superdiversification

Like a superoptimizer, our code individualizer accepts a sequence of instructions
as input and attempts to generate equivalent code sequences up to a given length,
by exhaustive enumeration. A secret key and other user-specified parameters may
further determine characteristics of these code fragments and order of generation,
as explained in detail later. Each candidate sequence is tested for equivalence
to the input sequence. The test proceeds in two phases – a quick, probabilistic
equivalence check, which rejects sequences that do not agree on random inputs,
and Boolean equivalence checking of formulas when the sequences agree on a
threshold number of random inputs:

– During the most common, quick phase of the test, the sequence is first ex-
ecuted or simulated on one or more random sample inputs; if the output is
incorrect, the sequence is quickly discarded.

– If the candidate sequence generates correct outputs, a Boolean test is used
to verify that the sequence is actually equivalent to the input sequence. For
this, we encode instructions as Boolean formulas in conjunctive normal form
(CNF) and use a SAT solver to test equivalence, as described later.

2.1 Generation of Code Sequences

In our basic approach, we enumerate a large number of candidate code sequences
to test for equivalence with an input sequence. In particular, superdiversification
performs one or more of the following actions:

The Superdiversifier: Peephole Individualization for Software Protection 103

– Restrict the set of instructions and operands over which the search is per-
formed. For example, if we wish to generate a sign function that uses only
addition, subtraction and negation, we simply search over just these three
instructions. This has an effect similar to switching from brute-force to
heuristically-guided search.

– Guide the search based on empirical data about probabilities of instruction
occurrences in real-life programs. When choosing the next instruction in
a candidate sequence, our enumeration procedure prefers instructions that
are likely to appear, as determined by a table of instruction frequencies
harvested from actual binaries. This is intended both to speed up the search
and produce diversified code that blends in with target applications.

– Use various optimizations and pruning techniques to cut down on the time re-
quired for search. For example, a user-specified parameter determines whether
or not to search over instruction pairs and longer sequences that have never
been observed in actual binaries. In addition, to prevent brute-force enumer-
ation of constant operands (e.g., 64-bit), we collect or harvest constants from
real-life programs and search only over these. Alternately, we may use random
(key-based) sampling to choose constants, as well as to enumerate instruction
sequences in general. With such sampling, the search will not be exhaustive,
but may still yield usefully individualized sequences.

Given an input code sequence of length m, we generate all code sequences up
to a specified maximum length n, where n ≥ m. For instruction selection, we use
a subset of the processor’s instruction set. The generated sequence uses the same
inputs and modifies the same outputs as the input sequence. In addition, the
generated sequence may also use a limited set of constant operands, restricted
to commonly occurring values (e.g., 0, 1, -1), or alternately drawn from a set
of constants harvested from real-life programs. We may also choose to reject
generated sequences containing obviously redundant instructions that amount
to no-ops unlikely to occur in actual binaries (e.g., mov r1, r1, or add r1,
0). To find such instructions, we can run the superdiversifier on a no-op input
sequence, and ask it to find all equivalent sequences of length 1.

In order to improve search time, as well as to produce sequences that blend
in more closely with actual programs, we can use a table containing empirical
data about instruction frequencies. The table data are pre-computed from a
sample set of actual binaries, where fjk is the frequency with which instruction
ik is observed to follow instruction ij in the sample set. The code generator
will pick the next instruction in the generated sequence in order of decreasing
frequency, based on the most recent instruction generated. This will naturally
favor sequences that appear to blend in with compiled code in real binaries, thus
making it more difficult to distinguish between unmodified compiler-generated
code and code produced by the superdiversifier in an individualized binary.

We may further guide the search by randomly re-ordering the enumeration
based on a secret key, or by eliminating instructions – either randomly or using
heuristic information based on knowledge about the input sequence.

104 M. Jacob et al.

2.2 Practical Issues

In both superdiversification and superoptimization, the search space for code gen-
eration is exponential in the number of instructions in the sequence. Since super-
optimization discards all instruction sequences longer than the current
minimum-length equivalent sequence, its brute-force search often may be quite
fast. In contrast, superdiversification searches over sequences of all lengths (within
a user-specified range), and is thus inherently slower. However, even two decades
ago, Massalin [21] was able to find superoptimized sequences of 10 or more in-
structions. Since computing systems today are several orders of magnitude more
powerful, we expect that superdiversification can still be quite effective, particu-
larly with the use of optimizations and pruning mechanisms.

Our approach is useful for generating various types of code, as determined by
parameters. Using empirical instruction frequencies, as mentioned earlier, we can
produce diversified code that does not stand out from the target application, help-
ing to improve security. Alternately, we may produce unusual code by preferring
instructions unlikely to appear (i.e., using the inverse of our instruction-frequency
table). In general, parameterized diversification is a powerful enhancement over
superoptimization in terms of security.

2.3 Testing for Equivalence of Code Sequences

To determine whether two machine-code fragments compute the same function,
we first execute each sequence using one or more sets of randomly generated
inputs, and compare their corresponding outputs. If their outputs are equal, we
consider the sequences to be potentially equivalent and convert the instructions
to Boolean formulas in conjunctive normal form (CNF). For each instruction, we
assign distinct Boolean variables representing each bit of its inputs and outputs.
The output variables are the result of the Boolean function performed by the
instruction over its inputs. For example, consider the generic instruction

and r1, r2

which performs a bitwise-AND on registers r1 and r2, placing the result in
register r1. Let the variable x represent r1 and y represent r2. Then we can
represent the function for the and instruction by

F (x, y) = (x ∧ y)

Using static single assignment (SSA) notation such that each variable is assigned
no more than once, we can rewrite this as the relation

x1 ↔ (x0 ∧ y0)

Note that we would have one such relation for each data bit. For example, for a
w-bit data width, we would have w relations each representing the effect of the
and instruction on each bit of the output. Since all variables are unique, we can
simply combine them in a single conjunction as follows:

The Superdiversifier: Peephole Individualization for Software Protection 105

ϕ =
w∧

i=1

(x1i ↔ (x0i ∧ y0i))

To ensure that the resulting formula is in CNF, each term in the conjunction
needs to be converted to CNF. We apply the Tseitin transformation [25] to the
above expression, resulting in

ϕ =
w∧

i=1

((¬x1i ∨ x0i) ∧ (¬x1i ∨ y0i) ∧ (x1i ∨ ¬x0i ∨ ¬y0i))

We repeat the above for each instruction in the sequence, encoding the operation
performed by the instruction as a Boolean expression in CNF form. Thus, for
a length-N instruction sequence, we would have N sub-formulas, and the entire
sequence would be represented as

Φ =
N∧

i=1

ϕj

Let Φ′ be the generated length-M sequence that we wish to test for equivalence
against Φ.

Φ′ =
M∧

i=1

ϕ′
j

We first ensure that the input states of both sequences are synchronized such
that the same variables are used to represent inputs that are common to both
sequences. In the above example, the initial values of r1 and r2 are represented
by the variables x0 and y0 in both sequences. All other variables representing the
intermediate and output states should be distinct and unique to each sequence.
Let A be the set of variables representing the output state of Φ, and A′ be the set
of variables representing the output state of Φ′. Then we can define equivalence
in terms of the output state as follows:

Φ ≡ Φ′ iff ∀x ∈ A, y ∈ A′ : A ↔ A′

or,
Φ 	≡ Φ′ iff ∃x ∈ A, y ∈ A′ : A � A′

For each bit variable xi in A corresponding to the same bit in A′ (represented
by yi), we generate the relation

zi ↔ (xi � yi)

This is equivalent to
zi ↔ (xi ⊕ yi)

Thus, for K output bits, we can state that

Φ 	≡ Φ′ iff
K∨

i=1

zi = �

106 M. Jacob et al.

In other words, Φ ≡ Φ′ iff the following CNF formula is unsatisfiable:

(Φ ∧ Φ′ ∧ (
K∨

i=1

zi))

Generating the above formula and applying a SAT solver to it, we can thus de-
termine whether two sequences are equivalent. If the SAT solver finds that the
formula is satisfiable, then we have established that the sequences are not equiv-
alent. Conversely, if the SAT solver determines that the formula is unsatisfiable,
then the sequences are equivalent.

3 Implementation and Experimental Results

We implemented an initial prototype of the code individualizer in C++. This
consists of a code-generation module (front-end) and a code verification module
(back-end). We included only a subset of Intel x86 instructions (mov, not, neg,
xor, or, and, add, sub, inc, dec, cmp, shl, shr, sar, push, pop), but the de-
sign allows future support for other instruction sets to be added. (In particular,
we may use custom instruction sets geared towards individualization and obfus-
cation, not necessarily generality and performance.) For the verification phase,
we perform a quick execution test on every sequence generated, followed by a
Boolean test using the zChaff [26] SAT solver only if the quick test passes. With
this approach, we were able to generate code sequences of up to 5 or 6 instruc-
tions in length in reasonable time over the full range of supported instructions.
We ran all our tests on a Pentium 3.0 GHz CPU with 2 GB of RAM. Note that
emulation would be needed to run the quick test on non-native instruction sets.

The code individualizer works as follows. Given an input machine-code frag-
ment, the generator enumerates the next candidate code sequence. The verifier
then compares the generated sequence against the original sequence. If it is deter-
mined that the two sequences are equivalent, the generated sequence is added to
the list of equivalent sequences. The process is then repeated until the generator
has generated all sequences.

While our approach generates code sequences that are exact matches with
respect to the output states, in practice it is frequently sufficient to find a match
over a subset of the output state. For example, in the Intel x86 instruction set,
the inc and add instructions affect the carry flag differently. However, if we do
not care about the value of the carry flag (i.e., it is not live) in the context of
the original program, the instruction inc r1 could be substituted with add r1,
1 and vice versa. In order to allow for such possibilities, we made provisions
in the code individualizer to designate flags and output variables that may be
safely ignored during the verification phase. To store intermediate results, we
also provided the ability to introduce free temporary registers not already in the
input sequence into the generated sequence.

In general, modeling arbitrary memory accesses is a complex problem. In
our current implementation, we limited the inputs and outputs to constants,
registers, and stack memory variables only.

The Superdiversifier: Peephole Individualization for Software Protection 107

3.1 Sample Results and Discussion

We ran the code generator and verifier on a sample set of input sequences. In
order to produce a greater variety of generated sequences, we chose to ignore the
processor flags when comparing output states. Consequently, further program
analysis to determine live flags would be necessary prior to considering any of
the generated sequences for substitution in the original program.

We present results for some input sequences taken from actual programs. Con-
sider a 3-instruction sequence, seq1, that swaps the contents of two registers, r1
and r2, using r3 as a temporary register1:

seq1 :

mov r3, r1
mov r1, r2
mov r2, r3

Assuming r3 is free and ignoring flag side-effects, the code individualizer was
asked to generate all equivalent sequences up to length 5 using only the mov, xor,
push and pop instructions. A total of 2426 equivalent sequences were found out
of 8308224 generated in total. To minimize the correlation between generated
equivalents and the input sequence, we filtered out sequences containing any
of the original instructions in the input sequence. We also filtered out obvious
no-op instructions. Table 1 shows a small sample of some of the more interesting
sequences generated for different lengths n. The number in parentheses is the
total number of equivalent sequences of length n that were found.

By selecting a different set of instructions for generation (e.g., using a secret
key), we generate a completely different set of equivalent sequences for seq1. For
example, Table 2 shows some of the equivalents we found using only arithmetic
and logical operations.

In contrast to superoptimization, the generated sequences were no more opti-
mized in size and execution time than the original sequence, and in most cases
resulted in longer, less efficient code. However, consistent with the objectives of
superdiversification, each sequence produced by the code individualizer presents
a different implementation of the same input function, and in some cases the
implementation can be very different (and non-obvious) from the original code.

As another example, consider a sequence consisting of a mov followed by an
add instruction. This sample was taken from a binary generated by the Microsoft
Visual C++ compiler:

seq2 :

mov r1, r2
add r1, 0x10

1 For generality, we use r1, r2, etc., to denote the register operands in these examples
rather than their x86 names.

108 M. Jacob et al.

Table 1. Sample Generated Equivalents For Sequence 1 (a)

n = 3 (4) n = 4 (113) n = 5 (2309)

xor r1, r2
xor r2, r1
xor r1, r2

push r1
push r2
pop r1
pop r2

xor r2, r1
mov r3, r2
mov r2, r1
xor r3, r2
mov r1, r3

push r2
mov r2, r1
pop r1

push r1
xor r1, r1
xor r1, r2
pop r2

xor r2, r1
push r2
mov r2, r1
pop r3
xor r1, r3

mov r3, r2
mov r2, r1
mov r1, r3

mov r3, r2
push r1
mov r1, r3
pop r2

xor r2, r3
xor r3, r1
xor r1, r2
xor r2, r1
xor r1, r3

Table 2. Sample Generated Equivalents For Sequence 1 (b)

n = 4 (4) n = 5 (176)

add r1, r2
sub r2, r1
add r1, r2
neg r2

and r3, r1
or r3, r1
sub r3, r2
add r2, r3
sub r1, r3

sub r1, r2
add r2, r1
sub r1, r2
neg r1

sub r3, r3
add r3, r2
sub r3, r1
add r1, r3
sub r2, r3

Feeding this to the individualizer and allowing it to utilize a small set of
constants, Table 3 illustrates some of the equivalents we were able to generate:

Table 3. Sample Generated Equivalents For Sequence 2

n = 2 (1) n = 3 (122) n = 4 (13538)

mov r1, 0x10
add r1, r2

mov r1, 0x4
shl r1, 0x2
add r1, r2

mov r1, 0xf
xor r1, 0xffffffff
sub r1, r2
neg r1

mov r1, 0x8
add r1, r1
add r1, r2

mov r1, 0xf
sub r1, 0x2
add r1, r2
add r1, 0x3

The Superdiversifier: Peephole Individualization for Software Protection 109

Finally, we created the following 2-instruction input sequence to illustrate
some additional types of sequences the individualizer generates. This sequence
simply adds 1 to the value in register r1, then clears its most significant bit:

seq3 :

add r1, 0x1
and r1, 0x7fffffff

Of the equivalent sequences generated by the individualizer, we observe groups
of sequences that share certain common characteristics, which we attempt to
classify in Table 4. Each sample is an example of a class of transforms bearing
distinct features that we frequently observe in the generated results.

These categories of sequences were representative of what we observed when
generating equivalents for a variety of input sequences. It appears that those
belonging to Categories I and II are most ”different” from the original, as might
be measured by their edit distance.

We found that without explicitly filtering out sequences containing the original
instructions, many of the longer-length generated sequences fell into Category
V or Category VI, comprising simply the original sequence with the addition
of inert ”chaff” instructions. While these sequences do not constitute a trans-
formed version of the original, they may still be useful from the point of view
of diversity, since we can generate a large number of such sequences. However,
they may simply be filtered out as mentioned above and discarded if we want
to exclude these categories of sequences. A related class of transforms are those
comprising previously generated sequences of shorter length, with the addition of
chaff instructions. Similarly, these may be filtered out by excluding all sequences
that contain any sub-sequence that has already been encountered.

3.2 Performance

As with superoptimization, the quick execution test is key to dramatically re-
ducing the search time (by approximately a factor of 50 in our current imple-
mentation) by ruling out obviously non-equivalent sequences without having to
perform the much slower Boolean test. This does, however, impose the require-
ment of either running on native hardware or under emulation, the latter of
which would likely have performance implications.

We observed that the number of times the quick execution was run on each
generated sequence can be a factor in whether or not the quick test yields false-
positive matches, leading to additional Boolean test runs on non-equivalent
sequences and hence reduced speed. Generally, the fewer output-bits that are
altered by the sequence, the more execution test runs are required (over dif-
ferent random inputs) to reduce the number of false positives. Figures 1 and
2 illustrate the false-positive hit-rates and their impact on execution speed for
different numbers of quick test runs.A relatively small number of quick-test runs
on random input sets (about 4) is sufficient to reduce the rate of false positives

110 M. Jacob et al.

Table 4. Categories of Equivalent Sequence Transforms

Category Characteristics Examples

I. Corruption Transformation or corrup-
tion of the original in-
put, operation in the trans-
formed domain, followed by
uncorruption to yield the
correct output.

add r1, 0x1
and r1, 0x7fffffff

−→
shl r1, 0x1
add r1, 0x2
shr r1, 0x1

II.
Substitution

Substitution of one or more
operations in the original se-
quence with a different op-
eration that has the same ef-
fect.

add r1, 0x1
and r1, 0x7fffffff

−→

add r1, 0x2
sub r1, 0x1
shl r1, 0x1
shr r1, 0x1

III.
Instruction
Re-ordering

Altering the order of the in-
structions where their order
does not change the final re-
sult.

add r1, 0x2
sub r1, 0x1
shl r1, 0x1
shr r1, 0x1

−→

sub r1, 0x1
add r1, 0x2
shl r1, 0x1
shr r1, 0x1

IV. Operand
Re-ordering

Altering the order in which
the operands appear in the
sequence while preserving
the final result.

mov r1, r2
add r1, 0x10

−→ mov r1, 0x10
add r1, r2

V. Chaff
Code

Addition of extra inert in-
structions or sequences of
instructions into the orig-
inal sequence (or a pre-
viously derived equivalent),
such that they appear to be
integral to the overall func-
tion but are in fact function-
ally irrelevant.

mov r1, r2
add r1, 0x10

−→

mov r1, r2
or r1, r2
and r1, r2
add r1, 0x10

VI. Chaff
(Obvious)

Addition of extra inert in-
structions or sequences of
instructions into the orig-
inal sequence (or a pre-
viously derived equivalent)
that are clearly irrelevant.

mov r1, r2
add r1, 0x10

−→
mov r1, r2
mov r1, r1
add r1, 0x10

to the point where it no longer materially impacts the search. Note that in the
case of Sequence 3, significantly increasing the number of test runs beyond this
level does little to eliminate a residual number of false positives. In fact, with as

The Superdiversifier: Peephole Individualization for Software Protection 111

0.4
0.5
0.6
0.7
0.8
0.9

1
se

 P
os

it
iv

e
Ra

te

seq1

seq2

0
0.1
0.2
0.3

1 2 3 4 5 6 7 8 9 10

Fa
ls

No. of Test Runs per Sequence

seq2

seq3

Fig. 1. Quick Execution Test False Positives

20

25

30

35

40

45

50

Se
qu

en
ce

s/
se

c

seq1

seq2

0

5

10

15

1 2 3 4 5 6 7 8 9 10

k
S

No. of Test Runs per Sequence

seq2

seq3

Fig. 2. Sequences Processed per Second

many as 1000 test runs, the same false-positive matches were present. This is due
to the fact that for many input values, only a few bits of output are affected. In
the case of Sequence 3, for example, consider the following false-positive match,
where the instructions are simply interchanged:

and r1, 0x7fffffff
add r1, 0x1

It can be seen that for most initial values of r1, this sequence will yield the
same result as the original sequence. It is only when we have input values of
0x7fffffff or 0xffffffff that the difference is exposed, and it is hard to

112 M. Jacob et al.

achieve this even with many random test inputs. Compare this to Sequence
1 (swapping two registers), where for most randomly selected inputs, a large
number of output bits are changed. In fact, we did not observe any false positives
for this sequence, even with only a single run of the quick test.

Due to the size of the search space, the individualizer was practically limited
to generating sequences of approximately 5 or 6 instructions long, depending
on the number of inputs and outputs. Even so, it was able to find a diverse
set of equivalents for a variety of input sequences. We expect to improve the
performance in a future version with additional optimizations to the sequence-
generation algorithm and better search-pruning strategies.

4 Applications

Our methodology fits well within the larger context of software individualiza-
tion as a security mechanism. In particular, superdiversification is useful at the
machine-instruction and byte-code levels by offering a systematic means of enu-
merating all possible customizations. Combined with higher-level methods, such
as source-based control-flow transformations, our approach helps to complete
a full-fledged diversification solution against attacks enabled by software uni-
formity and “monocultures.” We briefly describe some specific scenarios that
benefit from such defenses.

4.1 Signature-Based Attacks

Certain malicious software attempts to patch binaries by scanning for particu-
lar byte patterns within executables and replacing these sequences with attack
code. For example, patching tools modify DRM and game binaries to elimi-
nate security measures like license checking and binding to a CD/DVD. Other
attack tools will even scan anti-virus binaries and other security software to al-
ter and disable their protection, allowing infiltration by rootkits, adware, bot
drivers and other malware. By eliminating signatures from customized copies
of security-sensitive binaries, our techniques can hinder such attacks, especially
when superdiversification is used alongside higher-level individualization.

Both malware and legitimate security software have used certain individualiza-
tion techniques to defeat signature-based detection [22]. Polymorphic viruses, for
example, may use variable code encryption and instruction replacement based on
a small library of equivalents, while metamorphic code may transform itself to an
intermediate representation (and back to native instructions) for broader diver-
sity [29]. However, no technique is likely to be very strong when used alone, and
a comprehensive individualization solution should combine various approaches.
In this context, our technique fits well as a means of generating nontrivial code
equivalents that appear to require human cleverness.

Our methodology could potentially be used to “normalize” code sections,
or transform them into a standardized form to enable easier signature-based
searches. However, we would normally apply superdiversification over code blocks

The Superdiversifier: Peephole Individualization for Software Protection 113

chosen via a secret key. In addition, since we typically iterate the process, the
next block to be individualized may overlap with other blocks, potentially in-
cluding ones that have already been diversified. Other individualization tactics
could be used to move code blocks and inject “chaff” code, further complicating
any attempts at comparing and matching code sections. Thus, “code normal-
ization” is unlikely to be effective, particularly if we employ a combination of
individualizing transforms.

4.2 Patch Obfuscation

A compelling application of our technique is patch obfuscation. As mentioned
earlier, in order to make reverse engineering of binaries harder, software providers
employ a variety of code-transformation techniques. This can make the code
difficult to reverse-engineer in its entirety, but may have little effect on the
difficulty of comparing two similar binaries. When a security patch is released,
tools such as BinDiff [23] and EBDS [13] can quickly discover differences between
patched and unpatched versions of software, easily pinpointing vulnerable code
fragments addressed by the patch. BinDiff represents a class of graph-based
matching tools that diff two binaries via various heuristics on basic blocks and
control-flow graphs (CFGs). As an advancement over simple byte-based diffing,
such tools are robust to minor or syntactic transformations on control- and data-
flow paths. Recent work [6] has even shown that it’s possible to automate the
process of finding inputs that exercise vulnerabilities in unpatched binaries.

In this context, we claim that our superdiversification method can delay or
prevent reverse-engineering by maximizing the differences between patched and
unpatched binaries. In conjunction with source-level and other individualization
methods, our approach can provide different semantically equivalent patches to
vulnerabilities. In addition, a patch update can include replacements for other
code fragments that are not related to the vulnerability being fixed. In fact,
most of the protection against sophisticated patch diffing can stem from indi-
vidualizing unrelated parts of the binary, as well as adding inert “chaff” code
and temporary corruption of variables. A cracker attempting to reverse-engineer
the code using a graph-based matching tool will find many differences between
the original and patched code. A determined cracker may be able to narrow this
down eventually, but the slowdown in analysis will translate to a slowdown in
vulnerability exploitation and improve the utility of the patch. Colluding crack-
ers will have an even harder time at comparing patterns. While it is difficult to
make any formal arguments, we believe that this approach can provide a prac-
tical solution to the patch-reverse-engineering issue. As a bonus, we may even
be able to improve the performance of some patched versions if our equivalent
code sequences are smaller in size than the original.

As a simple example, consider the following basic block:

51 push ecx
8B 45 08 mov eax,dword ptr [ebp+8]
8B 48 0C mov ecx,dword ptr [eax+0Ch]

114 M. Jacob et al.

81 F1 73 AE 28 3F xor ecx,3F28AE73h
89 4D FC mov dword ptr [ebp-4],ecx
8B 45 FC mov eax,dword ptr [ebp-4]
33 D2 xor edx,edx
B9 07 00 00 00 mov ecx,7

Using a sliding code window, we applied our superdiversification method over
short sequences in this block. By using different keys and other parameters to
vary the search, we can generate many different equivalent blocks. One example
is below:

51 push ecx
FF 75 08 push dword ptr [ebp+8]
58 pop eax
68 73 AE 28 3F push 3F28AE73h
59 pop ecx
33 48 0C xor ecx,dword ptr [eax+0Ch]
51 push ecx
58 pop eax
50 push eax
8F 45 FC pop dword ptr [ebp-4]
03 D2 add edx,edx
2B D2 sub edx,edx
6A 07 push 7
59 pop ecx

The following is another individualized version of the original block, based on
a different secret key:

51 push ecx
F7 D0 not eax
FF 75 08 push dword ptr [ebp+8]
58 pop eax
FF 70 0C push dword ptr [eax+0Ch]
59 pop ecx
81 F1 51 04 00 15 xor ecx,15000451h
81 F1 22 AA 28 2A xor ecx,2A28AA22h
51 push ecx
8F 45 FC pop dword ptr [ebp-4]
FF 75 FC push dword ptr [ebp-4]
58 pop eax
42 inc edx
F7 D2 not edx
42 inc edx
4A dec edx
33 D2 xor edx,edx
51 push ecx

The Superdiversifier: Peephole Individualization for Software Protection 115

59 pop ecx
6A 07 push 7
59 pop ecx

We then patched the original block by changing a few critical instructions:

51 push ecx
8B 45 08 mov eax,dword ptr [ebp+8]
8B 48 10 mov ecx,dword ptr [eax+10h]
81 F1 53 5D 3E 2C xor ecx,2C3E5D53h
89 4D FC mov dword ptr [ebp-4],ecx
8B 45 FC mov eax,dword ptr [ebp-4]
83 C0 64 add eax,64h
83 C8 01 or eax,1
33 D2 xor edx,edx
B9 07 00 00 00 mov ecx,7

It is not difficult to see which instructions were changed by simply compar-
ing the original and the patched block. By applying superdiversification to the
patched block, we can again generate many different equivalent blocks with more
differences between them and the original than just the patched instructions,
making it harder to isolate the patched code. One example of a generated block
is shown below:

FF 75 08 push dword ptr [ebp+8]
58 pop eax
51 push ecx
6A 01 push 1
59 pop ecx
83 E1 02 and ecx,2
F7 D9 neg ecx
F7 D9 neg ecx
03 48 10 add ecx,dword ptr [eax+10h]
41 inc ecx
49 dec ecx
81 F1 53 5D 3E 2C xor ecx,2C3E5D53h
8B C1 mov eax,ecx
50 push eax
58 pop eax
50 push eax
8F 45 FC pop dword ptr [ebp-4]
83 F0 01 xor eax,1
0B C0 or eax,eax
83 F0 01 xor eax,1
3B C0 cmp eax,eax
3B C0 cmp eax,eax
83 C0 64 add eax,64h

116 M. Jacob et al.

48 dec eax
40 inc eax
83 C8 01 or eax,1
3B C9 cmp ecx,ecx
3B C9 cmp ecx,ecx
3B C9 cmp ecx,ecx
6A 01 push 1
5A pop edx
83 E2 02 and edx,2
6A 07 push 7
59 pop ecx

Below is another individualized version of the above block:

51 push ecx
FF 75 08 push dword ptr [ebp+8]
58 pop eax
6A 01 push 1
59 pop ecx
FF 70 10 push dword ptr [eax+10h]
59 pop ecx
81 F1 51 55 14 04 xor ecx,4145551h
81 F1 02 08 2A 28 xor ecx,282A0802h
6A 01 push 1
8F 45 FC pop dword ptr [ebp-4]
51 push ecx
8F 45 FC pop dword ptr [ebp-4]
FF 75 FC push dword ptr [ebp-4]
58 pop eax
F7 D8 neg eax
F7 D8 neg eax
0B C0 or eax,eax
83 F0 01 xor eax,1
83 F0 01 xor eax,1
83 C0 44 add eax,44h
83 C0 20 add eax,20h
83 C8 01 or eax,1
F7 DA neg edx
F7 DA neg edx
F7 DA neg edx
0B D2 or edx,edx
42 inc edx
4A dec edx
83 CA 01 or edx,1
42 inc edx
81 CA 9E 1E 00 00 or edx,1E9Eh

The Superdiversifier: Peephole Individualization for Software Protection 117

81 F2 9E 1E 00 00 xor edx,1E9Eh
83 E2 03 and edx,3
6A 07 push 7
59 pop ecx

MethodsAgainstGraph-Diffing. As part of a comprehensive strategy against
patch diffing, superdiversification addresses only one aspect of protection, namely
the task of making basic blocks and small code sections appear different to data-
based comparisons. We describe two additional techniques that help against
graph-oriented diffing as well. These modify the patched binary’s CFG by adding
nodes and edges:

Code Outlining: Adding Nodes This technique moves sections of code into newly
created functions, replacing the sections with calls to the functions. Such a
process is used by compilers for certain optimizations, and has also found appli-
cations in software protection [17]. In the context of this paper, the new functions
introduced by outlining serve as new nodes in the patched binary’s CFG. We can
iterate this procedure to outline code from already outlined functions, creating
new patterns of edges and nodes in the CFG.

Chaff Control Flow: Adding Edges This method injects new control-flow trans-
fers, such as branches, jumps, and calls, into the patched binary’s CFG. To
avoid interfering with the program’s operation, the new transfers may never be
executed, but should be protected via opaque predicates [11]. Such predicates
themselves insert additional edges into the CFG.

In principle, these two techniques in combination suffice to convert the patched
binary’s CFG into a more complex CFG of arbitrary structure. The original CFG
remains embedded in the new CFG. In a reasonable attack model, a graph-diffing
tool may be required to find the original CFG in the new CFG. In the worst
case, this reduces to solving the subgraph-isomorphism problem (NP-Complete),
which is expensive for large graphs.

For this model to be useful in practice, certain implementation assumptions
must be satisfied; for example, the new chaff edges and outlined functions should
not be easily discernible. The design needs to consider the particular subgraph-
isomorphism instances created for real-life programs, mainly to ensure that
these are not easily solvable on average. In addition, both security and per-
formance penalties will depend on the degree of outlining and chaff-edge inser-
tion. Nonetheless, the approach takes initial steps towards a formal solution and
avoids the need for ad hoc methodologies.

When used alone, neither superdiversification nor the above graph anti-diffing
methodology suffices in general. For example, even if the CFGs of two binaries
are very different, it may be possible to match up basic blocks by inspecting their
contents. This is where superdiversification comes in: The numbers and types of
instructions in basic blocks can be individualized to prevent easy block matching.
Thus, superdiversification and graph anti-diffing techniques complement each
other to create a more complete solution against patch diffing.

118 M. Jacob et al.

5 Summary and Future Work

We presented an initial version of our code individualizer, which we believe
can be a useful tool for binary diversification. Another potential application is
steganography, or data hiding via variably individualized code sequences [14].
Our technique also provides one possible practical implementation of code in-
dividualization assumed by certain software-protection models [12]. Given short
input sequences, the individualizer is able to generate reasonably large numbers
of equivalent sequences with a variety of different characteristics. Due to the ex-
ponentially large search space, performance of the tool is limited to generating
sequences of only a few instructions in length over a small subset of opcodes. Fur-
ther research into better search strategies and other optimizations (e.g., adaptive
pruning based on input-sequence heuristics) will be undertaken to enable longer
sequences and a larger set of instructions to be considered.

An important extension for superdiversification is search over arbitrary in-
struction sets and byte-codes, not just instruction sets of commodity processors.
Modern instruction sets, including x86, x64, and MSIL, are geared towards gen-
erality and performance, not individualization and obfuscation. On the other
hand, superdiversification is free to use arbitrary custom byte codes designed
specifically for randomization and protection. We may generate such byte-codes
explicitly, allowing them to contain randomized operations (e.g., a single in-
struction to multiply by 3, rotate right by 2 places, and add 1). The nature
of byte-code instructions we allow is heuristically determined to increase the
chances of efficient and successful searches. For example, when superobfuscating
a particular input function, we may vary the allowed instruction set based on
the operations contained in that function. A custom byte-code compiler may
transform our superobfuscated functions into mainstream source or native code.

References

1. Anckaert, B., Jakubowski, M., Venkatesan, R.: Proteus: Virtualization for di-
versified tamper-resistance. In: DRM 2006: Proceedings of the ACM Work-
shop on Digital Rights Management, pp. 47–58. ACM Press, New York (2006),
doi:10.1145/1179509.1179521

2. Anckaert, B., De Sutter, B., De Bosschere, K.: Software piracy prevention through
diversity. In: DRM 2004: Proceedings of the 4th ACM Workshop on Digital Rights
Management, pp. 63–71. ACM Press, New York (2004)

3. Aucsmith, D.: Tamper resistant software: An implementation. In: Anderson, R.
(ed.) IH 1996. LNCS, vol. 1174, pp. 317–333. Springer, Heidelberg (1996)

4. Bansal, S., Aiken, A.: Automatic generation of peephole superoptimizers. In:
ASPLOS-XII: Proceedings of the 12th International Xonference on Architectural
Support for Programming Languages and Operating Systems, pp. 394–403. ACM
Press, New York (2006), doi:10.1145/1168857.1168906

5. Barak, B., Goldreich, O., Impagliazzo, R., Rudich, S., Sahai, A., Vadhan, S., Yang,
Ke.: On the (im)possibility of obfuscating programs. In: Kilian, J. (ed.) CRYPTO
2001. LNCS, vol. 2139, pp. 1–18. Springer, Heidelberg (2001)

The Superdiversifier: Peephole Individualization for Software Protection 119

6. Brumley, D., Poosankam, P., Song, D., Zheng, J.: Automatic patch-based exploit
generation is possible: Techniques and implications. In: Proceedings of the 2008
IEEE Security and Privacy Symposium (2008)

7. Chen, Y., Venkatesan, R., Cary, M., Pang, R., Sinha, S., Jakubowski, M.H.: Obliv-
ious hashing: A stealthy software integrity verification primitive. In: Information
Hiding (2002)

8. Cohen, F.: Operating system protection through program evolution (1992),
http://all.net/books/IP/evolve.html

9. Collberg, C., Thomborson, C., Low, D.: A taxonomy of obfuscating transforma-
tions. Technical Report 148, Department of Computer Science, The University of
Auckland, New Zealand (July 1997)

10. Collberg, C., Thomborson, C., Low, D.: Breaking abstractions and unstructuring
data structures. In: International Conference on Computer Languages, pp. 28–38
(1998)

11. Collberg, C., Thomborson, C., Low, D.: Manufacturing cheap, resilient, and
stealthy opaque constructs. In: Principles of Programming Languages, POPL 1998,
pp. 184–196 (1998)

12. Dedic, N., Jakubowski, M.H., Venkatesan, R.: A graph game model for software
tamper protection. In: 2007 Information Hiding Workshop (2007)

13. eEye Digital Security. eEye Binary Diffing Suite (2007),
http://research.eeye.com

14. El-khalil, R., Keromytis, A.D.: Hydan: Hiding information in program binaries. In:
López, J., Qing, S., Okamoto, E. (eds.) ICICS 2004. LNCS, vol. 3269, pp. 187–199.
Springer, Heidelberg (2004)

15. Geer, D., Bace, R., Gutmann, P., Pfleeger, C.P., Quarterman, J.S., Schneier, B.:
CyberInsecurity: The cost of monopoly–how the dominance of Microsoft’s products
poses a risk to security (2003),
http://www.ccianet.org/paperscyberinsecurity.pdf

16. Goldwasser, S., Kalai, Y.T.: On the impossibility of obfuscation with auxiliary
input. In: Proceedings of the 46th IEEE Symposium on Foundations of Computer
Science (FOCS 2005) (2005)

17. Jacob, M., Jakubowski, M.H., Venkatesan, R.: Towards integral binary execution:
Implementing oblivious hashing using overlapped instruction encodings. In: 2007
ACM Multimedia and Security Workshop, Dallas, TX (2007)

18. Jakubowski, M.H., Venkatesan, R.: Protecting digital goods using oblivious check-
ing, US Patent No. 7,080,257, filed on August 30, 2000, granted on July 18 (2006)

19. Joshi, R., Nelson, G., Randall, K.: Denali: a goal-directed superoptimizer. In: PLDI
2002: Proceedings of the ACM SIGPLAN 2002 Conference on Programming Lan-
guage Design and Implementation, pp. 304–314. ACM Press, New York (2002)

20. Lynn, B., Prabhakaran, M., Sahai, A.: Positive results and techniques for obfusca-
tion. In: Cachin, C., Camenisch, J.L. (eds.) EUROCRYPT 2004. LNCS, vol. 3027,
pp. 20–39. Springer, Heidelberg (2004)

21. Massalin, H.: Superoptimizer: A look at the smallest program. In: ASPLOS-II:
Proceedings of the Second International Conference on Architectual Support for
Programming Languages and Operating Systems, pp. 122–126. IEEE Computer
Society Press, Los Alamitos (1987)

22. The Metasploit Project. Metasploit, http://www.metasploit.com
23. SABRE Security and Zynamics. Using SABRE BinDiff for malware analysis (2007),

http://www.sabresecurity.com/files/BinDiff Malware.pdf
24. Tan, G., Chen, Y., Jakubowski, M.H.: Delayed and controlled failures in tamper-

resistant software. In: Proceedings of the 2006 Information Hiding Workshop (2006)

http://all.net/books/IP/evolve.html
http://research.eeye.com
http://www.ccianet.org/paperscyberinsecurity.pdf
http://www.metasploit.com
http://www.sabresecurity.com/files/BinDiff_Malware.pdf

120 M. Jacob et al.

25. Tseitin, G.S.: On the complexity of derivation in propositional calculus. In: Studies
in Constructive Mathematics and Mathematical Logic, pp. 115–125 (1968)

26. Princeton University. zChaff, http://www.princeton.edu/∼chaff/zchaff.html
27. Wang, C., Hill, J., Knight, J., Davidson, J.: Software tamper resistance: Obstruct-

ing static analysis of programs. Technical Report CS-2000-12, University of Vir-
ginia (December 2000)

28. Wee, H.: On obfuscating point functions. In: STOC 2005: Proceedings of the
Thirty-seventh Annual ACM Symposium on Theory of Computing, pp. 523–532.
ACM Press, New York (2005)

29. Wikipedia. Metamorphic code, http://en.wikipedia.org

http://www.princeton.edu/~chaff/zchaff.html
http://en.wikipedia.org

	Introduction
	Software Protection
	Superoptimization and Software Diversity

	Superdiversification
	Generation of Code Sequences
	Practical Issues
	Testing for Equivalence of Code Sequences

	Implementation and Experimental Results
	Sample Results and Discussion
	Performance

	Applications
	Signature-Based Attacks
	Patch Obfuscation

	Summary and Future Work

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

