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1 Introduction

The present document is devoted to the question of
whether effective computation can be performed by the
interaction of solitons [24, 34] in a bulk medium. The re-
sulting computational system would fulfill the promise of
Toffoli’s “programmable matter” [42] — offering compu-
tation that is very close to the underlying physics, and
therefore potentially providing ultra-scale parallel pro-
cessing.

The most immediate physical realization of such com-
putation may be provided by solitons in an optical fiber
[41, 20, 15]. Other media are also possible, including
Josephson junctions [35] and electrical transmission lines
[31, 21].

We should emphasize that using optical solitons in this
way is quite different from what is commonly termed “op-
tical computing” [19, 20], which uses optical solitons to
construct gates that replace electronic gates, but which
remains within the “lithographic” paradigm of laying out
gates and wires. The idea here uses a completely homoge-
neous medium for computation — the entire computation
is determined by an input stream of particles. A general
version of the structure proposed is shown in Fig. 1.
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Figure 1: Computing with solitons in a bulk medium. Solitons
are injected at the left of the diagram, computation takes place
within the medium via the interaction of the pseudoparticles, and
the results exit from the right of the diagram. The actual medium
can be linear, planar, or three-dimensional.

The idea of using solitons in a homogeneous medium for
“gateless” computation goes back at least to [39], where
solitons in a cellular automaton (CA) 1 are used to build

∗A full version of this document [22] has been submitted to Com-
plex Systems.

1These solitons arise in the mathematical framework of a CA [30,
14, 11, 12], and have an entirely different origin than the physically
based solitons we consider here. However, CA-based and PDE-based

a carry-ripple adder. A general model called the particle
machine (PM) for computation using collisions of parti-
cles was laid out and studied in [37, 38]. The present
paper moves from the abstraction of CA to the phys-
ical realm represented by partial differential equations
(PDE’s) such as the nonlinear Schrödinger, Korteweg-de
Vries, and sine-Gordon equations [34].
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Figure 2: Hierarchy of computational systems in the world of cel-
lular automata (CA). Particle machines (PM’s) are CA designed
to model particle-supporting physical media. Soliton machines
(SM’s) are restricted PM’s that model general soliton systems,
including PDE’s such as the Klein-Gordon and log-NLS equa-
tions. Oblivious soliton machines (OSM’s) are SM’s that model
integrable soliton systems, such as the KdV, cubic-NLS, and sine-
Gordon equations. All these PDE’s are described later in this
document.

To use physical solitons for computation, we define
restricted versions of the PM called soliton machines
(SM’s). Both PM’s and SM’s are 1-d cellular automata
that model motion and collision of particles in a uniform
medium. Oblivious soliton machines (OSM’s) are SM’s
further restricted to model a class of integrable soliton

solitons display remarkably similar behavior. As far as we know, the
connection between CA solitons and PDE solitons is unexplained,
though some authors [1, 29] have juxtaposed discussions of both
systems.
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systems. The hierarchy of the computational systems we
consider is shown in Fig. 2. In general, we abstract a
physical system by modeling it first with PDE’s, which we
then model with CA, namely PM’s and SM’s, as shown
in Fig. 3.
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Figure 3: The three worlds considered in this paper. Notice that
the property oblivious applies to both cellular automata and soli-
ton solutions of partial differential equations, whereas the prop-
erties integrable and having elastic collisions apply only to soliton
systems.

We will discuss the computational power of the ideal
machines with which we model physical systems. Being
able to simulate a Turing machine, or another universal
model, is neither necessary nor sufficient for being able
to perform useful computation. For example, certain par-
ticle machines can perform some very practical regular
numerical computations, such as digital filtering, quite
efficiently, and yet these PM’s are not necessarily univer-
sal [37, 38]. Conversely, simulating a Turing machine is a
very cumbersome and inefficient way to compute, and any
practical application of physical phenomena to computing
would require a more flexible computational environment.
Nevertheless, universality serves as a guide to the inherent
power of a particular machine model.

2 Particle Machines

The particle machine (PM) model of computation, intro-
duced and shown to be universal in [37], is an abstract
framework for computing with particles. The PM is a
general model, not based on any specific physical system,
but which tries to capture the properties of physical par-
ticles and particle-like phenomena.

Briefly, a PM is a CA with a next-state rule designed to
support a set of particles propagating with constant veloc-
ities in an infinite 1-d medium. Two or more particles may
collide; a set of collision rules specifies which particles are
created, which are destroyed, and which are unaffected in
collisions. A PM begins with a finite initial configuration
of particles and evolves in discrete time steps. A PM, like

a CA, can have a periodic background; that is, an infinite,
periodic sequence of nonzero state values (particles) in the
medium of the CA. Periodic backgrounds are sometimes
used to add computational power to CA, as in [5].

Particle machines capture and abstract the behavior of
particles in systems which may be used for computation.
Soliton machines, which are restricted PM’s that we will
define later, bring the abstraction a step closer to physi-
cal reality by modeling systems governed by certain well
known PDE’s. We now describe a class of these PDE’s
and systems.

3 Integrable Soliton Systems

Certain integrable 2 nonlinear PDE’s give rise to solitons,
or particle-like solitary waves that propagate without de-
cay in homogeneous media and survive collisions with
shape and velocity intact. Systems such as the Korteweg-
de Vries, sine-Gordon, and cubic nonlinear Schrödinger
equations describe the motion and interaction of soli-
tons in shallow water, electrical transmission lines, optical
fibers, and other materials [34, 8]. In recent years much
effort has been expended on analyzing the properties of
solitons for purposes such as high-speed communications
and optical computing gates [41, 19, 20]. We will examine
issues involved in using solitons to implement SM’s.

Non-integrable systems also support soliton-like waves,
whose more complex behavior we will describe later. The
integrable soliton-supporting equations that we consider
in this section have exact soliton solutions, which may be
obtained by the inverse scattering method [3]. Noninte-
grable equations, and integrable equations with arbitrary
initial conditions, must in general be solved numerically.

Later we will show that a certain class of integrable
PDE’s can do only limited computation using SM’s; we
conjecture that this is true of all integrable equations.
The simple behavior of integrable soliton systems makes
them unlikely candidates for useful computing media.

4 Oblivious Soliton Machines

The PM model is a convenient abstraction for computing
with solitons. In practice, however, general PM’s model
much more general behavior than that exhibited by inte-
grable systems. For example, the integrable soliton sys-
tems we have described do not support the creation of new
solitons or the destruction of existing solitons, and soliton
state changes due to collisions are very limited. Thus, we
adopt a restricted model of a PM called an oblivious soli-
ton machine (OSM). Like a PM, an OSM is a CA designed

2The term integrable, referring to PDE’s, is not used with perfect
consistency throughout the literature. Here we use integrable to
mean solvable by the inverse scattering method [3].
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to support particles propagating through a homogeneous
medium, but an OSM more closely models the integrable
soliton systems under consideration.

4.1 The OSM Model

An OSM is a PM in which each particle has a constant
identity and a variable state that are both vectors of real
numbers. A particle’s velocity is part of its identity. A
typical state may consist of a phase and a position relative
to a Galilean frame of reference, whereas a typical identity
may include an amplitude in addition to a velocity. No
particles can be created or destroyed in collisions, and
the identities of particles are preserved. A function of the
identities (not states) of the colliding particles determines
particle state changes.

Immediately after a collision, particles are displaced.
Displacement amounts are functions of the identities of
the colliding particles, and particles must be displaced
into distinct cells. In addition, we require that once
two particles collide, the same particles can never col-
lide again. This scheme models particle interaction in the
integrable soliton systems described earlier.

4.2 OSM’s Are Not Universal

We refer to OSM’s as oblivious because the state changes
in an OSM do not depend on the variable states of collid-
ing particles, but only on their constant identities. Obliv-
ious collisions in the OSM model correspond to elastic
collisions in the integrable PDE’s discussed here; how-
ever, it is an open question to the authors whether or
not all elastic soliton collisions in all integrable systems
are oblivious. The spatial displacements of OSM parti-
cles after collisions occur only in the constrained fashion
described above. The result of these properties is that
OSM’s cannot compute universally. In [22] we prove the
following theorem by calculating an upper bound on the
time taken by an OSM to do any computation:

Theorem 1 OSM’s are not computation-universal, ei-
ther with or without a periodic background. The max-
imum time that an OSM can spend performing useful
computation is cubic in the size of the input.

Corollary 1 OSM-based computational systems gov-
erned by the KdV and sine-Gordon equations are not uni-
versal, given that positions are used as state. OSM-based
systems governed by the cubic-NLS equation are not uni-
versal, given that positions and phases are used as state.

Conjecture 1 All integrable systems using any choice of
state are non-universal using the OSM model.

5 Soliton Machines

Intuitively, OSM’s cannot compute universally because
particles in an OSM do not transfer enough state informa-
tion during collisions. We can make a simple modification
to the OSM model so that universal computation becomes
possible: We make the results of collisions depend on both
the identities and states of colliding particles. In addition,
we allow particle identities to change. We call the result-
ing model a soliton machine (SM). In the final section
of this paper, we will describe non-integrable equations
that support soliton-like waves which we believe may be
capable of realizing the SM model.

Like an OSM, an SM is also a CA and a PM (see Fig.
2). The only difference between an SM and a PM is that
no particles can be created or destroyed in an SM. How-
ever, we can use a periodic background of particles in
special inert or blank states, and simulate creation and
destruction of particles by choosing collision rules so that
particles go into, and out of, these states.

5.1 Universality of SM’s

SM’s with a quiescent background have at least the com-
putational power of Turing machines (TM’s) with finite
tapes, as we prove in [22]. The question of whether such
SM’s are universal is open, however. Still, these SM’s are
more powerful than any OSM, since OSM’s can only do
computation that requires at most cubic time, while prob-
lems exist that require more than cubic time on bounded-
tape Turing machines. SM’s with a periodic background
can simulate an arbitrary TM, and are thus universal, as
we show in [22].

Theorem 2 SM’s with a quiescent background are at
least as powerful as Turing machines with bounded tapes.

Theorem 3 SM’s with a periodic background are
computation-universal.

The class of algorithms that a finite-tape TM can im-
plement depends on the specific function that bounds the
size of the TM’s tape; for instance, TM’s with tapes of
length polynomial in the input size can do any problem
in PSPACE. Although not universal, such TM’s can do
almost any problem of practical significance.

5.2 Discussion

Theorems 1–3 suggest that we should look to noninte-
grable systems for solitons that may support universal
computation. It is an open question whether or not there
exists such a soliton system. In what follows, we de-
scribe nonintegrable equations and explain the features
that could enable them to encode a universal SM. Then
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we describe some preliminary experiments with a par-
ticular nonintegrable PDE, the logarithmically nonlinear
Schrödinger (log-NLS) equation.

6 Nonintegrable Soliton Systems

Certain nonintegrable PDE’s support soliton-like waves 3

with behavior more complex than that of integrable soli-
tons. Examples include PDE’s such as the Klein-Gordon
[2] and logarithmically nonlinear Schrödinger (log-NLS)
equations [6, 7, 26]. The solitons in these systems can
change their velocities, as well as their phases, upon col-
lisions, and new solitons may be created after collisions.

Soliton collisions in nonintegrable systems may be in-
elastic or near-elastic; that is, colliding solitons can dissi-
pate their energy by producing varying amounts of radi-
ation (see Fig. 4), which erodes other solitons and may
eventually lead to complete decay of useful information
in the system. To our knowledge, it is an open ques-
tion whether or not there exists a nonintegrable system
with perfectly elastic, or non-radiating, collisions. It also
appears to be an open question whether or not perfect
elasticity implies obliviousness in any system. A system
with collisions that are both perfectly elastic and non-
oblivious would offer promise for realizing the SM model
using solitons. The system we describe next, the log-NLS
equation, has very near-elastic, non-oblivious collisions,
and may support perfectly elastic, non-oblivious collisions
as well.

6.1 Gaussons in the log-NLS system

The log-NLS equation, which supports solitons called
gaussons, was proposed as a nonlinear model of wave
mechanics [6, 7, 28]. Gaussons are wave packets with
gaussian-shaped envelopes and sinusoidal carrier waves.
They are analogous to the wavefunctions of linear wave
(quantum) mechanics; that is, the square of the ampli-
tude of a gausson at a given point x can be interpreted as
the probability that the particle described by the gausson
is at x.

Our numerical simulations of gausson collisions verify
a published report [28] that they range from deeply in-
elastic to near-elastic, and perhaps perfectly elastic, de-
pending on the velocities of the colliding gaussons. In
[28] an approximate range of velocities (the resonance re-
gion) is given for which collisions are apparently inelas-
tic; outside this region, collisions are reportedly elastic.
We confirmed these results numerically with the aid of
the split-step Fourier method [9, 40], and investigated in
more detail to find three distinct velocity regions in which
gaussons behave very differently: Depending on the region

3In this section we refer to such waves as solitons, as is often
done in the literature.

and gausson phases, gausson collisions can result in am-
plitude and velocity changes, radiation, or no apparent
interaction (see Fig. 4).

6.2 Soliton stability and elasticity

The inelastic and near-elastic soliton collisions we ob-
served in regions 1 and 2 are non-oblivious, thus leav-
ing open the possibility of using them for computation
in SM’s. We could use an approach similar to the tech-
niques in [39]. As with the CA solitons in [39], we might
first create a database of pairwise collisions of gaussons
by running a series of numerical experiments; we would
then search the database for useful collisions to encode a
specific computation. This approach was used in [39] to
implement a solitonic ripple-carry adder.

One problem with such a method is the potential con-
nection between soliton stability and collision elasticity.
We observed that inelastic collisions often resulted in ra-
diation ripples emanating from collisions (Fig. 4) and
eventual disintegration of gaussons in a cylindrical 1-d
system. In region 2, these ripples and the resulting in-
stability may make the system unsuitable for sustained
computation. The more inelastic the collisions, the more
quickly the system decayed. However, we do not know if
stability and elasticity are necessarily correlated in gen-
eral, nor do we know if elasticity and obliviousness (and
thus lack of computation universality) are related. In fact,
collisions of region-1 solitons in the log-NLS equation ap-
pear to be both elastic and strongly non-oblivious.

7 Summary and questions

We have explored certain well known soliton systems, with
the goal of using them for computation in a 1-d homoge-
neous bulk medium. We defined soliton machines (SM’s)
to model integrable and non-integrable soliton systems,
and found that a class of integrable PDE’s cannot sup-
port universal computation under the OSM model. In
addition, we proved that the SM model is universal in gen-
eral, and suggested that gaussons in the log-NLS equation
may be capable of realizing universal SM’s.

Many open problems remain. Foremost among these
is determining whether or not gaussons have behavior
sufficiently complex and stable to implement a universal
SM. We found three velocity regions in which gaussons
have different behavior. Gaussons with low velocities (re-
gion 1) offer the most promise for realizing useful com-
putation, since their collisions appear both elastic and
non-oblivious. We may be able to use the phase-coding
approach in [39] to implement useful computation with
gausson interactions. Collisions of gaussons with higher
velocities (regions 2 and 3) appear in general to be either
oblivious or radiating, though for some combinations of
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Figure 4: Gausson collisions, shown in graphs of space vs. time. Time increases from top to bottom, and space wraps around the
left and right edges. The variable graphed is the gausson amplitude. Graphs A–D shows the effects of varying only gausson phases in
region 1 (low gausson velocity). Graphs E and F show collisions in regions 2 (moderate velocity) and 3 (high velocity), respectively.
For display purposes, time is scaled differently in graphs A–D, E, and F.
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velocities and phases, these collisions are non-oblivious
and very near-elastic. The search for answers is compli-
cated by the necessity of numerical solution of the log-NLS
equation.

Even if we were to show that the log-NLS equation
can be used for universal computation, we would still be
left with a gap: We know of no physical realization of
this equation. But other nonintegrable nonlinear PDE’s
also offer possibilities for implementing SM’s, and many
of these do correspond to real physical systems. For ex-
ample, the Klein-Gordon equation [2], the NLS equation
with additional terms to model optical fiber loss and dis-
persion, and the coupled NLS equation for birefringent
optical fibers [41, 20] all support soliton collisions with
complex behavior potentially useful for encoding SM’s.
Optical solitons that arise from these more complicated
equations exhibit gausson-like behavior, and are easily re-
alizable in physical fibers; thus, such optical solitons may
be particularly useful as practical means of computing
using SM’s. Near-integrable equations [25], or slightly
altered versions of integrable equations, could also offer
possibilities for implementing general SM’s.

In addition, we may consider using solitons in two or
three dimensions [10, 32]. Gaussons, for example, exist in
any number of dimensions, and display behavior similar
to that in one dimension. The added degrees of freedom
of movement in two or more dimensions may enable im-
plementation of universal systems such as the billiard ball
computation model [27] or lattice gas models [36].
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