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Abstract—Practical mapping and navigation solutions for 
large indoor environments continue to rely on relatively expensive 
range scanners, because of their accuracy, range and field of view. 
Microsoft Kinect on the other hand is inexpensive, is easy to use 
and has high resolution, but suffers from high noise, shorter range 
and a limiting field of view. We present a mapping and navigation 
system that uses the Microsoft Kinect sensor as the sole source of 
range data and achieves performance comparable to state-of-the-
art LIDAR-based systems. We show how we circumvent the main 
limitations of Kinect to generate usable 2D maps of relatively large 
spaces and to enable robust navigation in changing and dynamic 
environments. We use the Benchmark for Robotic Indoor 
Navigation (BRIN) to quantify and validate the performance of our 
system. 

 

 

I. INTRODUCTION 

2D mapping and navigation for indoor mobile robots using 
single-line laser range-finders is a well-studied problem with 
efficient algorithms and proven implementations, including 
commercial ones [1]. However, these solutions are relatively 
expensive, the cost being dominated by the cost of the LIDAR.  

Since Kinect is an order of magnitude cheaper than single-
line LIDARs, we wanted to see if Kinect could provide a 
viable low-cost alternative for 2D mapping and navigation. 
This question appears to have been investigated only 
superficially so far, particularly when it comes to navigation in 
dynamic environments. A common approach is to combine a 
few center rows from the depth image generated by Kinect, cut 
off the depth at 8m or less to remove the noisiest readings and 
feed the resulting scan line into an existing 2D mapping and 
navigation implementation [2]. Not surprisingly, the results 
obtained with this approach are disappointing, since the 
method exposes the weaknesses of Kinect (smaller horizontal 
field of view, range limitations) without explicitly leveraging 
its strengths (higher resolution and larger vertical field of 
view).  

We introduce a complete recipe for reliable Kinect-based 
mapping and navigation. Our approach focuses on increasing 
the useful range and field of view of the depth data acquired 
from Kinect, in principal by integrating readings over time into 
an always up-to-date, sliding-window local map. This is done 
during mapping as well as navigation, and informs both the 
motion model and the observation model of both systems. Our 
method is inspired by Kinect Fusion [3], but is applied in 2D 
rather than 3D to reduce the computational burden.  

 

 

Specifically, our contributions are: 

 A sensor calibration method that eliminates most of the 
systematic noise in the depth image. 

 A scan alignment procedure that combines a truncated 
signed distance function (TSDF) grid map with a 
particle filter operating at frame rate.  

 A method for making use of depth readings that are 
extremely noisy (>10% error) during mapping and 
localization. This allows us to extend the useful range 
of Kinect depth data to 20m. 

 A method for increasing the field of view (FOV) of 
Kinect during navigation by generating virtual 360 
degree views from incremental local maps.  

We include experimental results based on the Benchmark 
for Robotic Indoor Navigation (BRIN) [4] that quantify the 
performance of our approach relative to state-of-the-art 
systems.  

It should be noted that, while all our experiments have been 
conducted with Kinect v1, we expect the method and findings 
to apply equally well to Kinect v2. 

II. RELATED WORK 

Consumer 3D sensors like Microsoft Kinect and its 
successors have dramatically simplified access to reliable and 
accurate 3D data, and as a result spurred a lot of research 
activity in computer vision and robotics. Simultaneous 
Localization and Mapping (SLAM) in particular has seen 
some notable developments. Newcombe et al. [3] 
demonstrated remarkable real-time 3D reconstruction results 
with a frame-to-model matching approach that aligns dense 
depth data with a voxel map using ICP. Real-time performance 
requires GPU-acceleration and as a result the volume that can 
be reconstructed is limited by the available GPU memory, with 
small office environments being the practical limit. The 
method was later extended to larger environments by Whelan 
et al. [5] by allowing the region of space mapped by Kinect 
Fusion to vary and by paging the model data out to a mesh 
representation. An RGB-only variant called DTAM that also 
uses frame-to-model matching but is based on dense RGB data 
and a photometric distance was also proposed by Newcombe 
et al. [6]. A number of successful sparse methods have also 
been developed, notably the RGB-D SLAM system introduced 
by Engelhard et al. [7], where sparse local features extracted 
from RGB data are augmented with their depth. Frame-to-
frame alignment is performed in a two-step process, using 
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RANSAC and ICP. Dryanovski et al. [8] developed an 
efficient alternative using frame-to-model matching. 

In 2D SLAM, motion estimation from alignment of 
LIDAR scans is part of most SLAM front-ends. Related to our 
method, the approach by Hahnel et al. [9] uses an occupancy 
grid map and a cost function that considers only the cells that 
fall under the beam-endpoints, and performs gradient descent 
to minimize the cost function.  Similarly, Kohlbrecher et al. 
[10] use the spatial derivative of the occupancy map for 
gradient descent and rely on a multi-scale approach to avoid 
local minima.  

The idea of using sliding-window local maps to localize on 
a global map has been introduced by Gutmann and Konolige 
[11], who use incremental scan matching to generate local 
maps and then correlation to determine overlap. 

The use of particle filters for SLAM goes back many years, 
with a significant body of work dedicated to Rao-
Blackwellized filters (where each particle has its own map) 
introduced first by Murphy [12], and extended by Montemerlo 
et al. [13], Hahnel et al. [9], Eliazar and Par [14] and later by 
Grisetti et al. [15]. These approaches demonstrate remarkable 
results not only in scan alignment and incremental mapping 
but also in closing relatively large loops.  

Among the navigation methods that take full advantage of 
the Kinect depth data is the work done by Biswas et al. [16], 
where planes are extracted from the depth image and projected 
in the horizontal plane to match against a map. While this 
method assumes preexisting maps, building maps from large 
plane registration has been addressed by Pathak et al. [17]. 

Kinect depth calibration was covered by Teichman et al. 
[18], who show the need for individual sensor calibration and 
perform calibration of long-range readings using SLAM 
results from close readings, and Smisek et al. [19], who 
attempt to eliminate vertical banding in the depth distortion 
based on the assumption that they are static. 

III. OUR METHOD 

Our approach has three main ingredients: a method for 
processing depth frames to de-noise them and to extract a 
relevant subset of the data, a method for continuous 
incremental mapping to generate reliable local maps from 
extremely noisy readings and a method for integrating the 
local maps into the navigation pipeline (primarily localization, 
but also path planning and path tracking). In particular, 
localization is done based on a virtual 360 degree view 
extracted from local maps. Depth processing, incremental 
mapping, extraction of the 360 degree view and localization 
are all performed at frame rate (30Hz). 

A. Notation 

Our method deals with three distinct coordinate systems: 

- The world domain in R3. Within world space, a global 
frame of reference is chosen for simplicity to be the 
start pose of the robot, with the x and y axes parallel to 
the floor. 

- The image domain in I2, with the coordinate system 
origin in the top-left corner and x and y being pixel 

coordinates. The function u(x,y) represents the depth 
map generated by the Kinect sensor after rectification, 

relating a point p  I2 to a depth measurement. The 
transformation from R3 to I2 is given by the pin-hole 
camera projection.   

- The map domain in I2, where x and y are grid map 
coordinates. The origin of the map is in the bottom-
right corner. A point  pg in the global frame is 
projected onto the xy plane and transformed to map 
coordinates by a similarity transform TM..  

In world space, the 3DOF robot pose is represented by the 
rigid transformation TR, and the 3DOF pose of the camera 
relative to the robot by the transformation TC, such that a point 
p in camera frame is transformed to global frame coordinates 
by pg = TRTCp. 

B. Calibration 

 While the Kinect depth sensor can generate long-range 
readings of over 20m, it exhibits significant noise beyond its 
main operational range of 4m. We discuss treatment of random 
error in Section C below. The dominant type of systematic 
error is a radial error that distorts the depth map in a doughnut 
shape.  

The severity of the systematic error is sensor-specific and 
increases with distance, being as high as 10% at 10m. We were 
able to eliminate most of this error using a semi-autonomous 
calibration procedure.  It consists of positioning the robot at 
various known distances from the wall and learning a mapping 
D(u, x, y) between the distance u(x, y) reported by the sensor 
for  a given image point [x, y]T in I and the actual distance to 
the wall d. Ground truth distance to the wall is determined 
using a consumer-grade single point laser range finder rigidly 
attached to the robot and aligned with the Kinect camera. 
Alignment is achieved by pointing the range finder to a marker 
placed at the center of the IR image. In the data collection 
phase, the robot increases its distance d from the wall in small 
increments from 0.5 m to 4m. At each step we automatically 
align the sensor to the wall by minimizing the deviation from 
the mean of each pixel in the depth map. 

  

Figure 1. Depth image of a flat wall at 1.5m exhibiting radial error and 
vertical banding effects. Deviation from ground truth is shown on grayscale 
dial. 



  

We then remove banding effects from each frame (see 
below) and integrate multiple frames to eliminate random 
noise. The clean depth image obtained this way is fed into our 
learning algorithm together with the ground truth distance d.  

The learning algorithm is a simple parameter estimator for 
a family of quadratic functions of the form Dk(u(x,y)) = 
aku(x,y)2+bku(x,y)+ck, where k represents tiled 16x16 regions 
of I2, similar to [19].  The 16x16 size was chosen 
experimentally, by varying the tile size from 1x1 to 64x64. 

Once the error function for each region is learned using 
data captured from stepping through 0.5-4m range, we 
extrapolate depth reading correction values for distances of up 
to 20m. We use step sizes of 5%-15% of distance from the wall 
with good results, as opposed to fixed size step. This ensured 
a denser sampling at closer distances, effectively giving higher 
weight to readings at closer range during polynomial fitting, to 
avoid degrading sensor accuracy. 

An often overlooked problem in Kinect depth calibration 
procedures such as [18] and [19] is the presence of dynamic 
vertical banding artifacts in the depth image. The number of 
vertical bands and their effects appear to be changing with low 
frequency even after many hours of sensor operation. It would 
be a mistake to factor them into the sensor bias correction 
function, since the behavior is scene-specific and the effects 
will be different later, at runtime. Thus, we remove banding 
effects from each frame during calibration by detecting 
discontinuities along the horizontal and adjusting depth values 
in each column such that the average frame-wide reported 
distance to the wall is the same.  

Note that we also calibrate the intrinsic parameters of the 
IR camera (in particular the center of the sensor) using the 
calibration procedure described in [20]. 

C. Depth frame processing 

The Kinect depth frame has a resolution of 640x480 pixels. 
The depth image can contain any number of pixels for which 
no depth estimate is available (because of shadows, objects 
that are closer than 0.5m, obstacles that are too far or open 
space). We discard all such invalid pixels, as well as any depth 
readings greater than 20m. 

The Kinect uses rolling-shutter cameras, and as a result the 
generated depth image exhibits significant shearing effects 
when panning. We use the robot motion to determine the 
angular speed of the camera around the vertical axis and we 
correct rolling-shutter effects by shifting the rows in the depth 
image, as described in [21]. 

Once the depth map is corrected and aligned, we eliminate 
from the image all pixels that are either floor readings or are 
above a given height (2m). This way we retain a slice of the 
world parallel to the floor and of fixed thickness, extending out 
to the end of the depth range. Our method of floor extraction 
operates in image space on each individual frame, by 
approximating the floor plane based on the readings in the 
bottom 10% of the depth image and extrapolating it out to the 
rest of the depth map. Specifically, the method iterates over 
each column that has enough valid depth readings in the 
bottom 48 rows and fits a plane to these depth readings. The 
columns that have a small enough standard deviation from the 
candidate planes are used to determine the final floor plane, 
through majority voting. If the majority is less than 75%, the 
frame is discarded and the floor plane extracted from the 
previous frame is used instead. Other floor extraction methods, 
such as the plane detector in [22], would work equally well.      

Finally, we walk the resulting image in column order, 
looking for the smallest value from each column. The value 
represents the point closest to the camera. We smooth the 
value by applying bilateral filtering to its neighborhood [23], 
and retain the resulting depth value in the corresponding entry 
of a 640x1 array. The array represents the depth profile of the 
depth frame, matching the corrected Kinect depth map column 
for column.  

D. Local map representation 

Similar to KinectFusion, our method relies on the TSDF 
representation of the 2D model. Thus, our map mk obtained at 
step k is a fixed-size grid in which each cell contains the signed 
distance value Fk from the cell to the closest obstacle, together 
with an associated weight Wk: 

 mk(x, y) = [Fk(x, y), Wk(x, y)] 

The distance function is the same projective TSDF used by 
KinectFusion, which is an approximation of a true signed 
distance function, theoretically correct only at the zero 
crossing. In practice, the averaging effect obtained from 
incremental updates from a moving sensor makes the 
approximation sufficient.  

This representation has two important advantages over the 
classical occupancy grid:  

 It allows extraction of coherent contours even after 
integrating very noisy readings, with sub-cell 
resolution.  

 It is directional, in that cells with non-zero values 
don’t appear as obstacles when seen from a different 
angle. Only the zero-crossings are interpreted as 
obstacles. 
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Figure 2. Average frame-wide bias relative to distance, before (dotted 
line) and after (solid line) calibration, computed on a training dataset and a 
validation dataset respectively. 



  

The process of integrating a new depth profile into the map 
for a given camera pose estimate consists of visiting and 
updating every cell in the map that could be affected by the 
new reading (given the camera’s horizontal field of view and 
the current maximum depth reading). Each candidate cell is re-
projected onto the camera to find its corresponding depth 
profile entry (nearest neighbor). The cell value is updated with 
the difference η between the distance from the camera to the 
cell and the corresponding value in the depth profile line (i.e. 
the distance from the camera to the obstacle along the same 
ray), truncated and normalized by the truncation threshold μ. 
As a result, cells very close to an obstacle get a value close to 
0, while cells in front get a positive value increasing away from 
the surface. Cells behind the obstacle, up to the truncation 
threshold distance, are updated with a negative value 
decreasing away from the surface: 

 Ψ(η) =  {
min (1,

η

μ
) sgn(η), iff η ≥  −μ

null, otherwise 
 (2) 

 

The cells with value <1 make up the support region of the 
surface. The truncation threshold μ is scaled with the distance 
to the obstacle along the ray, so that obstacles farther away get 
a larger support region. This helps in integrating the large noise 
present in long-range readings.  

Given a new depth profile Sk obtained at time k from the 
current robot position p0, the projective TSDF at point p is 
given by:  

 𝐹𝑆𝑘
(𝑝)  =    Ψ(𝑆𝑘(𝑇𝑆𝑝) −  ‖𝑝 − 𝑝0‖2) (3) 

 𝑊𝑆𝑘
(𝑝) =

1

‖𝑝−𝑝0‖2
2 (4) 

The map cell is then updated according to: 

 𝐹𝑘(𝑝)  =    
𝐹𝑘−1(𝑝)∗ 𝑊𝑘−1(𝑝) +𝐹𝑆𝑘

(𝑝)∗ 𝑊𝑆𝑘
(𝑝) 

𝑊𝑘−1(𝑝)+ 𝑊𝑆𝑘
(𝑝)

 (5) 

 𝑊𝑘(𝑝) =  𝑊𝑘−1(𝑝) +  𝑊𝑆𝑘
(𝑝) (6) 

The weight associated with each update is a function of 
distance from the camera to the cell being updated. Since the 
weight of a cell is ever increasing, it also captures the number 
of times the cell was seen so far. The weight plays an important 
role in incrementally improving the obstacle contours as more 
observations are added to the map.  

E. Incremental mapping 

The critical ingredient of our method is the ability to 
maintain a correct local map from which a 360 degree contour 
can be easily extracted. The contour is then used as a scan line 
instead of the actual observation during navigation. Our 
method for incremental mapping is frame-to-model matching. 
The approach used by Kinect Fusion is to extract the surface 
from the current model using ray-tracing and to re-project it 
onto a virtual camera. Computing the cost function becomes a 

pixel-wise operation between the Kinect depth map and the 
depth map obtained via re-projection of the model, but the ray 
tracing operation is expensive. We opted for a simpler and 
cheaper way to compute an approximate version of the cost 
function by using the TSDF directly. Given a camera pose Pk, 
a depth profile Sk obtained from the latest camera frame k, and 
the current map mk, we denote with C(mk, Pk, Sk)  the cost 
function representing how well the observed depth profile Sk 
and the predicted contour match. 

𝐶(𝑚𝑘, 𝑃𝑘 , 𝑆𝑘)  =   ∑ |(𝐹𝑘 ∗ 𝑊𝑘)(𝑇𝑀𝑇𝑅𝑇𝐶𝑝)𝑝∈𝑆𝑘
| (7) 

When it comes to pose estimation via minimizing the cost 
function, Kinect’s reduced field of view and high noise levels 
make single-solution search methods like gradient descent or 
ICP [24] of limited usefulness, particularly once the depth 
image is reduced to a scan line. There are many cases in which 
the robot faces an area devoid of salient features, resulting in a 
sequence of observations that cannot be properly aligned with 
the model. Presence of moving obstacles in the field of view 
can also present an alignment problem (outlier detection can 
help only to some extent). In such cases single-solution 
methods fail and need external input to recover. Our approach 
is to use a multi-theory search method instead, implemented as 
a particle filter that approximates the probability distribution 
over the robot pose given the robot motion, the most likely 
map and a set of observations, similar to [25]. The filter is 
updated at frame rate, and the average lifespan of a particle is 
<10 seconds. This is in contrast with Rao–Blackwellized 
particle filter implementations, which keep multiple theories 
alive (together with their associated maps) until a loop closure 
is detected, typically by updating the filter with low frequency 
[9], [15]. Hence, we refer to our method as an incremental 
mapping method rather than a SLAM solution.  

Because computing the distance function is cheap (linear 
in the horizontal resolution of the sensor), and because we only 
maintain the map generated by the maximum likelihood 
solution, the particle filter can maintain and update thousands 

Figure 3. TSDF map generated using our incremental mapping method. 



  

of particles at frame rate. The filter update is also fully 
parallelizable, since particles of the same generation are 
independent of each other. In our tests, the ability to compute 
many more candidate poses appears to outweigh the fact that 
the cost function is a relatively coarse approximation of fitness 
when compared to the ray-traced approach. 

As with any incremental mapping method, our method 
suffers from drift over long distances and/or time intervals. To 
ensure that our local map remains consistent in the vicinity of 
the robot, we update it using a sliding window approach. We 
maintain a queue of the observations currently integrated into 
the map. The queued observations are removed from the map 
(and from the queue) once they become too old (>120s) or 
once the robot traveled a maximum distance (20m). The 
removal operation is the inverse of the map update operation: 

 𝐹𝑘(𝑝)  =    
𝐹𝑘−1(𝑝)∗ 𝑊𝑘−1(𝑝)− 𝐹𝑆𝑘

(𝑝)∗ 𝑊𝑆𝑘
(𝑝) 

𝑊𝑘−1(𝑝) − 𝑊𝑆𝑘
(𝑝)

 (8) 

 𝑊𝑘(𝑝) =  𝑊𝑘−1(𝑝) −  𝑊𝑅𝑘
(𝑝) (9) 

F. Contour extraction  

To compensate for the small field of view of the Kinect, 
we generate, after each map update, a virtual observation in 
the form of a dense 360 degree depth profile. For a given robot 
position and orientation, the visible obstacle contours are 
extracted from the current map using ray-tracing, by visiting 
the map cells along each ray in a dense set of rays within a 
given field of view. The method iterates over map cells in 
order of increasing distance from the observer for as long as 
the current cell value is positive. When a negative value is 
encountered, the surface has been crossed and its exact 
position can be computed by linearly interpolating between the 
positive and negative values. The resulting position is added to 
the point set that describes the surface. The positive and 
negative values are themselves interpolated from the 
surrounding cells. Once all the desired rays in the field of view 
have been traced, the computed point set describes the surface 
as seen from the given pose with the given field of view. 

Note that, unlike Kinect Fusion, our ray tracing visits every 
cell along the ray. We found the Kinect Fusion approach of 
space skipping to be unreliable when applied to our maps, due 
to the nature of the robot motion. In particular, when moving 
along a corridor, the generated support region of the walls is 
thin because of the sharp viewing angle. When the robot 
rotates, changing the viewing direction, the space skipping 
method ends up jumping over the thin support region, missing 
the surface.  

G. Global map 

The global map used for navigation is represented as a grid 
map containing a true signed distance function. The global 
map is generated in an offline step from data recorded while 
manually driving the robot around the target environment. 
Loop closure information is provided by pressing a button 
during recording. An initial estimate of the trajectory of the 
robot is obtained using the incremental mapping procedure, 
and is then corrected in a graph optimization step based on the 
loop closure information. A TSDF map is generated using the 

updated trajectory and is then transformed to a true distance 
function by ray-tracing from every map cell and retaining the 
minimum distance to the extracted contour. 

H. Navigation 

The key ingredient of our localization method is the 
generation, at frame rate, of a virtual 360 degree scan line from 
the most recent observation and a local map that is always up 
to date. The 360 degree contour is extracted from the local map 
by ray-tracing as described in Section F. Then, the most recent 
observation is used to replace the section of the scan line that 
it overlaps with (after a simple conversion of the observation 
from pin-hole model to angular model). The resulting 
combined scan line makes it look as if the robot was equipped 
with a 360 degree LIDAR. However, our scan line is denser, 
containing 3600 readings, or 10x more than most LIDARs.  

 Localization is performed using a particle filter with the 
same cost function C(mk, Pk, Sk) described earlier, this time 
applied to the true distance function map. The motion update 
of the filter is based on the motion estimate output of the 
incremental mapping subsystem. 

To handle changes to the environment such as furniture 
being moved, path (re)planning is performed with high 
frequency against a combined map obtained by overlaying the 
most recent local map over the global map, given the most 
likely pose from the localization subsystem. While fairly 
simplistic and theoretically prone to live-locks due to 
oscillating alignment of the maps (and the resulting oscillation 
of the planned path), this approach appears to work well in 
practice. Nonetheless, this area merits more attention and 
future work. 

Dynamic obstacles such as people are handled at path 
tracking level, using a purely reactive obstacle avoidance 
strategy consisting of a short sequence of random rotations and 
translations towards open space. The random behavior is 
designed to eliminate the risk of live-locks between obstacle 
avoidance and path tracking. 

 

IV. EXPERIMENTAL RESULTS 

We conducted several experiments to compare our method 
with existing state-of-the-art implementations and to quantify 
the benefits of our continuous mapping technique. For reasons 
of size and drive train similarities with our hardware prototype, 
we chose to compare our platform with two similar platforms 
running complete mapping and navigation solutions: 
TurtleBot 2 (from Yujin Robot) and Adept Pioneer 3DX. The 
TurtleBot is an open source platform based on iRobot Create. 
It is equipped with a Microsoft Kinect, and runs Linux and 
ROS [26]. The Pioneer 3DX is a commercial platform 
produced by Adept Mobile Robots. It is equipped with a Sick 
LIDAR and runs Adept’s proprietary ARNL navigation 
software [1].  

It became obvious early on that our TurtleBot system 
(using the default mapping and navigation solution) was not 
able to handle the large space we picked for our benchmark, 
and thus we removed it from the test. The Adept Pioneer on 
the other hand proved to be a capable contender. Note that in 



  

our experiments we used the research version of the Adept 
ARNL software.  

A. Benchmarking method 

We used the BRIN method (Benchmark for Robotic Indoor 
Navigation) to quantify the performance of our navigation 
method in large environments. The benchmark method was 
introduced in [4] and was presented in detail in [27].  

To summarize, we picked a large environment consisting 
of four areas: office, hallway, lounge and atrium. The lounge 
and atrium share an open space of more than 30 x 30 m. The 
lounge area was densely furnished, while the atrium was 
mostly empty. We chose 8 interesting places in the 
environment and marked one waypoint in each place by 
applying an overhead fiducial. We ensured that the robot 
visited these waypoints during mapping, and we captured the 
position of the robot on the generated map, as well as the 
position of the robot in the real world, relative to the fiducial 
associated with the waypoint being visited. This last step was 
done using an up-facing camera mounted on the robot and the 
ground truth software described in [28]. Note that the up-
facing camera was used solely for ground truth information 
and was not available to the navigation software. 

Once the initial map was created and the waypoints were 
recorded, the robot was instructed to visit the waypoints in a 
particular sequence designed to maximize exposure to 
environmental challenges. The track length of the sequence 
was about 250m. The sequence was repeated 12 times, for a 
total of 3km, and every time a different set of modifications 
was made to the environment, such as people walking by or 
blocking the robot, doors being closed, obstacles placed in the 
path and furniture being disturbed or moved to new locations. 
For a complete description of the benchmark procedure see 
[4].   

The main metric used to compare the tested systems was 
the total number of failures. Failure was defined as the inability 
of the robot to reach the next waypoint in the set within a given 
amount of time. In all failure cases observed it was fairly 
obvious that the robot could not recover and would never reach 
the waypoint. After a failure, the robot was reset to the next 
waypoint and the test resumed. 

We ran the tested platforms one after the other for each 
sequence of points, thus guaranteeing that the systems were 
exposed to the same changes in the environment. The tests 
were run in late afternoon and evening, to eliminate the 
possibility of interference.  

B. Results 

Table 1 below quantifies the contribution of the mapping 
and localization strategy described in this paper. It compares 
the benchmark results obtained in two distinct benchmark 
runs, performed a few weeks apart in the same environment. 
The two runs used the same hardware platform but different 
versions of the navigation systems. In the first run we used a 
simpler version of our navigation stack which implemented the 
same depth frame processing method but relied directly on the 
resulting 60° scan line to localize against a static map. As 
expected, the majority of the failures were due to loss of 
localization, either when the furniture was moved (lounge) or 

when encountering people in areas with sparse features 
(traversing the atrium). 

The second run used the system described in this paper and 
showed a dramatic improvement across the board. The always 
up-to-date local map and the virtual 360° view generated from 
it helped a lot in maintaining good localization even when the 
environment changed, resulting in a five-fold increase in 
positioning accuracy. 

Because these were distinct benchmark sessions, the 
results are normalized by the performance of the reference 
platform in each session, as required by BRIN.  

Table 2 shows the results of our prototype, MSR-P1, and 
the Pioneer 3DX robot. Our system outperformed the Pioneer 
in all regards except speed. Accuracy of the two systems is 
almost the same, even though the LIDAR used by the Pioneer 
system is 10x more accurate than the Kinect, has 5x the range 
and 6x the field of view. Note that failures are not reflected in 
the positioning error, since measuring the positioning error 
requires the robot to arrive at the landmark to begin with.  

 

Metric No local map, 

60° FOV 

Local map, 

360° FOV 

Number of failures* 2.40 0.56 

Mean time to failure 0.23 3.12 

Max time to failure 0.43 2.55 

Mean dist. to failure 0.13 2.01 

Max dist. to failure 0.27 1.82 

Average speed  0.50 0.64 

Positioning error* 5.22 1.05 

TABLE 1. Comparison of navigation results with and without the 
incremental mapping method, using the MSR-P1 platform. The results are 
normalized with the performance of the reference platform, and are thus unit-
less. Larger values are better, except for items marked with *. 

Figure 5. Map of the environment in which the benchmark was 
conducted. 



  

Metric MSR-P1 Pioneer 

Number of failures 5 9 

Mean time to failure 2265 s 726 s 

Max time to failure 5023 s 1971 s 

Mean dist. to failure 367 m 183 m 

Max dist. to failure 860 m 472 m 

Average speed  0.16 m/s 0.25 m/s 

Positioning error 0.23m ±0.2m 0.22m ±0.1m 

TABLE 2. Comparison of results obtained with MSR-P1 running our 
method and the Pioneer 3DX running the ARNL navigation system. 

While the Pioneer software was better in navigating a static 
environment, especially in the large atrium, the ability of our 
robot to deal with environment changes was ultimately the 
main differentiator in the overall score. 

The breakdown of the failures of MSR-P1 is as follows: 1 
software crash, 3 localization failures and 1 localization 
divergence. The Pioneer failures were: 1 software hang, 5 
localization failures, 1 path oscillation for more than 5 
minutes, 1 not able to traverse path plotted around a new 
obstacle and 1 failure to detect a low obstacle.  

 

V. CONCLUSION 

In this paper we have shown that the Microsoft Kinect 
depth camera is a viable low-cost alternative to LIDARs for 
indoor navigation scenarios. We have devised a method for 
correcting systematic error in sensor readings and for coping 
with large random noise in long-range Kinect data. We 
introduced a method for extracting better statistics about 
obstacle proximity. Finally, we have shown how, by 
performing continuous incremental mapping and by using a 
TSDF map representation, we can compensate for the limited 
field of view of the Kinect sensor. Our experimental results 
demonstrate that the resulting system can outperform existing 
state-of-the-art indoor navigation systems that use LIDARs, 
particularly when it comes to overall reliability in dynamic 
environments. Despite the LIDARs significant advantage in 
accuracy, range and field of view over Kinect, our system 
achieves similar positioning accuracy and has a significantly 
lower failure rate. 
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