
Tamper-Tolerant Software: Modeling and

Implementation

Mariusz H. Jakubowski1, Chit Wei (Nick) Saw1,
and Ramarathnam Venkatesan1,2

1 Microsoft Research
One Microsoft Way, Redmond, WA 98052, USA

{mariuszj,chitsaw}@microsoft.com
2 Microsoft Research India

196/36 2nd Main, Sadashivnagar, Bangalore 560 080, India
venkie@microsoft.com

Abstract. Common software-protection systems attempt to detect ma-
licious observation and modification of protected applications. Upon tam-
per detection, anti-hacking code may produce a crash or gradual failure,
rendering the application unusable or troublesome. Such a response is
designed to complicate attacks, but has also caused problems for devel-
opers and end users, particularly when bugs or other problems invoke
anti-tampering measures accidentally. To address these issues, an al-
ternative approach is to detect and fix malicious changes. This paper
presents a scheme to transform programs into tamper-tolerant versions
that use self-correcting operation as a response against attacks. Combin-
ing techniques from the fields of fault tolerance and software security,
the approach transforms programs via code individualization and redun-
dancy. We also describe security enhancements through error correction,
delayed responses and checkpointing. For security analysis, we adapt a
graph-based model of attacks and defenses in the context of software
tamper-resistance. This helps to estimate the difficulty of breaking our
scheme in practical scenarios.

1 Introduction

On modern computing systems, certain software requires protection against ma-
licious tampering and unauthorized usage. For example, DRM (Digital Rights
Management) systems attempt to prevent software piracy, as well as illegal dis-
tribution of music, video and other content. Running on open PCs, however,
such security-sensitive applications are subject to observation and modification
by hackers. Consequently, developers have employed tamper-resistant software
(TRS) [5,9,18,19], which involves a variety of program obfuscation and hard-
ening tactics to complicate hacker eavesdropping and tampering [12,32,4,29].
While no provably secure and practical methods have been deployed, various
TRS heuristics extend the time and effort required to break protection.

Among the most popular protection techniques is integrity checking, or verify-
ing that a program and its execution are tamper-free. Specific methods

T. Takagi and M. Mambo (Eds.): IWSEC 2009, LNCS 5824, pp. 125–139, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

126 M.H. Jakubowski, C.W. Saw, and R. Venkatesan

include computation of hashes over program code and data, along with peri-
odic checks for mismatches between pre-computed and runtime values [10,19].
Upon detection of incorrect program code or behavior, a protection system typ-
ically responds by crashing or degrading the application (e.g., via slowdown and
erratic operation) [29]. Often obfuscated, this response mechanism serves both
to delay hackers and deny illegitimate usage of the application.

This typical ”pessimistic” response to tampering has caused issues with ap-
plication development, including testing and debugging, as well as with end-user
experience. For example, application bugs sometimes manifest themselves only in
tamper-protected instances of applications, forcing developers to face their own
(or third-party) protection measures. Bugs in the actual protection system can
be especially troublesome, particularly when interacting with protected appli-
cations. Given random application failures and erratic behavior, legitimate end
users may find it difficult or impractical to file bug reports and receive support.
These and other problems have contributed to general unpopularity of software
protection.

A more constructive response to attacks is not to render an application unus-
able, but to correct the effects of tampering and allow the program to continue.
The basic notion of such tamper-tolerant software (TTS) is appealing from the
perspectives of both developers and end users, since TTS works actively to keep
a program running correctly despite attacks – much like fault-tolerant systems
protect against system breakdown due to malfunctioning components. Along
these lines, some earlier protection schemes have used multiple copies of code to
guard against tampering [9,11].

Fault tolerance [16,21,27] is a rich area that has seen much theoretical and
practical work, but aims mainly to defend against ”random” or unintentional
failures, not against intelligent malicious attackers. However, TTS can derive
from the basic concepts of fault tolerance, including redundancy, failover, and
checkpoints with rollback. Likewise, error-correction methods [24] are geared
mainly towards addressing noisy data transmission, but are useful in TTS as
well. TTS can be considered as an adaptation and extension of fault tolerance
and error correction to the intelligent-attacker scenario in software protection.

Evaluating the real-life effectiveness of software protection has been a tradi-
tionally problematic task. Most implementations in practice tend to use “ad hoc”
techniques that offer only heuristic security assessments, if any. Even schemes
that reduce to solving “difficult” problems can often be broken when attacks
violate their idealized models or assumptions. Nonetheless, a recent line of work
on graph-based modeling of tamper-resistance [15] offers some promise. In this
framework, execution is modeled as a walk on program graphs, while attacks are
analyzed as a “graph game” between hackers and defenders. We provide a simple
adaptation of this model to our tamper-tolerance framework. As a step towards
security analysis, this approach estimates the number of runtime observations
and modifications required by any successful tampering attack.

The rest of this paper is structured as follows. Section 2 describes our basic
TTS approach, including background on fault tolerance and software protection.

Tamper-Tolerant Software: Modeling and Implementation 127

In Section 3, we present a graph-based security model for evaluating the strength
of TTS. Section 4 presents a test implementation and experimental results on
SPEC benchmarks. We provide a final assessment in Section 5.

2 Tamper-Tolerant Software

The essential idea of tamper-tolerant software is to detect tampering and fix its
effects at runtime. This is distinct from traditional anti-tampering responses,
which use techniques such as delayed crashes and graceful degradation [29,15] to
block illegitimate usage and hinder attackers. Much the same effects are achieved
if the program silently corrects its operation instead of failing. However, clear
practical advantages come into play when applications continue to function as
intended despite attacks. As with delayed responses in TRS, TTS may actually
allow some tampered execution, but only temporarily.

To construct TTS schemes, our approach relies on several well known tech-
niques from the fields of fault tolerance and software protection. Below we briefly
review these techniques in the context of software security.

2.1 Building Blocks

Fault-tolerant systems typically use redundant and diversified components to
resist random or non-malicious failures. With some extensions, such methods
also help against intelligent attackers. We leverage the following main elements
of fault tolerance:

– Redundancy: Duplication of system components into distinct, indepen-
dently functioning units. This is a means of implementing failover, or switch-
ing to a fresh component if one stops working correctly. In addition, voting
schemes compute results from multiple redundant components and select
the most frequently occurring values. For example, the well known TMR/V
scheme (triple modular redundancy with voting) uses three duplicate com-
ponents and picks the majority answer [28].

– Individualization: Alteration of software code without affecting its func-
tionality (synonymous with diversification [4]). Such transformations can im-
plement the same operations in different ways, leading to potentially more
robust systems. This can also make the same code appear different to adver-
saries, ideally forcing them to duplicate analysis efforts. Both code and data
may be individualized statically (i.e., prior to runtime [1]) or dynamically
(i.e., periodically during runtime [3]).

– Checkpointing: Upon tamper detection, rollback of execution to an ear-
lier point. Checkpoints (i.e., summaries of program state sufficient to restart
execution) are saved periodically for this purpose. This is the essential idea
behind recovery-block schemes [26,30]. One motivation for this is attacks that
alter program state without patching code, so that canceling and redoing op-
erations can effectively fix the tampering. Alternately, a different redundant

128 M.H. Jakubowski, C.W. Saw, and R. Venkatesan

component can redo the computation. Such checkpointing is also used by so-
called ”time-travel” (or ”omniscient”) debuggers to execute code backwards
or roll execution back to some arbitrary point [8]. We may take advantage
of existing checkpoint technology from such debuggers and simulators.

TTS also uses a number of techniques from the field of software protection:

– Integrity checks: Runtime verification of correct program operation. A tra-
ditional method is to compute checksums or hashes of code bytes, comparing
at runtime against precomputed correct values [18,9]. Without reading in-
struction bytes, the technique of oblivious hashing computes and verifies
hashes based on runtime variable values and control-flow transfers (e.g., by
updating a hash value upon every variable assignment and branch [10,19]).
Similarly, integrity-checking expressions (ICEs) can be used to verify in-
tegrity of execution by computing predicates over runtime state [20].

– Delayed responses: Separation of tamper detection and correction in space
and time. This is to prevent easy identification of the TTS mechanism,
mainly by disguising and hiding corrective response mechanisms [29,15]. One
example technique is corrupting pointers so that future dereferencing will re-
sult in an invalid access, crashing the program [29].

– Result correction: Combination of several (possibly encoded) outputs from
individualized copies of a code block, and output of the block’s correct result
despite tampering with one or more of the copies. This is a generalization of
the idea of majority decoding in error correction (e.g., TMR/V, as described
earlier [24]).

– Data encoding and shuffling: Encryption or scrambling of a program’s
working data, including usage of standard authentication (e.g., hashes or
MACs) and error-correction codes. Variables may be continually transformed
and moved in memory to prevent easy dataflow analysis and tracking [31,2].

2.2 Tamper-Tolerance Schemes

Following the core principles and terminology of fault tolerance, our basic TTS ap-
proachuses the notion of individualized modular redundancy (IMR). In essence, the
methodology duplicates code blocks at various granularities (e.g., basic blocks or
entire functions), transforming the copies into diversified but functionally
equivalent versions.We treat these code blocks as deterministic functions that map
inputs to outputs and have no side effects. At runtime, the different copies may
execute at various times or in parallel, producing individual intermediate outputs
(all of which should be the same if no tampering occurs). Fig. 1 shows the basic
conception of tamper-tolerant software.

This general IMR framework may be specialized in various ways. For con-
creteness, we present three specific practical schemes. We use acronyms and
terminology derived from literature on fault tolerance [28,27,16,21]:

– IMR with voting (IMR/V): This is IMR combined with a baseline form
of result correction (similar to N-version programming [6]). From among the

Tamper-Tolerant Software: Modeling and Implementation 129

Input Program

A

B

C

A

A

A

B

B

B

C

C

C

Modular Redundancy Individualization Tamper Correction

Code Blocks

Fig. 1. High-level overview of tamper-tolerant software

results computed by individualized code blocks, a voting mechanism selects
the final output. Given no tampering, the vote will be unanimous – i.e.,
all redundant copies generate the same output. This voting scheme can be
considered as a simple means of implementing result correction.

For more secure result correction, we use the general concept of a tamper-
correcting transform that accepts a number of encrypted (or scrambled) and
potentially corrupted intermediate results. Individualized copies of a code
block compute such results; the transform then decrypts (or unscrambles)
these values and uses error correction on them to produce one final answer.
As described above, the simplest form of this transform is equivalent to error
correction via majority voting – i.e., the intermediate results are in plaintext,
and the most commonly appearing value is selected as the final output. In
general, however, the decryption (or unscrambling) and error correction (or
voting) may be coalesced into a single transform that performs these distinct
operations implicitly.

– IMR with detection and correction (IMR/DC): In this scheme, the
protection system resorts to redundant execution only if tampering is de-
tected. Using the integrity-verification techniques described earlier, the sys-
tem checks the execution of each code block for correctness (e.g., via verifying
code-byte checksums or oblivious hashes of execution). Upon tamper detec-
tion, the system selects and executes an individualized copy of the block,
also verifying its runtime integrity. The system may simply call another in-
dividualized version of the block, or overwrite the tampered code with new
code from a repository of possibly encrypted redundant blocks. This process

130 M.H. Jakubowski, C.W. Saw, and R. Venkatesan

repeats until some copy of the block executes successfully without tampering
(or until no more individualized blocks are available). Checkpointing may be
used to roll back execution and provide correct program state before a copied
block executes. If side effects are part of block execution, checkpointing with
rollback may be necessary for proper program operation.

IMR/DC has some parallels with the notion of recovery blocks in stan-
dard fault tolerance [26]. The basic idea is to detect and recover from fail-
ures by rolling back to a “last known good” execution state. Fault detection
may be accomplished via algorithm-specific checks [30], which are analogous
to runtime tamper detection via techniques like integrity-checking expres-
sions [20]. Also related is recent work on the Rx system, which survives
software bugs via checkpoint-based rollback and re-execution in a modified
environment [25]. However, these systems are geared against random or non-
malicious faults, while IMR/DC and TTS in general aim to resist intelligent
attackers.

– IMR with randomized execution (IMR/RE): This method selects in-
dividualized code blocks randomly for execution. For example, given three
redundant, functionally equivalent code blocks A, B, and C, the system
chooses and executes one with some probability (e.g., 1/3 for each of A, B,
and C). If an attacker tampers with only A, execution will still be correct
with probability 2/3, since B and C may be picked. Controlled by opaque
predicates or other possibly obfuscated means [14,13], block selection may
vary during runtime and between runs of a program. Such an approach can-
not be used standalone to ensure tamper tolerance, but may be combined
with other methods to enhance security of tolerance. In particular, combin-
ing IMR/RE with checkpointing (or rollback to an earlier point upon tamper
detection) can undo tampering.

In a typical implementation, various other software-protection techniques would
be incorporated into a tamper-tolerance system. These include data transforma-
tions [31,2], delayed responses [29], as well as other applicable tamper-resistance
and obfuscation techniques. The main goal is to strengthen the above basic
schemes, as well as to satisfy “engineering assumptions” required by the security
model we adapt [15], as described later.

2.3 Tamper-Tolerance Algorithms

Using the above concepts, we present a general algorithm outline to implement
TTS in practice. Given a program P to be protected, along with optional user-
specified security and maintenance parameters, the algorithm transforms P into
a new tamper-tolerant version P ′. P is typically a single application, library
module or driver running in either user or kernel mode. The following are general
basic steps of the transformation process to protect P :

1. Break up P into a number of blocks, which may range in granularity from
individual instructions to the entire program P . In practice, subdivision

Tamper-Tolerant Software: Modeling and Implementation 131

into standard basic blocks (i.e., code sections with no incoming or outgoing
internal branches) or functions is likely to suffice.

2. Duplicate, individualize and rearrange the blocks within the program, relying
on user-specified parameters to determine number(s) of copies and specifics
of individualization (e.g., types and degrees of diversifying transformations).

3. Inject appropriate code to implement IMR/V, IMR/DC, IMR/RE, or a com-
bination of two or three thereof, as specified by user parameters. Such code
may include opaque predicates for block selection.

4. Optionally inject code to manage result correction, data transformations,
delayed responses, checkpointing, or a combination of two or more thereof.
Also optional is injection of any additional obfuscation measures.

5. For enhanced security, optionally iterate the above steps two or more times,
so that the tamper-tolerance measures are themselves protected by one or
more layers of tamper tolerance. This is important for leveraging the basic
IMR approach.

3 Security Modeling

This section presents a security model to evaluate the effectiveness of TTS
schemes. Our main goal is a method to estimate the complexity of breaking
TTS in practice (e.g., in terms of the number of observations and modifications
required by any successful attacker). Different applications require different levels
of resistance; e.g., a few weeks without cracks might suffice for copy protection
on some games, while even a few hours may be enough for quickly refreshed
Web-based code. Although “unbreakable” software protection remains an open
problem, this is not necessary in many, if not most, business contexts.

Theoretical treatment of obfuscation has yielded negative general results [7,17].
This indicates that no tool can protect all possible programs, but certain limited
classes of functionality are amenable to obfuscation [22,33]. However, this is in a
very strict “all or nothing” model, where any non-negligible information extracted
efficiently from obfuscated code is considered a break.On the other hand, our mod-
eling approach is geared mainly towards estimating the time and effort required
to defeat protection.

To assess security of TTS, we adapt a graph-game tamper-resistance frame-
work that treats a program as a graph and execution as a walk on the graph [15].
The program is protected by integrity checks contained in some nodes, and the
attacker’s goal is to isolate all such nodes. Although originally intended for mod-
eling tamper-resistant software, this approach can be adapted naturally to TTS.
We provide an informal but self-contained summary of this framework, along
with a description of our changes to model TTS.

3.1 Graph-Game Model

The main elements of the graph-game model [15] are as follows:

132 M.H. Jakubowski, C.W. Saw, and R. Venkatesan

– Program: The program P to be protected is viewed as a graph G, such as
a control-flow graph (CFG). This CFG should be “semi-random,” which is
achieved via transformations that add nodes and edges.

– Execution: This is modeled as a “semi-random” walk on the graph G.
Most program CFGs result in walks that are not particularly random, given
typical patterns of control flow. The model relies on various transformations
to randomize the runtime walk.

– Integrity checks: Unknown to the attacker, some nodes in the CFG execute
probabilistic checks to verify correct program operation at a particular time
and place. In practice, this abstract notion of an integrity check may be
implemented in various ways, such as code-byte checksums [18,9], oblivious
hashing [10,19], and integrity-checking expressions [20]

– Tamper responses: When certain sets of checks fail, a tamper response is
initiated. This is typically a delayed crash, or a program failure designed to
deflect attention away from its causes (i.e., tampering with nodes).

With these elements, the graph game involves an attacker able to run the
protected program, tamper with nodes, and observe program behavior. The pro-
gram’s response to tampering (i.e., time and place of failure) reveals informa-
tion about the placement of integrity checks. Once the attacker identifies a node
containing such a check, he may disable it. His goal is to identify all nodes re-
sponsible for integrity verification, which he can then eliminate to unprotect the
program.

The analysis in [15] essentially shows that in order to achieve success, the
attacker must perform a large number of program observations and node mod-
ifications. This number may be quadratic (or higher) in terms of the workload
required to protect the program. In general, this is our main goal – i.e., the
attacker should expend an order of magnitude more effort than the protector.

3.2 TTS Modeling

The graph-game framework is almost directly applicable to TTS. Our only main
change is to replace the notion of delayed crashes with delayed fixes. More specif-
ically, instead of responding to the attacker’s tampering by eventually crashing,
the program will correct its operation and continue running. When the attacker
tampers with graph nodes, he may observe altered program behavior for some
time, after which the program resumes its untampered operation. Like a delayed
crash, this length of time gives the attacker information about whether any of the
tampered nodes contained integrity checks. With this modification, the original
analysis of the graph-game model [15] essentially applies as is.

For concreteness, we describe a simplified variant of this modeling approach.
Assume the protected program contains n integrity checks, each executed with
probability p. Let d denote the average time required by the attacker to determine
that a node contains an integrity check. To identify all integrity checks, the
attacker must run the program an average of n/p times, each taking time d.

Tamper-Tolerant Software: Modeling and Implementation 133

Thus, the time required by the attacker is dn/p. If we set p to 1/n, the time
becomes dn2, or quadratic in the number of checks.

Like the original graph-game model, this approach makes a number of “engi-
neering assumptions” that must be approximated in practice. For example, all
integrity checks must be distinct, so that an attacker cannot easily use knowl-
edge of one check to identify others. In addition, converting a typical CFG to a
“semi-random” graph, along with approximating execution as a “semi-random”
walk, may incur significant performance and code-size penalties. Nonetheless,
software-protection techniques like individualization and opaque predication can
help satify these requirements. In fact, the previously described elements of TTS
can be viewed as a set of engineering techniques to satisfy the model’s practical
assumptions about tamper-tolerance.

3.3 Impossibility Results

While general-purpose obfuscation has been proved impossible in the model
of Barak et al. [7], we are not aware of analogous work for tamper-resistance.
However, it is straightforward to show that general-purpose tamper-resistance
(or tamper-tolerance) is impossible as well. Informally, if we assume the existence
of a generic tool to tamper-protect any program, we can simply feed such a tool’s
output to itself. Since any tamper protection involves some form of program
transformations, this would essentially force the tool to break its own tamper
protection in order to modify the tamper-resistant program. Thus, such a tool
cannot exist.

The graph-game model [15] actually does propose an approach for general-
purpose tamper-protection. However, this model implicitly assumes that the
input program is not already tamper-protected, thus rendering the above impos-
sibility argument irrelevant. In addition, the argument assumes that the transfor-
mation tool uses no secret key or other non-public information, but the scenario
is somewhat different if this is allowed. A more detailed analysis of related results
for tamper-resistance and -tolerance may appear elsewhere.

4 Implementation and Experiments

We have implemented an initial version of a tool that applies some of the tamper-
tolerance techniques described in this paper by transforming and compiling high-
level source code. The tool is built on top of a code transformation framework
based on Phoenix [23]. Phoenix is a Microsoft program analysis and compiler
framework based on a common intermediate representation (IR) that provides
the building blocks of the program to be transformed.

This current section describes the tool in more detail, and includes some
experimental results obtained by applying the tool to several SPEC CPU2006
benchmarks.

134 M.H. Jakubowski, C.W. Saw, and R. Venkatesan

4.1 Tool Implementation

In this initial version of the tool, we implemented the IMR/RE scheme, which
incorporates many of the building blocks upon which the other schemes may be
built. In addition, we also implemented a stack-based checkpointing and rollback
mechanism in order to illustrate the performance under simulated tampering and
detection conditions. Future work will enhance the tool to implement the IMR/V
and IMR/DC schemes.

The tool processes each function in an input program and creates a config-
urable number of copies of the basic blocks in the function. The number of copies
may be specified in a configuration file. Additionally, the functions to be pro-
cessed may also be specified, and a parameter may be used to control the code
coverage, or percentage of blocks processed within the functions. We could have
instead opted to copy entire functions rather than basic blocks, but copying at
the basic-block level provides a finer level of granularity that could allow for
more targeted applications of the technique.

The multiple copies are each individualized, which in the case of our tool is
achieved by applying a different combination of simple chaff-code injection and
code-substitution transformations to each code block in a way that does not
alter the functionality of the block. In practice, any individualization scheme
that produces functionally equivalent individualized code may be used. Finally,
the tool inserts code to select (randomly, as is the case for the IMR/RE scheme)
one of the multiple copies to execute. In our prototype, a simple pseudo-random
number generator is inlined in the code to select randomly one of the code blocks
to which to transfer control.

4.2 Experimental Results

This section presents experimental results obtained by running the tool on se-
lected SPEC CPU2006 benchmarks (data compression, transportation schedul-
ing, database search, chess and video compression). The benchmarks were run
and timed on a Pentium 3.0 GHz workstation with 3 GB of RAM. In the set
of tables that follow, we measured for each benchmark the binary code size and
runtime performance before and after applying the tamper-tolerance transfor-
mations. We express these measures in the tables as ratios relative to the baseline
benchmark with no tamper-tolerance applied. The results show the impact of
the addition of tamper-tolerance on the code size and runtime performance of
the program.

Tables 1 and 2 show how applying IMR/RE by duplicating a random sampling
of 25% of the code blocks affects the code-size and performance respectively
relative to the baseline. Because not all blocks are the same size, and because we
perform the duplication of blocks in high-level source code, it does not necessarily
follow that the size of the resulting executable file will increase by exactly the
same amount as statically-linked library code is not seen at compile-time and will
not be subjected to the transformation. In addition, the random-block-selection
code will add to both the code size and performance overhead. We repeated the

Tamper-Tolerant Software: Modeling and Implementation 135

Table 1. Code-size impact of block redundancy, 25% code coverage

Benchmark
Number of redundant copies (n)

n = 2 n = 4 n = 8 n = 16

401.bzip2 1.650 2.319 3.525 5.875
429.mcf 1.189 1.400 1.611 2.256
456.hmmer 1.879 2.640 4.109 7.298
458.sjeng 1.776 2.475 3.929 6.859
464.h264ref 1.907 2.770 4.414 8.054

Table 2. Performance impact of block redundancy, 25% code coverage

Benchmark
Number of redundant copies (n)

n = 2 n = 4 n = 8 n = 16

401.bzip2 2.267 2.674 3.287 4.903
429.mcf 2.010 2.352 2.762 2.238
456.hmmer 2.275 2.389 2.310 4.629
458.sjeng 2.840 3.797 4.858 6.274
464.h264ref 2.222 3.655 3.909 5.274

Table 3. Code-size impact of block redundancy, 50% code coverage

Benchmark
Number of redundant copies (n)

n = 2 n = 4 n = 8 n = 16

401.bzip2 2.325 3.394 5.375 10.65
429.mcf 1.333 1.667 2.222 3.644
456.hmmer 2.599 4.119 7.023 13.07
458.sjeng 2.475 3.886 6.529 11.79
464.h264ref 2.701 4.394 7.699 14.32

measurements for number of copies n = 4, 8 and 16. This clearly shows the
increase in code size due to the additional redundant code as more copies are
introduced. The performance overhead may be attributed to the block-selection
code as well as changes to the spatial and temporal ordering of code blocks which
can affect the efficacy of CPU-based optimizations such as caching and branch
prediction. These performance impacts can also vary depending on the profile of
the code running the benchmark and the actual blocks selected for redundancy.
For instance, duplicating a block within a performance-critical, tight inner loop
would cause the block-selection code to be run on every iteration of the loop,
thereby amplifying the performance overhead.

Tables 3 through 6 repeat the measurements for expanded code-coverage
values of 50% and 100%. As the code coverage is increased, both code size
and performance are impacted, the latter due to the increased frequency of
block-selection code execution and the reduced efficacy of CPU-based optimiza-
tions. This can be seen most clearly at the 100% code-coverage level, where the

136 M.H. Jakubowski, C.W. Saw, and R. Venkatesan

Table 4. Performance impact of block redundancy, 50% code coverage

Benchmark
Number of redundant copies (n)

n = 2 n = 4 n = 8 n = 16

401.bzip2 3.840 5.580 7.099 9.530
429.mcf 2.388 2.447 3.340 4.301
456.hmmer 2.834 3.738 5.808 4.803
458.sjeng 4.311 6.509 7.547 11.56
464.h264ref 4.364 5.395 6.854 10.04

Table 5. Code-size impact of block redundancy, 100% code coverage

Benchmark
Number of redundant copies (n)

n = 2 n = 4 n = 8 n = 16

401.bzip2 3.394 5.725 10.33 19.42
429.mcf 1.722 2.356 3.700 6.533
456.hmmer 4.149 7.235 13.26 25.50
458.sjeng 3.890 6.765 12.00 22.53
464.h264ref 4.307 7.802 14.31 27.45

Table 6. Performance impact of block redundancy, 100% code coverage

Benchmark
Number of redundant copies (n)

n = 2 n = 4 n = 8 n = 16

401.bzip2 6.205 9.307 12.13 16.74
429.mcf 3.990 5.324 6.618 10.10
456.hmmer 4.934 7.293 9.651 13.49
458.sjeng 8.255 12.31 16.70 25.71
464.h264ref 6.801 9.880 12.76 18.07

redundancy is applied to every block in the source code. We should also point
out that the block-selection code was not optimized by the compiler, which may
account in part for the slower execution times as the degree of redundancy is
increased. This could be addressed by encoding the block-selection code using
low-level jump tables.

In order to illustrate in general how checkpointing and rollback could be
used in conjunction with IMR/RE as an effective means of result correction
in the presence of tampering, we implemented a simple stack-based scheme to
checkpoint the execution environment of the program before a function call, and
rollbacks to restore the execution to the most recent checkpoint. This scheme
does not currently support saving and restoring global state, so we are limited
to applying this only in the absence of global side-effects.

We assume different probabilities of tampering within the program, and simu-
late detection and correction by injecting code in each function to perform a roll-
back to the previous checkpoint with probability p. Upon a successful rollback,

Tamper-Tolerant Software: Modeling and Implementation 137

Table 7. Performance impact of rollback

Benchmark
Probability of tampering (p)

p = 0.9 p = 0.8 p = 0.7 p = 0.6 p = 0.5

401.bzip2 2.720 1.875 1.571 1.432 1.324
429.mcf 5.735 3.373 2.578 2.137 1.863
456.hmmer 2.175 1.611 1.415 1.332 1.262
458.sjeng 6.132 3.755 2.943 2.542 2.222
464.h264ref 9.679 5.395 3.936 3.159 2.651

execution will resume from the previous checkpoint, and will have a probability
of (1−p) of successfully proceeding beyond the tampered block. In the IMR/RE
scheme, the probability that the same tampered block will be executed is 1/n,
where n corresponds to the number of copies made of the code block.

The performance impact of checkpointing and rollback under different tam-
pering probabilities is presented in Table 7. The values in the table are again
expressed as a ratio relative to the baseline execution with no tampering or
rollback. As the probability p of encountering tampering decreases, the perfor-
mance improves due to a greater likelihood that the tampered code is avoided
upon restoration of execution following a rollback.

In all of the experiments, we applied the transformation over a set percentage
of all code blocks in order to be able to perform relative measurements across
the selected benchmarks. More realistic usage may involve targeted selection of
sensitive code sections on which to apply tamper-tolerance, as well as protecting
less critical parts of the program to avoid drawing attention to the former. As
with other software-protection schemes, these need to be balanced with the code-
size and performance impacts. While the current version of the tool applies the
transformations to high-level source code for cross-platform compatibility, the
methods described in this paper may equally be applied to low-level machine
code. Finally, practical application of this and other tamper-tolerance schemes
should always be done in conjunction with other protection methods as part of
an overall software-protection solution.

5 Conclusion

This paper proposed the general concept of tamper-tolerant software, or the
notion of an attacked program correcting its own operation upon tamper de-
tection, as opposed to traditional responses that involve crashes or graceful
degradation. Tamper-tolerance enables a program to continue executing rather
than to fail upon attack detection. TTS is based on individualized modular
redundancy, namely a combination of software protection and fault-tolerance
techniques adapted to the malicious-attacker scenario. The approach detects
tampering and fixes malicious changes via voting, result correction, random-
ized re-execution, or rollback. We model TTS by adapting a graph-based

138 M.H. Jakubowski, C.W. Saw, and R. Venkatesan

tamper-resistance framework [15], enabling security analysis and estimation of
attack resistance in practice.

Future work will analyze possibility and impossibility results for TRS and
TTS, extending the informal discussion from Section 3. In particular, we are
investigating classes of programs in terms of how well TRS and TTS can protect
them, both with and without secret keys and other auxiliary information. A main
goal is to put TRS and TTS on a sound yet practically useful formal foundation,
eliminating the need for “ad hoc” heuristics and unpredictable security in real-
world contexts.

References

1. Anckaert, B., Jakubowski, M.H., Venkatesan, R.: Proteus: Virtualization for di-
versified tamper-resistance. In: DRM 2006: Proceedings of the ACM Workshop on
Digital Rights Management, pp. 47–58. ACM Press, New York (2006)

2. Anckaert, B., Jakubowski, M.H., Venkatesan, R.: Runtime protection via dataflow
flattening. In: IARIA SECURWARE 2009 (to appear, 2009)

3. Anckaert, B., Jakubowski, M.H., Venkatesan, R., De Bosschere, K.: Run-time ran-
domization to mitigate tampering. In: Miyaji, A., Kikuchi, H., Rannenberg, K.
(eds.) IWSEC 2007. LNCS, vol. 4752, pp. 153–168. Springer, Heidelberg (2007)

4. Anckaert, B., De Sutter, B., De Bosschere, K.: Software piracy prevention through
diversity. In: DRM 2004: Proceedings of the 4th ACM Workshop on Digital Rights
Management, pp. 63–71. ACM Press, New York (2004)

5. Aucsmith, D.: Tamper resistant software: An implementation. In: Anderson, R.
(ed.) IH 1996. LNCS, vol. 1174, pp. 317–333. Springer, Heidelberg (1996)

6. Avizienis, A.: The methodology of N-version programming. In: Lyu, M.R. (ed.)
Software Fault Tolerance,ch. 2, pp. 23–46. Wiley, Chichester (1995)

7. Barak, B., Goldreich, O., Impagliazzo, R., Rudich, S., Sahai, A., Vadhan, S., Yang,
K.: On the (im)possibility of obfuscating programs. In: Kilian, J. (ed.) CRYPTO
2001. LNCS, vol. 2139, pp. 1–18. Springer, Heidelberg (2001)

8. Bhansali, S., Chen, W.-K., de Jong, S., Edwards, A., Murray, R., Drinić, M.,
Mihočka, D., Chau, J.: Framework for instruction-level tracing and analysis of pro-
gram executions. In: VEE 2006: Proceedings of the 2nd international conference
on Virtual execution environments, pp. 154–163. ACM, New York (2006)

9. Chang, H., Atallah, M.J.: Protecting software code by guards. In: Digital Rights
Management Workshop, pp. 160–175 (2001)

10. Chen, Y., Venkatesan, R., Cary, M., Pang, R., Sinha, S., Jakubowski, M.H.: Obliv-
ious hashing: A stealthy software integrity verification primitive. In: Information
Hiding 2002, Noordwijkerhout, The Netherlands (October 2002)

11. Cloakware Corporation. Software Security Suite (2009)
12. Collberg, C., Thomborson, C., Low, D.: A taxonomy of obfuscating transforma-

tions. Technical Report 148, Department of Computer Science, The University of
Auckland, New Zealand (July 1997)

13. Collberg, C., Thomborson, C., Low, D.: Breaking abstractions and unstructuring
data structures. In: International Conference on Computer Languages, pp. 28–38
(1998)

14. Collberg, C., Thomborson, C., Low, D.: Manufacturing cheap, resilient, and
stealthy opaque constructs. In: Principles of Programming Languages, POPL 1998,
pp. 184–196 (1998)

Tamper-Tolerant Software: Modeling and Implementation 139

15. Dedić, N., Jakubowski, M.H., Venkatesan, R.: A graph game model for software
tamper protection. In: Proceedings of the 2007 Information Hiding Workshop (June
2007)

16. Denning, P.J.: Fault tolerant operating systems. ACM Comput. Surv. 8(4), 359–
389 (1976)

17. Goldwasser, S., Kalai, Y.T.: On the impossibility of obfuscation with auxiliary
input. In: FOCS 2005: Proceedings of the 46th IEEE Symposium on Foundations
of Computer Science (2005)

18. Horne, B., Matheson, L.R., Sheehan, C., Tarjan, R.E.: Dynamic self-checking tech-
niques for improved tamper resistance. In: Digital Rights Management Workshop,
pp. 141–159 (2001)

19. Jacob, M., Jakubowski, M.H., Venkatesan, R.: Towards integral binary execution:
Implementing oblivious hashing using overlapped instruction encodings. In: 2007
ACM Multimedia and Security Workshop, Dallas, TX (september 2007)

20. Jakubowski, M.H., Naldurg, P., Patankar, V., Venkatesan, R.: Software integrity
checking expressions (ICEs) for robust tamper detection. In: Furon, T., Cayre, F.,
Doërr, G., Bas, P. (eds.) IH 2007. LNCS, vol. 4567, pp. 96–111. Springer, Heidelberg
(2008)

21. Linden, T.A.: Operating system structures to support security and reliable soft-
ware. ACM Comput. Surv. 8(4), 409–445 (1976)

22. Lynn, B., Prabhakaran, M., Sahai, A.: Positive results and techniques for obfusca-
tion. In: Cachin, C., Camenisch, J.L. (eds.) EUROCRYPT 2004. LNCS, vol. 3027,
pp. 20–39. Springer, Heidelberg (2004)

23. Microsoft Corporation. Phoenix compiler framework (2008)
24. Moon, T.K.: Error Correction Coding: Mathematical Methods and Algorithms.

Wiley-Interscience, Hoboken (2005)
25. Feng, Q., Joseph, T., Yuanyuan, Z., Jagadeesan, S.: Rx: Treating bugs as allergies—

a safe method to survive software failures. ACM Trans. Comput. Syst. 25(3), 7
(2007)

26. Randell, B.: System structure for software fault tolerance. In: Proceedings of the
International Conference on Reliable Software, Los Angeles, California, pp. 437–
449. ACM, New York (1975)

27. Randell, B., Lee, P., Treleaven, P.C.: Reliability issues in computing system design.
ACM Comput. Surv. 10(2), 123–165 (1978)

28. Siewiorek, D.P., Swarz, R.S.: Theory and Practice of Reliable System Design. Dig-
ital Press, Bedford (1982)

29. Tan, G., Chen, Y., Jakubowski, M.H.: Delayed and controlled failures in tamper-
resistant software. In: Proceedings of the 2006 Information Hiding Workshop (july
2006)

30. Tyrrell, A.M.: Recovery blocks and algorithm-based fault tolerance. In: EUROMI-
CRO Conference, vol. 0, p. 292 (1996)

31. Varadarajan, A.V., Venkatesan, R., Rangan, C.P.: Data structures for limited
oblivious execution of programs while preserving locality of reference. In: DRM
2007: Proceedings of the 2007 ACM workshop on Digital Rights Management, pp.
63–69. ACM, New York (2007)

32. Wang, C., Hill, J., Knight, J., Davidson, J.: Software tamper resistance: Obstruct-
ing static analysis of programs. Technical Report CS-2000-12, University of Virginia
(December 2000)

33. Wee, H.: On obfuscating point functions. In: STOC 2005: Proceedings of the
Thirty-seventh Annual ACM Symposium on Theory of Computing, pp. 523–532.
ACM Press, New York (2005)

	Tamper-Tolerant Software: Modeling and Implementation
	Introduction
	Tamper-Tolerant Software
	Building Blocks
	Tamper-Tolerance Schemes
	Tamper-Tolerance Algorithms

	Security Modeling
	Graph-Game Model
	TTS Modeling
	Impossibility Results

	Implementation and Experiments
	Tool Implementation
	Experimental Results

	Conclusion

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Remove
 /UsePrologue false
 /ColorSettingsFile (Color Management Off)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 290
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 290
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 2.03333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 800
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 2400
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f0064007500630065007300200062006f006f006b00200069006e006e006500720077006f0072006b0020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f0072002000680069006700680020007100750061006c0069007400790020007000720069006e00740069006e0067002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e000d>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

