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Abstract

We present the design and deployment of the Julia locality aware

content distribution algorithm. Our novel contributions are lo-

cality aware node selection, forming a dynamically changing

topology and division of the file into varying length chunks

based on locality of the transfer. We present a large scale WAN

deployment on over than 250 PlanetLab machines. We show that

our technique can improve average download speed up by a fac-

tor of two compared with non locality aware solutions. Finally

we compare our prototype’s performance with that of BitTorrent,

presently one of the most stable and efficient deployed content

dissemination tools.

1 Introduction
Multicast overlays empower the network’s leaf nodes
in order to enhance the bare network functionality
with the ability to disseminate content to multiple re-
cipients. But operating above the network layer of-
ten results in inefficiently sending the same content
over links multiple times, and unnecessarily transfer-
ring data to sites farther away than necessary. For ex-
ample, recent measurements [7] show that most p2p
searches could remain completely local, saving up to
80% of the search traffic.

This paper presents Julia, an efficient peer-based
content dissemination (CD) tool with a focus on
locality awareness. By peer-based dissemination
we mean that peers that begin downloading content
themselves become providers of the content to other
peers, in order to parallelize the data dissemination.
Various choices affect the design of a cooperative CD
network, including how the data is split and spread in
the network, how peers are selected for exchanging
data, and others. Our work aims at optimizing three
performance measures:

∗School of Computer Science and Engineer-
ing, The Hebrew University of Jerusalem. Email:
{daniel51,dalia,dar}@cs.huji.ac.il

Work, the sum of transmitted bits, each multiplied
by the distance over which it is transferred.

Time, the overall elapsed duration from initiation
and until all recipients obtain the content.

Fair-Sharing, the upload to download ratio.

Motivation. The application we aim for is a CD
tool for on-the-fly simultaneous download of a siz-
able content from a single source. Such bursts of
‘flash crowds’ are frequently observed when a new
file is first uploaded onto file sharing networks like
KaZaA, or when a new software distribution appears
on the network. Cooperative solutions are appealing
either for the end clients, or in order to form an inter-
mediate group of servers (like the Akamai network)
that serve replicas of the content and thereby increase
the available upload throughput.

A characteristic of our aimed application is that its
membership gets formed on-the-fly, and so the over-
lay must form quickly and spontaneously. Several
existing CD networks build on a long-lasting struc-
tured topologies, e.g., SplitStream [2] over the Pas-
try overlay [9], and Bayeux [13] over Tapestry [12].
The drawback of these schemes is the overheads of
membership maintenance and topology repair. Our
solution is unstructured, inherently fault tolerant and
adaptive to changes in the network.

Driven by the scale which we aim for, we put
our strongest emphasis on locality-awareness, i.e., on
minimizing the Work incurred on the network. Lo-
cality considerations exists in various previous ap-
proaches. Application-level multicast overlays, e.g.,
Narada [3] and TMesh [10], build a spanning tree
rooted at the source, that heuristically approximates
the underlying network structure. Other CD schemes
derive their locality-awareness from an underlying
routing overlay, e.g., SplitStream [2] and Bayeux
[13]. In SRM [6] missing packets recovery is done
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locally. BitTorrent [5] uses another approach for op-
timizing the download time by constantly selecting a
small subset of links with the maximal bandwidth out
of a larger group of links. Julia’s approach to locality
awareness is different from all of the above schemes.
It is designed to minimize the overall Work, and de-
rives from the formal basis laid in [1]. The Julia
scheme considers the overall Work both in its selec-
tion of links and in scheduling data transfers. As
a result, Julia avoids to a large extent sending con-
tent repeatedly over long-haul links. (This is defined
as link stress in [3].) Locality-awareness promotes
Julia’s scalability and makes it attractive for use in
practice.

Another important design goal is to promote si-
multaneity, and at the same time, prevent free riding
by nodes which participate in the download but do
not contribute their upload resources. Using sym-
metry of connections, where a pair of nodes meet
and mutually exchange one part of the file, Julia
has a balanced exchange mechanism. Load balanc-
ing leads both to formal decrease in overall delivery
time, and to good Fair-Sharing in practice.

Our Approach. Our contribution and the lessons
we learned in building Julia can be summarized as
follows. First, a key feature of Julia is symmetry.
Symmetry in Julia prevents inactive waiting periods,
and lets all participants be active throughout the pro-
tocol. Another advantage of symmetry is that a “tit-
for-tat” policy can be easily implemented since the
nodes mutually exchange information upon each en-
counter. Our deployed system indeed exhibits Fair
Sharing close to one, as detailed in Section 4.

Second, Julia employs a sophisticated, adaptive
policy that determines the amount of data exchanged
between pairs of clients. It sets the amount of data
in an exchange according to the progress of the pro-
tocol, and according to the distance of the exchange-
partners: The protocol moves from small amounts
of data over long-haul links in the beginning, to in-
creasingly larger amounts of data over short links to-
wards the end. In this way, while two close-by part-
ners exchange a lot of data, two remote partners ex-
change smaller amounts, and simultaneity is again
maintained.

Third, Julia builds a dynamic locality-aware mesh

of links among downloading partners. Nodes form
connections based on their download progress: at the
start of the download the links are formed at ran-
dom. As the download progresses, more informa-
tion is gathered about the network, and increasingly
closer links are chosen. Thus, most of the file is
transfered as locally as possible.

Our solution has no structured topology, since the
topology is constantly changing based on the down-
loading node’s needs. Furthermore, unlike structured
solutions, there is no group management overhead
since the groups are formed dynamically. Fault tol-
erance is inherent, since disconnects do not disrupt
any predefined topology. As a consequence, the pro-
tocol overhead is minimized.

Today, an initial version of Julia is operational
and has been deployed over the PlanetLab distrib-
uted testbed [4] as well as on our LAN. At the time
of this writing, we are employing over 250 Planet-lab
nodes to rapidly distribute files of more than 100 MB
in as many as 500 smaller chunks. Our deployment
approach of Julia is highly flexible and fault toler-
ant. Measurement shows that using locality aware-
ness can reduce download speed almost down to half
the time of random node selections. Furthermore,
we compare our system to a state-of-the-art fully op-
timized system like BitTorrent [5], and show that we
achieve comparable performance.

2 The Julia Protocol
The Julia system borrows its principles from the Ju-
lia protocol introduced in [1]. Julia is a content de-
livery algorithm which is locality-aware. It is de-
signed to simultaneously minimize download Time,
reduce Work, and balance the load between partici-
pating nodes.

Let us call the content that we wish to deliverFoo
from now on, and denote its size by|Foo|. Julia di-
vides the fileFoo between the set ofn participants,
and then utilizes a mesh of links in order to simulta-
neously exchange pieces ofFoo among them.1 Un-
like previous protocols, the Julia design emphasizes
locality awareness during the exchange phase, in or-
der to minimize Work. Moreover, Julia is not tree-

1A straight-forward extension is to employ an erasure code
to transformFoo into n parts, such thatn − t parts, for some
parametert, suffice to reconstructFoo.

2



based, as most previous protocols, but rather utilizes
simultaneous symmetric exchange to decrease Time.

The protocol is based on the following three prin-
ciples:

1. Each node maintains links to nodes at varying
distances, from closest to farthest.

2. Nodes generally choose exchange partners at
progressively lower distances, starting from far-
away nodes and down to the near-by nodes.

3. The amount of data exchanged between nodes
is in reverse proportion to their distance.

There are several benefits from following these
principles. Far apart nodes, which are likely to en-
gage in the exchange early on in the protocol, ex-
change small pieces of data. This progressive behav-
ior contributes to Work, since data travels only once
to remote locations, and is then exchanged locally.
To the contrary, close-by pairs, acting toward the end
of the protocol, exchange large amounts of data. This
guarantees fast completetion of the protocol.

Additionally, the reverse distance-size principles
promotes parallelism overall, as (roughly) the same
amount of time is dedicated to exchange large sizes
of data over local links as small data sizes over long-
haul links.

2.1 A Formal View
A formal view of the Julia protocol is as follows.
Geometry: Real network distances determine the
links of every node in Julia. Each node haslog(n)
outgoing links. For a nodeu, enumerate all other
nodesu1, u2, ..., un−1 according to their distance
from u, from closest to farthest. Nodeu’s level-i
out-link is un/2i , the n

2i ’th closest node tou. (Thus,
the level-log(n) link is the closest neighbor ofu.)

A useful intuition on the topology of Julia is that of
a locality-aware hypercube, as depicted in Figure 1.
The two main faces of the hypercube (front and back)
are the most geographically distant from one another.
By way of an example, we may have one face contain
all the nodes in the north American continent, and
the other face has European nodes. Level-1 links of
the nodes on either face ‘cross the atlantic’ to their
half-network neighbors away.

Within each face, nodes are split geographically
along the vertical split (so left nodes are on the west
coast, and right nodes on the east coast). Level-2
links cross between the left and the right sides of
each face. And so on.

level-1 link
level-2 link Atlantic ocean

Europe

West East

level-3 link

North America

Figure 1: Julia’s locality-aware topology.

The next question is of course how to disseminate
Foo along this “hypercube” in a Time and Work-
efficient manner.
Protocol: As a first step, the source ofFoo sends
pieces ofFoo to all participants. Each piece has
size |Foo|

n . The remainder of the protocol consists
of log(n) logical rounds. In roundi, each node ex-
changes all the pieces it holds with its level-i link
partner. In this way, round1 consists of exchanges of
single pieces, each of size|Foo|/n, sent over half the
network away. And generally, roundi consists of ex-
changes of2i pieces, totaling in size|Foo|2i/n, over
a distance of1/2i. In the last round, nodes exchange
with their closest neighbors data of size|Foo|/2.
Protocol Properties: In each round of the Julia pro-
tocol, every pair of nodes that exchange data holds
disjoint pieces ofFoo. Thus, the pair of nodes ex-
changeall the information they accumulated up to
this round. As a result, the protocol enjoys both
simplicity and complete symmetry. In particular, all
nodes experience the same load, and no node can be
a free rider. In summary, theFair-Sharing measure
of Julia is exactly1.

Julia locality awareness is manifested in the fact
that the size of an exchange is reversely related to
its distance. A precise analysis of Julia’s Work
along a grid ofD × D shows that Julia’sWork is
|Foo|D2 (log(n)+1) . All previously known schemes,

including [2, 8, 13] have WorkO(|Foo|Dn
1− 1

log(n) )
in the same topology settings.
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For Time, we note that all the nodes are busy
downloading all the time, and no nodes are idle
waiting for internal bottlenecks to complete. The
time for the download of the full file is2|Foo|,
which is very near to optimal. Time optimality
in a uniform-bandwidth model is almost achieved
in [11], where translated to our notation the Time
is |Foo|

(

1 + log(n)
n

)

. Likewise in SplitStream [2],

time is|Foo| + c log(n), wherec is a parameter that
depends on tree degree and the number of chunks
Foo is split into.

3 The Deployment
We have implemented a content distribution client
following the Julia algorithm, and tested it in both
LAN and WAN environments. The client software
is written using C++ and consists of about 15,000
lines of code. In each file transfer there is onesource
node or seed, who possesses the file at the outset.
The file itself is divided into pieces called chunks.
Source nodes decide which chunks to give out to re-
questing nodes. Client nodes connect to the source,
obtain some chunks from it, and learn about other
active peers that are downloading the same file. At
that point, clients connect with their peers and start
exchanging chunks with them. Once the client has
finished, it becomes a source node.
Protocol messages: The implementation makes
use of a simple protocol composed of only five
messages:FILE INFO REQUEST, FILE INFO REPLY,
CHUNK REQUEST, CHUNK REPLY and an error
message. A new client contacts any existing par-
ticipant, and sends aFILE INFO REQUESTmessage.
The response is aFILE INFO REPLY message, con-
taining information about the file, such as its size,
number of chunks, CRC of chunks, and so on. The
FILE INFO REPLY message also contains a fixed size
list of other connected nodes, that are currently par-
ticipating in the download. If the responding partici-
pant is not too loaded, it also sends aCHUNK REPLY

with one chunk of data. After it obtains this initial
list of participants, the new client proceeds to con-
tact other participants withCHUNK REQUEST mes-
sages. The response toCHUNK REQUEST is a a
CHUNK REPLY message, containing a list of other
participants, along with chunk data.
Geometry: In our system, links are chosen based

on distance estimation, whereby distance we mean
a weighted value composed of observed bandwidth
and latency. We classify node-distances into log-
scale classes, corresponding to the logarithmic link
levels of Julia: The farthest half, next a quarter,
next an eighth, and so on. In our experiments, we
use eight levels, corresponding roughly tolog(n)
wheren = 250 is the number of PlanetLab machines
in our deployment. Within each distance-class, we
randomly select a target, and maintain information
about several potential replacements. As messages
keep flowing in the network, nodes may learn of
more suitable target nodes and replace certain links,
or may learn of link failures and reassign them.

The estimation of distances among nodes is done
gradually, using bandwidth and latency information
gathered from the exchange of chunks itself. At
the start of the download, a new node obtains in-
formation about other downloading nodes, but does
not have distance information about them. As the
download progresses, bandwidth and latency data
recorded from the chunks transfer is used for cate-
gorizing the nodes into levels.

Thus, no communication overhead is incurred on
network probing. Furthermore, the overhead does
not depended in the number of participating nodes
since the routing updates have fixed size. Our exper-
imental measurments indicate that Julia’s protocol
overhead is between 0.1% - 0.3% of the transmitted
data. Under similar conditions, Bullet has an over-
head of about 6% [8], SplitStream control overhead
is 0.17% (not including the topology construction),
and Narada has an overhead of up to 2% depending
on the group size [3]. In summary, this deployment
strategy has sufficient flexibility and redundancy so
that maintaining the network in scalable settings is
manageable, and coping with churn is simple.

Protocol: The deployment of the Julia protocol faces
several interesting challenges in practice.

First, distance information is not available to par-
ticipating nodes initially, and furthermore, it is grad-
ually collected and keeps changing. To address this,
at the start of the download, a node selects other
nodes for exchange at random. As the download
progresses, distance information is collected about
more and more nodes, and they are chategorized into
log-scale levels. Using this level information, closer
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and closer nodes are contacted. Towards the middle
of the download, the probability of contacting a far-
away node decreases, and as the protocol reaches its
final stages, only nodes in the close vicinity of the
node are contacted.

Second, the deployed system cannot follow the
rigid chunk-selection schedule of the Julia protocol
of Section 2 above precisely. Furthermore, good
chunk selection strategies, e.g., based on how rare
a chunk is, turned out to be crucial for achieving
good performance. Nevertheless, the general prin-
ciple of exponentially increasing batches of chunks
is followed in the implementation. When multi-
ple chunks are grouped into one exchange, they are
batched together in one TCP/IP stream to improve
performance.

In order to decide which chunks to exchange
among nodes, exchange partners transfer between
them bitmaps representing the nodes’ available
chunks. Each chunk can be in one of three states:
HAVE, BEGUN or MISS. The receiving node is re-
sponsible for deciding which chunks to give to the
requesting node and which chunks to get from it. In
addition to the bitmap of the current nodes it com-
municates with, each receiver also keeps the bitmap
it has heard in the past from every node it communi-
cated with. This is used to obtain a rough estimate
of the frequency of chunks in the network. The re-
ceiving node decides which chunks to give and to
get based on their frequency in the network, where
rarest chunks are given first (the Bittorrent system
has a similar policy [5]).

Third, as we gained experience with the system,
we made several important optimizations. One has
to do with allowing simultaneous exchanges. Origi-
nally in Julia, nodes perform the exchanges sequen-
tially, starting with far-away nodes and gradullay
moving closer. Since the far nodes usually have
lower bandwidth and waiting for the first chunks to
arrive takes a while, our system supports simulta-
neous exchange across levels all at once. This is
an important optimization, which boost performance
cosiderably. Additionally, following Bittorrent [5],
we implemented an “endgame mode” where the last
chunks are requested from all known nodes in order
to speed up the completion of the download. Prac-
tice shows that not much bandwidth is wasted since

the chunks arrive from the fastest node first, and the
other requests are canceled.

4 Performance Results

Our experiments were done on both LAN and WAN
environments, but due to space constraints, we report
only about the WAN experiments here. We used the
PlanetLab testbed for WAN experiments, using over
250 machines located at about 120 sites around the
world. The PlaneLab machines vary in configura-
tion and bandwidth. In all experiments, we used file
sizes of either 130MB or 30MB, and a chunk size of
500KB. All experiments where repeated 5-10 times
and the result was averaged.

We conducted several experiments. In order to
give some meaning to the performance results, we
give as reference in all of the experiments the perfor-
mance of BitTorrent in the same settings. (Appendix
A provides more details on the structural differences
between the two systems.)

First, in order to evaluate the effect of locality-
awareness in the Julia exchange-partner selection
strategy, we compared it against random exchange-
partner selection. The results of downloading a30
Mb file are depicted in Figure 4. The graph demon-
strates that the average time for downloading the file
was reduced to about half using Julia’s locality aware
node selection, compared with random node selec-
tion.Second, we evaluated the Fair-Sharing of Julia.
The Fair Sharing values experienced in Julia are
summarized in Figure 3. About 93% of the nodes
have a Fair Sharing≤ 1.6. Only 1% of the nodes in
Julia have Fair-Sharing of2 or above. Once again,
we provide the Fair-Sharing values of BitTorrent for
reference, yielding about 72% of the nodes with Fair
Sharing≤ 1.6, and about 14% of the nodes with2
and over.

Third, we investigated the effect of several chunk
selection strategies. As shown in figure 4, exchang-
ing rarest chunks first performs better better than ran-
dom chunk selection, and outperforms a mixed pol-
icy of switching between rare and random chunk se-
lection arbitrarity.

In conclusion, due to its high flexibility and opti-
mized link utilization, we expect Julia to become an
attractive substitute for large scale content delivery.
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Figure 2: Locality-aware vrs. random node selec-
tion. Lower dashed line is BitTorrent performance
for reference.
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A Comparison with BitTorrent

Julia aims at becoming a practical, scalable wide-
area content distribution facility. We therefore re-
port on its performance side by side with that of the
widely deployed BitTorrent system [5]. In this sec-
tion we outline the structural differences between Ju-
lia and the Bittorrent systems. A detailed description
of BitTorrent is found in [5].

BitTorrent has a special nodes acting as a tracker
for the network, and a different node as a source for
each individual file. In Julia, the tracker and seed
are in one node called thesource node, and that node
may be replicated for fault tolerance. When a source
node is not heavily loaded, it acts as a seed for the
file and provides data chunks to clients. When it be-
comes loaded, it acts only as a tracker, giving clients
a list of other connected nodes.

BitTorrent maintains a rather static mesh of links
for each download, with a default of twenty connec-
tions per node. Some of the links become idle as
download progresses.Choking is employed for su-
pressing lower bandwidth links and preventing them
from becoming too congested. In contrast, the flow
control and linking mechanisms in Julia are more
dynamic, links being formed and torn down as ex-
changes get formed and complete. We believe this
is suitable for very dynamic and fault prone environ-
ments. Rather than choking low bandwidth links, Ju-
lia boosts performance by choosing closer nodes as
the download progresses. This aims at optimizing
the network utilization.

BitTorrent fragments files into chunks of sizes
that are powers of 2, and transfers only contiguous
chunks. In Julia, any collection of fix-size chunks
may be exchanged, thus avoiding fragmentation is-
sues.

Table1 provides a snapshot of the efficiency and
resource utilization of the two systems in a download
of a 30Mb file. The performance tests use the same
node as BitTorrent’s seed and as Julia’s source node,
and the same set of client machines. BitTorrent’s
chunk size is by default 256Kb, and for the Julia im-
plementation we used a 500Kb chunk size. As the ta-
ble indicates, on both systems, about 75% of the ma-
chines finished the download in the time frame of 95
seconds. (The remaining 10% of machines were very

slow, some of them using satellite or ADSL links.)
These results demonstrate that Julia’s performance is
comparable to cutting edge content distribution sys-
tems currently in deployment. At the same time, note
that Julia source node sends the file data on average
1.9 times over the network, whereas BitTorrent sends
it 2.66 times. Testing the actual Work performed by
these systems in reality is not easy, and is currently
under investigation.

Julia BitTorrent
Average download time (sec) 95 77
75% finish time (sec) 92 90.7
Average memory usage (Mb)8Mb 4.5Mb
Source/seed fair sharing 1.9 2.66
Average node fair sharing 0.94 1.07
Number of connections 6 20 (default)

Table 1:Comparison of Julia vs. BitTorrent charac-
teristics. File size is 30Mb.
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