Locality-Aware Content Distribution

Danny Bickson, Dahlia Malkhi and David Rabinowitz

ADbstract Work, the sum of transmitted bits, each multiplied

by the distance over which it is transferred.
We present the design and deployment of the Julia localigraw ' _ o
content distribution algorithm. Our novel contributione 40- 11Me, the overall elapsed duration from initiation

cality aware node selection, forming a dynamically chaggin  @nd until all recipients obtain the content.

topology and division of the file into varying length chunk?__ . . .
air-Sharing, the upload to download ratio.

based on locality of the transfer. We present a large scaltl WA 9 P

deployment on over than 250 PlanetLab machines. We show that

our technique can improve average download speed up bya%ot'vat'on' The a_ppllcatlon we aim for is a CI_D
tor of two compared with non locality aware solutions. Fiyal tool for on-the-fly simultaneous download of a siz-

we compare our prototype’s performance with that of Bit€aty ?ble content ’from a single source. Such bursts of
presently one of the most stable and efficient deployed nDnteﬂaSh crowds’ are frequently observed when a new

dissemination tools. file is first uploaded onto file sharing networks like
KazZaA, or when a new software distribution appears
1 Introduction on the network. Cooperative solutions are appealing

either for the end clients, or in order to form an inter-

Multicast overlays empower the network’s leaf nodegediate group of servers (like the Akamai network)
in order to enhance the bare network functionalitiat serve replicas of the content and thereby increase
with the ability to disseminate content to multiple rethe available upload throughput.
cipients. But operating above the network layer of- A characteristic of our aimed application is that its
ten results in inefficiently sending the same contemiembership gets formed on-the-fly, and so the over-
over links multiple times, and unnecessarily transfey must form quickly and spontaneously. Several
ring data to sites farther away than necessary. For existing CD networks build on a long-lasting struc-
ample, recent measurements [7] show that most p@ped topologies, e.g., SplitStream [2] over the Pas-
searches could remain completely local, saving uptt9 overlay [9], and Bayeux [13] over Tapestry [12].
80% of the search traffic. The drawback of these schemes is the overheads of

This paper presents Julia, an efficient peer-bas@embership maintenance and topology repair. Our
content dissemination (CD) tool with a focus oOBolution is unstructured, inherently fault tolerant and
locality awareness. By peer-based disseminatiomdaptive to changes in the network.
we mean that peers that begin downloading contenDriven by the scale which we aim for, we put
themselves become providers of the content to othgir strongest emphasis on locality-awareness, i.e., on
peers, in order to parallelize the data disseminatiafiinimizing the Work incurred on the network. Lo-
Various choices affect the design of a cooperative (Jality considerations exists in various previous ap-
network, including how the data is split and spread fitoaches. Application-level multicast overlays, e.g.,
the network, how peers are selected for exchangiNgrada [3] and TMesh [10], build a spanning tree
data, and others. Our work aims at optimizing thregoted at the source, that heuristically approximates
performance measures: the underlying network structure. Other CD schemes

“School of Computer Science and EngineeF:_lerlve their locality-awareness from an underlying
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locally. BitTorrent [5] uses another approach for omf links among downloading partners. Nodes form
timizing the download time by constantly selecting @nnections based on their download progress: at the
small subset of links with the maximal bandwidth owtart of the download the links are formed at ran-
of a larger group of links. Julia’s approach to localitdom. As the download progresses, more informa-
awareness is different from all of the above scheméisn is gathered about the network, and increasingly
It is designed to minimize the overall Work, and desloser links are chosen. Thus, most of the file is
rives from the formal basis laid in [1]. The Julidransfered as locally as possible.
scheme considers the overall Work both in its selec-Our solution has no structured topology, since the
tion of links and in scheduling data transfers. A®pology is constantly changing based on the down-
a result, Julia avoids to a large extent sending cdoading node’s needs. Furthermore, unlike structured
tent repeatedly over long-haul links. (This is definesblutions, there is no group management overhead
as link stress in [3].) Locality-awareness promotesince the groups are formed dynamically. Fault tol-
Julia’s scalability and makes it attractive for use ierance is inherent, since disconnects do not disrupt
practice. any predefined topology. As a consequence, the pro-
Another important design goal is to promote stocol overhead is minimized.
multaneity, and at the same time, prevent free ridingToday, an initial version of Julia is operational
by nodes which participate in the download but dand has been deployed over the PlanetLab distrib-
not contribute their upload resources. Using symted testbed [4] as well as on our LAN. At the time
metry of connections, where a pair of nodes megfthis writing, we are employing over 250 Planet-lab
and mutually exchange one part of the file, Julizodes to rapidly distribute files of more than 100 MB
has a balanced exchange mechanism. Load baldnas many as 500 smaller chunks. Our deployment
ing leads both to formal decrease in overall delivegpproach of Julia is highly flexible and fault toler-
time, and to good Fair-Sharing in practice. ant. Measurement shows that using locality aware-
ness can reduce download speed almost down to half
the time of random node selections. Furthermore,

} L . ) e compare our system to a state-of-the-art fully op-
we learned in building Julia can be summarized & P y y op

follows. First, a key feature of Julia is symmetry, Fhized system like BitTorrent [S], and show that we

. . . ; o . Jachieve comparable performance.
Symmetry in Julia prevents inactive waiting periods, P P

and lets all participants be active throug_hout the pr "~ The Julia Protocol
tocol. Another advantage of symmetry is that a “tit-
for-tat” policy can be easily implemented since th&he Julia system borrows its principles from the Ju-
nodes mutually exchange information upon each dia& protocol introduced in [1]. Julia is a content de-
counter. Our deployed system indeed exhibits Féirery algorithm which is locality-aware. It is de-
Sharing close to one, as detailed in Section 4. signed to simultaneously minimize download Time,
Second, Julia employs a sophisticated, adaptigsluce Work, and balance the load between partici-
policy that determines the amount of data exchangeaeting nodes.
between pairs of clients. It sets the amount of datalet us call the content that we wish to delivEoo
in an exchange according to the progress of the pftem now on, and denote its size b oo|. Julia di-
tocol, and according to the distance of the exchangédes the fileF oo between the set of participants,
partners: The protocol moves from small amoungd then utilizes a mesh of links in order to simulta-
of data over long-haul links in the beginning, to inReously exchange pieces Bbo among thent. Un-
creasingly larger amounts of data over short links titke previous protocols, the Julia design emphasizes
wards the end. In this way, while two close-by partocality awareness during the exchange phase, in or-
ners exchange a lot of data, two remote partners @er to minimize Work. Moreover, Julia is not tree-

change smaller amounts, and simultaneity is agd"IlA straight-forward extension is to employ an erasure code

malnf[alned.. _ _ _ to transformF oo into n parts, such that — ¢ parts, for some
Third, Julia builds a dynamic locality-aware mesparametet, suffice to reconstrudtoo.

Our Approach. Our contribution and the lesson
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based, as most previous protocols, but rather utilizedVithin each face, nodes are split geographically
simultaneous symmetric exchange to decrease Tiraeng the vertical split (so left nodes are on the west
The protocol is based on the following three prircoast, and right nodes on the east coast). Level-
ciples: links cross between the left and the right sides of
each face. And so on.
1. Each node maintains links to nodes at varying
distances, from closest to farthest.

2. Nodes generally choose exchange partners at north America

progressively lower distances, starting from far- West Eas
away nodes and down to the near-by nodes.

3. The amount of data exchanged between nodes |e\ﬁ'3 link
is in reverse proportion to their distance. M‘n\/ .
Prop o i ,k tlantic ocean
There are several benefits from following these _ _ _
principles. Far apart nodes, which are likely to en-  Figure 1: Julia’s locality-aware topology.

222;2 IQ ;;ZI?X?:caensg; 32{2’ .?_?]i;n ﬁgerzgsgog’eﬁ X_]'he next question is of course how to disseminate
g P ' prog o along this “hypercube” in a Time and Work-

ior contributes to Work, since data travels only once.. .

to remote locations, and is then exchanged local -|C|ent _manner..

To the contrary, close-by pairs, acting toward the encriOtOCOI' As a first step_, Fhe source cﬂ’oo_sends

of the protocol, exchange large amounts of data. Tlﬁll_'s? C?ﬁongOO to al partlupants. Each piece has

guarantees fast completetion of the protocol. size == T_he remainder of the protocol consists
Additionally, the reverse distance-size principlée log(n) logical rounds. In round, each node ex-

promotes parallelism overall, as (roughly) the sanganges all Fhe pieces it hoId§ with its levelink

amount of time is dedicated to exchange large si?¥ tner. In this way, rountl consists of exchanges of

of data over local links as small data sizes over Iongf'—ngle pieces, each of sizBoo| /n, sent over half the
haul links. etwork away. And generally, rouricconsists of ex-

changes o’ pieces, totaling in siz800|2¢ /n, over

2.1 A Formal View a distance ot /2. In the last round, nodes exchange
A formal view of the Julia protocol is as follows. ~ With their closest neighbors data of sizeoo] /2.
Geometry: Real network distances determine thfgr0tocol Properties: In each round of the Julia pro-
links of every node in Julia. Each node Hag(n) tocol, every pair of nodes that exchange data holds
outgoing links. For a node, enumerate all otherdisioint pieces off’oo. Thus, the pair of nodes ex-
nodeswuy, us, ..., u,_; according to their distancechangeall the information they accumulated up to
from u, from closest to farthest. Node's level IS round. As a result, the protocol enjoys both

out-link is u,, ., the 2 'th closest node ta. (Thus, simplicity an_d complete symmetry. In particular, all
the leveliog (n) link is the closest neighbor af.) nodes experience the same load, and no node can be

A useful intuition on the topology of Julia is that of: €€ rider. In summary, thieair-Sharing measure
a locality-aware hypercube, as depicted in Figure 3. Julia is exactlyl. , _ ,
The two main faces of the hypercube (front and back Julia Iogallty awareness is manlfested in the fact
are the most geographically distant from one anothiifat the size of an exchange is reversely related to

By way of an example, we may have one face contdji distance. A precise analysis of Julia's Work
all the nodes in the north American continent, arffong @ grid ofD x D shows that Julia’$Vork is

D .
the other face has European nodes. Lavtmks of £ 0I5 (log(n)+1) . All previously known schel'mes,
the nodes on either face ‘cross the atlantic’ to theircluding [2, 8, 13] have WorIO(|F00|Dn171°%<”>)
half-network neighbors away. in the same topology settings.




For Time, we note that all the nodes are busyn distance estimation, whereby distance we mean
downloading all the time, and no nodes are idkeweighted value composed of observed bandwidth
waiting for internal bottlenecks to complete. Thand latency. We classify node-distances into log-
time for the download of the full file i®|Foo|, scale classes, corresponding to the logarithmic link
which is very near to optimal. Time optimalitylevels of Julia: The farthest half, next a quarter,
in a uniform-bandwidth model is almost achievedext an eighth, and so on. In our experiments, we
in [11], where translated to our notation the Timese eight levels, corresponding roughly ltg(n)
is [Fool (1 + @) Likewise in SplitStream [2], wheren = 250 is the number of PlanetLab machines

time is|Foo| + clog(n), wherec is a parameter thatin our deployment. Within each distance-class, we

depends on tree degree and the number of chuf@@domly select a target, and maintain information
Foo is split into. about several potential replacements. As messages

keep flowing in the network, nodes may learn of
3 The Deployment more suitable target nodes and replace certain links,

) o . or may learn of link failures and reassign them.
We have implemented a content distribution client . . .
The estimation of distances among nodes is done

following the Julia algorithm, and tested it in both : . . .
. . radually, using bandwidth and latency information
LAN and WAN environments. The client softwar .
thered from the exchange of chunks itself. At

'S written using C++ and consists of about 15,0Q(, it of the download, a new node obtains in-

lines of code. In each file transfer there is aoarce . .
, formation about other downloading nodes, but does
node or seed, who possesses the file at the outsel. . . .
o o . ) not have distance information about them. As the
The file itself is divided into pieces called chunks .
. . . download progresses, bandwidth and latency data
Source nodes decide which chunks to give out to re- i
. . recorded from the chunks transfer is used for cate-
questing nodes. Client nodes connect to the source,. . .
. . ofizing the nodes into levels.
obtain some chunks from it, and learn about other o o
active peers that are downloading the same file. At!NUS, N0 communication overhead is incurred on
that point, clients connect with their peers and stAltWOrk probing. Furthermore, the overhead does

exchanging chunks with them. Once the client hggt depended in the number of participating nodes
finished. it becomes a source node. since the routing updates have fixed size. Our exper-

Protocol messages The implementation makedmental m_easurments indicate that Julia’s protc_)col
use of a simple protocol composed of only fiyaverhead is be_tvv_een 0.1%.- 0.3% of the transmitted
messagestILE_INFO_REQUEST, FILE_INFO_REPLY, data. Under similar condl'tlons, Bullet has an over-
CHUNK_REQUEST CHUNK_REPLY and an error _head of about 6% [8], SplitStream control overhead

message. A new client contacts any existing pé§_0.17% (not including the topology construction)_,
ticipant, and sends ALE_INFO_REQUESTmessage. and Narada has an overhead of up to 2% depending
The response is BILE_INFO_REPLY message, con-O" the group size [3]. In summary, this deployment
taining information about the file, such as its siz&trategy has sufficient flexibility and redundancy so

number of chunks, CRC of chunks, and so on. TH%at maintaining the network in sca[ablg settings is
FILE_INFO_REPLY message also contains a fixed siZ§anageable, and coping with churn is simple.

list of other connected nodes, that are currently p&ttotocol: The deployment of the Julia protocol faces
ticipating in the download. If the responding particiseveral interesting challenges in practice.

pant is not too loaded, it also sendsUNK_REPLY First, distance information is not available to par-
with one chunk of data. After it obtains this initiaticipating nodes initially, and furthermore, it is grad-
list of participants, the new client proceeds to comally collected and keeps changing. To address this,
tact other participants wittHUNK_REQUESTmes- at the start of the download, a node selects other
sages. The response GHUNK_REQUEST IS a a nodes for exchange at random. As the download
CHUNK_REPLY message, containing a list of otheprogresses, distance information is collected about
participants, along with chunk data. more and more nodes, and they are chategorized into
Geometry: In our system, links are chosen basddg-scale levels. Using this level information, closer
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and closer nodes are contacted. Towards the midtiie chunks arrive from the fastest node first, and the
of the download, the probability of contacting a famther requests are canceled.

away node decreases, and as the protocol reaches its

final stages, only nodes in the close vicinity of tha Performance Results

node are contacted.

Second, the deployed system cannot follow tiigur experiments were done on both LAN and WAN
rigid chunk-selection schedule of the Julia protocehvironments, but due to space constraints, we report
of Section 2 above precisely. Furthermore, goashly about the WAN experiments here. We used the
chunk selection strategies, e.g., based on how rBianetLab testbed for WAN experiments, using over
a chunk is, turned out to be crucial for achieving50 machines located at about 120 sites around the
good performance. Nevertheless, the general prwerld. The PlaneLab machines vary in configura-
ciple of exponentially increasing batches of chunk®n and bandwidth. In all experiments, we used file
is followed in the implementation. When multisizes of either 130MB or 30MB, and a chunk size of
ple chunks are grouped into one exchange, they &@9KB. All experiments where repeated 5-10 times
batched together in one TCP/IP stream to improaad the result was averaged.

performance. We conducted several experiments. In order to
In order to decide which chunks to exchanggve some meaning to the performance results, we
among nodes, exchange partners transfer betwgate as reference in all of the experiments the perfor-
them bitmaps representing the nodes’ availabkance of BitTorrent in the same settings. (Appendix
chunks. Each chunk can be in one of three statésprovides more details on the structural differences
HAVE, BEGUN or MisSS. The receiving node is re-between the two systems.)
sponsible for deciding which chunks to give to the First, in order to evaluate the effect of locality-
requesting node and which chunks to get from it. kwareness in the Julia exchange-partner selection
addition to the bitmap of the current nodes it constrategy, we compared it against random exchange-
municates with, each receiver also keeps the bitmaartner selection. The results of downloadingla
it has heard in the past from every node it commumb file are depicted in Figure 4. The graph demon-
cated with. This is used to obtain a rough estimagerates that the average time for downloading the file
of the frequency of chunks in the network. The ravas reduced to about half using Julia’s locality aware
ceiving node decides which chunks to give and tmde selection, compared with random node selec-
get based on their frequency in the network, whetiehecond, we evaluated the Fair-Sharing of Julia.
rarest chunks are given first (the Bittorrent systefrhe Fair Sharing values experienced in Julia are
has a similar policy [5]). summarized in Figure 3. About 93% of the nodes

Third, as we gained experience with the systefidve @ Fair Sharingt 1.6. Only 1% of the nodes in
we made several important optimizations. One hadlia have Fair-Sharing &f or above. Once again,
to do with allowing simultaneous exchanges. Origiv€ Provide the Fair-Sharing values of BitTorrent for
nally in Julia, nodes perform the exchanges sequéfference, yielding about 72% of the nodes with Fair
tially, starting with far-away nodes and gradullay@ing< 1.6, and about 14% of the nodes with
moving closer. Since the far nodes usually ha@®'d over.
lower bandwidth and waiting for the first chunks to Third, we investigated the effect of several chunk
arrive takes a while, our system supports simultdelection strategies. As shown in figure 4, exchang-
neous exchange across levels all at once. Thigdng rarest chunks first performs better better than ran-
an important optimization, which boost performandm chunk selection, and outperforms a mixed pol-
cosiderably. Additionally, following Bittorrent [5], icy of switching between rare and random chunk se-
we implemented an “endgame mode” where the 1dg€tion arbitrarity.
chunks are requested from all known nodes in orderin conclusion, due to its high flexibility and opti-
to speed up the completion of the download. Pramized link utilization, we expect Julia to become an
tice shows that not much bandwidth is wasted sina#iractive substitute for large scale content delivery.
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Julia vs. Random Node SeIctior;
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A Comparison with BitTorrent slow, some of them using satellite or ADSL links.)
These results demonstrate that Julia’s performance is
Julia aims at becoming a practical, scalable wideomparable to cutting edge content distribution sys-
area content distribution facility. We therefore réems currently in deployment. At the same time, note
port on its performance side by side with that of tH8at Julia source node sends the file data on average
widely deployed BitTorrent system [5]. In this secl.9 times over the network, whereas BitTorrent sends
tion we outline the structural differences between Ji2.66 times. Testing the actual Work performed by
lia and the Bittorrent systems. A detailed descriptidhese systems in reality is not easy, and is currently

of BitTorrent is found in [5]. under investigation.

BitTorrent has a special nodes acting as a tracker Julia| BitTorrent
for the network, and a different node as a source {ORverage download time (sed) 95 77
each individual file. In Julia, the tracker and se€d504 finish time (sec) 02 90.7
are in one node called tlseurce node, and that node Average memory usage (MB)8Mb 4.5Mb
may be replicated for fault tolerance. When a sourC&qyrce/seed fair sharing 1.9 2.66
node is not heavily loaded, it acts as a seed for &yerage node fair sharing | 0.94 1.07
file and provides data chunks to clients. When it BeNumber of connections 6 | 20 (defaul)
comes loaded, it acts only as a tracker, giving clients
a list of other connected nodes. Table 1:Comparison of Julia vs. BitTorrent charac-

BitTorrent maintains a rather static mesh of linkgristics. File size is 30Mb.
for each download, with a default of twenty connec-
tions per node. Some of the links become idle as
download progresse<Choking is employed for su-
pressing lower bandwidth links and preventing them
from becoming too congested. In contrast, the flow
control and linking mechanisms in Julia are more
dynamic, links being formed and torn down as ex-
changes get formed and complete. We believe this
is suitable for very dynamic and fault prone environ-
ments. Rather than choking low bandwidth links, Ju-
lia boosts performance by choosing closer nodes as
the download progresses. This aims at optimizing
the network utilization.

BitTorrent fragments files into chunks of sizes
that are powers of 2, and transfers only contiguous
chunks. In Julia, any collection of fix-size chunks
may be exchanged, thus avoiding fragmentation is-
sues.

Table1 provides a snapshot of the efficiency and
resource utilization of the two systems in a download
of a 30Mb file. The performance tests use the same
node as BitTorrent’s seed and as Julia’s source node,
and the same set of client machines. BitTorrent's
chunk size is by default 256Kb, and for the Julia im-
plementation we used a 500Kb chunk size. As the ta-
ble indicates, on both systems, about 75% of the ma-
chines finished the download in the time frame of 95
seconds. (The remaining 10% of machines were very
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