Image Segmentation Using Higher-Order Correlation Clustering

Sungwoong Kim, Member, IEEE, Chang D. Yoo, Senior Member, IEEE, Sebastian Nowozin, and Pushmeet Kohli

Abstract—In this paper, a hypergraph-based image segmentation framework is formulated in a supervised manner for many high-level computer vision tasks. To consider short- and long-range dependency among various regions of an image and also to incorporate wider selection of features, a higher-order correlation clustering (HO-CC) is incorporated in the framework. Correlation clustering (CC), which is a graph-partitioning algorithm, was recently shown to be effective in a number of applications such as natural language processing, document clustering, and image segmentation. It derives its partitioning result from a pairwise graph by optimizing a global objective function such that it simultaneously maximizes both intra-cluster similarity and inter-cluster dissimilarity. In the HO-CC, the pairwise graph which is used in the CC is generalized to a hypergraph which can alleviate local boundary ambiguities that can occur in the CC. Fast inference is possible by linear programming relaxation, and effective parameter learning by structured support vector machine is also possible by incorporating a decomposable structured loss function. Experimental results on various datasets show that the proposed HO-CC outperforms other state-of-the-art image segmentation algorithms. The HO-CC framework is therefore an efficient and flexible image segmentation framework.

Index Terms—Image segmentation, correlation clustering, structural learning.

1 INTRODUCTION

Image segmentation which can defined as a clustering of image pixels into disjoint coherent regions is currently being used in many of the state-of-the-art high-level image/scene understanding tasks such as object class segmentation, scene segmentation, surface layout labeling, and single view 3D reconstruction [1]–[5]. Its use provides the following three benefits: (1) coherent support regions, commonly assumed to be of a single label, serve as a good prior for many labeling tasks; (2) these coherent regions allow extraction of a more consistent feature that provides surrounding contextual information through pooling many feature responses over the region; and (3) a small number of larger coherent regions, compared to large number of pixels, significantly reduces the computational cost for a labeling task.

Many segmentation algorithms have been proposed in the literature that can be broadly classified into two groups – graph based (examples include min-cuts [6], normalized cuts [7] and Felzenszwalb-Huttenlocher (FH) segmentation algorithm [8]) and non graph based (examples include K-means [9], mean-shift [10], and EM [11]). Compared to non-graph-based segmentations, graph-based segmentations have been shown to produce more consistent segmentations by adaptively balancing local judgements of similarity [12]. Graph-based image segmentation algorithms can be further categorized into either node-labeling or edge-labeling algorithms. In contrast to the node-labeling framework of the min-cuts and normalized cuts, the edge-labeling framework of the FH algorithm does not require a pre-specified number of segmentations in an image.

Correlation clustering (CC) is a graph-partitioning algorithm [13] that infers the edge labels of the graph by simultaneously maximizing intra-cluster similarity and inter-cluster dissimilarity by optimization of a global objective (discriminant) function. Furthermore, the CC can be formulated as a linear discriminant function which allows for approximate polynomial-time inference by linear programming (LP) and also allows large margin training based on structured support vector machine (S-SVM) [14]. Finley et al. [15] consider a framework that uses the S-SVM for training the parameters in the CC for noun-phrase clustering and news article clustering. Taskar derived a max-margin formulation, different from the S-SVM, for learning the edge scores in the CC [16] for applications involving two different segmentations of a single image. No experimental comparisons or quantitative results are provided in [16].

We have recently explored a supervised CC over a pairwise superpixel graph for task-specific image segmentation [17], and it has been shown to perform
better than other state-of-the-art image segmentation algorithms.

Although it derives its segmentation result by optimizing a global objective function, which leads to a discriminatively-trained discriminant function, the pairwise CC (PW-CC) is restricted to resolving segment boundary ambiguities corresponding to only local pairwise edge labels of a graph. Therefore, to capture long-range dependencies of distant nodes in a global context, this paper proposes higher-order correlation clustering (HO-CC) to incorporate higher-order relations. Generalizing the PW-CC over a pairwise superpixel graph, we develop a HO-CC over a hypergraph that considers higher-order relations among superpixels. An edge in the hypergraph of the proposed HO-CC can connect to two or more nodes representing the superpixels as in [18].

Hypergraphs have been previously used to lift certain limitations of conventional pairwise graphs [19]–[21]. However, previously proposed hypergraphs for image segmentation are restricted to partitioning based on the generalization of a normalized-cut framework, which suffer from the following three difficulties. First, inference is slow and difficult especially with increasing graph size. To approximate the inference process, a number of algorithms have been introduced based on the coarsening algorithm [20] and the hypergraph Laplacian matrices [19]. These are heuristic approaches and therefore sub-optimal. Second, incorporating a supervised learning algorithm for parameter estimation under the spectral hypergraph partitioning framework is difficult. This is in line with the difficulties in learning spectral graph partitioning. This requires a complex and unstable eigenvector approximation which must be differentiable [22], [23]. Third, region-based features are utilized in a restricted manner. Almost all previous hypergraph-based image segmentation algorithms have been restricted to color variances as region features.

The proposed HO-CC framework alleviates all of the above difficulties by generalizing the PW-CC and making use of the hypergraph. The hypergraph which is constructed based on the correlation information of the superpixels can be equivalently formulated as a linear discriminant function. A richer feature vector involving higher-order relations among visual cues of the superpixels can be utilized. For fast inference, a LP relaxation is used, and for tractable S-SVM training of the parameters with unbalance class labeled data, a decomposable structured-loss function is defined, which allows the efficient use of the cutting-plane algorithm to approximately solve the constrained optimization. Experimental results on various datasets show that the proposed HO-CC outperforms other state-of-the-art image segmentation algorithms.

An earlier version of this paper appeared as Kim et al. [24]. This paper provides a more detailed description of the proposed HO-CC, additional empirical results, and in-depth analysis of the performances on image segmentation tasks.

Our main contributions can be summarized as follows: (1) the hypergraph-based HO-CC approach that takes into account higher-order relationships between super-pixels; (2) inference using a LP relaxation of the problem; (3) using supervised learning for discriminative clustering via a cutting plane algorithm that can handle a decomposable loss function; and (4) the demonstration of segmentation results that improve on those obtained by state-of-the-art segmentation methods.

The rest of the paper is organized as follows. Section 2 describes the PW-CC in [17], and Section 3 presents the proposed HO-CC. Section 4 describes structural learning for supervised image segmentation based on the S-SVM and cutting plane algorithm. A number of experimental and comparative results are presented and discussed in Section 5, followed by a conclusion in Section 6.

2 Pairwise Correlation Clustering

As alluded earlier, the CC is basically an algorithm to partition a pairwise graph into disjoint groups of coherent nodes [13], and it has been used in natural language processing and document clustering [15], [25], [26]. This section presents the PW-CC that has been developed to solve an image segmentation task by partitioning a pairwise superpixel graph [17].

2.1 Superpixels

The proposed image segmentation is based on superpixels which are small coherent regions preserving almost all boundaries between different regions. This is an advantage since superpixels significantly reduce computational cost and allow feature extraction to be conducted from a larger coherent region. Both the pairwise and higher-order CC merges superpixels into disjoint coherent regions over a superpixel graph. Therefore, the proposed CC is not a replacement to existing superpixel algorithms, and performances might be influenced by baseline superpixels.

2.2 Pairwise Correlation Clustering over a Pairwise Superpixel Graph

Define a pairwise undirected graph \(\mathcal{G} = (\mathcal{V}, \mathcal{E}) \) where a node corresponds to a superpixel and a link between adjacent superpixels corresponds to an edge (see Figure 1(a)). A binary label \(y_{jk} \) for an edge \((j, k) \in \mathcal{E}\) between nodes \(j \) and \(k \) is defined such that

\[
y_{jk} = \begin{cases}
1, & \text{if } j \text{ and } k \text{ belong to the same region}, \\
0, & \text{otherwise}.
\end{cases}
\]
where Y maximizes Sim where the similarity measure between nodes j and k.

A discriminant function is defined over image x and label y of all edges as

$$F(x, y; w) = \sum_{(j, k) \in E} \text{Sim}_w(x, j, k) y_{jk}$$

$$= \sum_{(j, k) \in E} \langle w, \phi_{jk}(x) \rangle y_{jk}$$

$$= \langle w, \Phi(x, y) \rangle,$$

where the similarity measure between nodes j and k, $\text{Sim}_w(x, j, k)$, is parameterized by w and takes values of both signs such that a large positive value indicates strong similarity while a large negative value indicates strong dissimilarity. Note that the discriminant function $F(x, y; w)$ is assumed to be linear in both the parameter vector w and the joint feature map $\Phi(x, y)$, and $\phi_{jk}(x)$ is a pairwise feature vector which reflects the correspondence between the jth and the kth superpixels. An image segmentation is to infer the edge label y over the pairwise superpixel graph G by maximizing F such that

$$\hat{y} = \arg\max_y F(x, y; w),$$

where $\mathcal{Y}(G)$ is a subset of $\{0, 1\}^E$ that corresponds to a valid segmentation and is the set of multicut $[27]$ of the graph G. However, solving (6) over $\mathcal{Y}(G)$ is generally NP-hard.

2.3 LP Relaxation for Pairwise Correlation Clustering

We approximate $\mathcal{Y}(G)$ by means of a common multicut LP relaxation $[27], [28]$ with the following two constraints: (1) cycle inequality and (2) odd-wheel inequality. The LP relaxation to approximately solve (6) can be formulated as

$$\arg\max_y \sum_{(j, k) \in E} \langle w, \phi_{jk}(x) \rangle y_{jk}$$

s.t. $y \in \mathcal{Z}(G),$

where $\mathcal{Z}(G) \supset \mathcal{Y}(G)$ is a relaxed polytope defined by the following two linear inequalities.

1) Cycle inequality: Let $\text{Path}(j, k)$ be the set of paths between nodes j and k. The cycle inequality is a generalization of the triangle inequality $[27]$ and is defined as

$$(1 - y_{jk}) \leq \sum_{(s, t) \in p} (1 - y_{st}), \quad p \in \text{Path}(j, k).$$

2) Odd-wheel inequality: Let a q-wheel be a connected subgraph $S = (V_s, E_s)$ with a central vertex $j \in V_s$ and a cycle of q vertices in $C = V_s \setminus \{j\}$. For every odd $q \geq 3$-wheel, a valid segmentation y satisfies

$$\sum_{(s, t) \in E(C)} (1 - y_{st}) - \sum_{k \in C} (1 - y_{jk}) \leq \frac{1}{2} q,$$

where $E(C)$ denotes the set of all edges in the outer cycle C.

Although the number of inequalities (8) and (9) is exponentially large in the size of the graph, it is nevertheless possible to optimize (7) in polynomial time. The identification of a violated inequality – the so-called separation problem – from both sets (8) and (9) is possible in polynomial time $[29], [30]$. A famous result in combinatorial optimization states the equivalence between optimization and separation $[31]$. Thus, the polynomial time solvability of (7) is guaranteed.

The relation between the solutions of (6) and (7) is as follows: if the LP solution to (7) is integral, that is for all $(j, k) \in E$ we have $y_{jk} \in \{0, 1\}$, then the solution y is the exact solution to (6). If instead, it is fractional, then we take the floor of a fractionally-predicted label of each edge independently for simply obtaining a feasible but potentially sub-optimal solution to (6).

2.4 The Need for Higher-Order Models

Even though the PW-CC described above can use a rich pairwise feature vector with an optimized parameter vector (which will be presented later), it often produces incorrectly predicted segments due to segment boundary ambiguities caused by limited pairwise relations of neighboring superpixels (see Figure 2). Therefore, to incorporate higher-order relations of distant superpixels, we develop a HO-CC by generalizing the CC over a hypergraph.
3 Higher-Order Correlation Clustering

This section describes the proposed HO-CC for image segmentation in three steps. In the first step, we define the hypergraph representation. Second, we generalize the LP relaxation (7) for hypergraphs. Finally, a feature vector consisting of pairwise and higher-order feature vectors to characterize relationship among superpixels over a hypergraph is presented.

3.1 Hypergraph

The proposed HO-CC is defined over a hypergraph in which an edge referred to as hyperedge can connect to two or more nodes. For example, as shown in Figure 1.(b), one can introduce binary labels for each adjacent vertices forming a triplet such that \(y_{ijk} = 1 \) if all vertices in \(\{i, j, k\} \) are in the same cluster; otherwise, \(y_{ijk} = 0 \). Define a hypergraph \(\mathcal{H} = (\mathcal{V}, \mathcal{E}) \) where \(\mathcal{V} \) is the set of all nodes (superpixels) and \(\mathcal{E} \) is the set of all hyperedges (subsets of \(\mathcal{V} \)) such that \(\bigcup_{e \in \mathcal{E}} = \mathcal{V} \). Here, a hyperedge \(e \) has at least two nodes, i.e. \(|e| \geq 2 \). Therefore, the hyperedge set \(\mathcal{E} \) is divided into two disjoint subsets: pairwise edge set \(\mathcal{E}_p = \{ e \in \mathcal{E} \mid |e| = 2 \} \) and higher-order edge set \(\mathcal{E}_h = \{ e \in \mathcal{E} \mid |e| > 2 \} \) such that \(\mathcal{E}_p \cup \mathcal{E}_h = \mathcal{E} \). Note that in the proposed hypergraph for HO-CC all hyperedges containing just two nodes (\(\forall e_p \in \mathcal{E}_p \)) are linked between adjacent superpixels. The pairwise superpixel graph is a special hypergraph where all hyperedges contain just two (neighboring) superpixels: \(\mathcal{E}_p = \mathcal{E} \). A binary label \(y_e \) for a hyperedge \(e \in \mathcal{E} \) is defined such that

\[
y_e = \begin{cases}
1, & \text{if all nodes in } e \text{ belong to the same region,} \\
0, & \text{otherwise.}
\end{cases}
\]

(10)

3.2 Higher-Order Correlation Clustering over a Hypergraph

Similar to the PW-CC, a linear discriminant function is defined over image \(x \) and label \(y \) of all hyperedges as

\[
F(x, y; w) = \sum_{e \in \mathcal{E}} \text{Hom}_w(x, e)y_e \quad (11)
\]

\[
= \sum_{e \in \mathcal{E}} \langle w, \phi_e(x) \rangle y_e \quad (12)
\]

\[
= \sum_{e_p \in \mathcal{E}_p} \langle w_p, \phi_{e_p}(x) \rangle y_{e_p} + \sum_{e_h \in \mathcal{E}_h} \langle w_h, \phi_{e_h}(x) \rangle y_{e_h} \quad (13)
\]

\[
= \langle w, \Phi(x, y) \rangle, \quad (14)
\]

where the homogeneity measure among nodes in \(e \), \(\text{Hom}_w(x, e) \), is also the inner product of the parameter vector \(w \) and the feature vector \(\phi_e(x) \) and takes values of both signs such that a large positive value indicates strong homogeneity while a large negative value indicates high degree of non-homogeneity. Note that the proposed discriminant function for the HO-CC is decomposed into two terms by assigning different parameter vectors to the pairwise edge set \(\mathcal{E}_p \) and the higher-order edge set \(\mathcal{E}_h \) such that \(w = [w_p; w_h] \). Thus, in addition to the pairwise similarity between neighboring superpixels, the proposed HO-CC considers a broad homogeneous region reflecting higher-order relations among superpixels.

From a given image, a hypergraph is constructed as follows. First, unsupervised multiple partitionings are obtained by merging not pixels but superpixels with different image quantizations using the ultrametric contour maps [32]. Then, the obtained regions are used to define hyperedges of the hypergraph. For example, in Figure 3, there are three region layers, one superpixel (pairwise) layer and two higher-order layers. All edges (black line) in the pairwise superpixel graph from the first layer are incorporated into the pairwise edge set \(\mathcal{E}_p \). Hyperedges (yellow line) corresponding to regions (groups of superpixels) in the second and third layers are included in the higher-order edge set \(\mathcal{E}_h \). Note that we can further decompose the higher-order term in (13) into two terms associated with the second and third layers, respectively, by assigning different parameter vectors; however for simplicity, this paper aggregates all higher-order edges from all higher-order layers into a single higher-order edge set assigning the same parameter vector.

The use of unsupervised multiple partitionings enables to obtain reasonable candidate regions for defining higher-order edges. Other methods to define higher-order edges are also possible. For instance, from the baseline pairwise superpixel graph, the fully connected subgraphs referred to as cliques which have more than two nodes can be obtained, and these cliques can be associated to the higher-order

Fig. 2. Example of segmentation result by PW-CC. (a) Original image. (b) Ground-truth. (c) Superpixels. (d) Segments obtained by PW-CC.
Fig. 3. Hypergraph construction from multiple partitionings. (a) Multiple partitionings from baseline superpixels. (b) Hyperedge (yellow line) corresponding to a region in the second layer. (c) Hyperedge (yellow line) corresponding to a region in the third layer.

edges. However, the use of the cliques in the proposed framework is empirically hard to produce broad regions which consist of more than four fully connected superpixels.

3.3 LP Relaxation for Higher-Order Correlation Clustering

An image segmentation is to infer the hyperedge label, \(\hat{y} \), over the hypergraph \(\mathcal{HG} \) by maximizing the discriminant function \(F \) such that

\[
\hat{y} = \arg\max_{y \in \mathcal{Y}(\mathcal{HG})} F(x, y; w),
\]

where \(\mathcal{Y}(\mathcal{HG}) \) is also the subset of \(\{0, 1\}^E \) that corresponds to a valid segmentation.

In order to define the state of the higher-order edge variables in relations to the pairwise edge variables, we introduce two types of inequalities: the first enforces that when a pairwise edge places (or labels) adjacent superpixels belonging to a certain higher-order edge as being in different clusters, the higher-order edge cannot place the two in the same cluster; and the second enforces that when all pairwise edges of a set of superpixels agree that all superpixels in the set are in the same cluster, then the higher-order edge of the set must place all the superpixels as belonging to one cluster (see Table 1). We define novel constraints for labels on pairwise and higher-order edges, referred to as higher-order inequalities, to formalize this intuition as follows:

\[
y_{e_h} \leq y_{e_p}, \quad \forall e_p \in E_p | e_p \subset e_h,
\]

\[
(1 - y_{e_h}) \leq \sum_{e_p \in E_p | e_p \subset e_h} (1 - y_{e_p}).
\]

Proposition The set of all binary solutions satisfying the inequalities (8), (9), and (16), which forms the HO-CC problem, represents exactly the set of consistent cluster assignments.

Proof. All solutions satisfying the pairwise inequalities (8) and (9) lead to consistent pairwise edge label assignments. Inclusion of (16) does not make any pairwise solution inconsistent. Also, by formalizing the above intuitive reasoning as (16), for binary variables, all higher-order edge assignments are consistent with all pairwise edge assignments.

The LP relaxation to approximately solve (15) is formulated as

\[
\arg\max_y \sum_{e_p \in E_p} \langle w_p, \phi_{e_p}(x) \rangle y_{e_p} + \sum_{e_h \in E_h} \langle w_h, \phi_{e_h}(x) \rangle y_{e_h},
\]

s.t.

\[
y \in \mathcal{Z}(\mathcal{HG}),
\]

where \(\mathcal{Z}(\mathcal{HG}) \supset \mathcal{Y}(\mathcal{HG}) \) is the relaxed polytope defined by the cycle inequality of (8), odd-wheel inequality of (9), and higher-order inequality of (16).

Due to the exponentially large number of constraints, we use the cutting plane algorithm [33], which is summarized in Algorithm 1, to solve (17) efficiently. The algorithm works with a small set of constraints that defines a loose relaxation \(S \) to the feasible set. It iteratively tightens \(S \) by means of violated inequalities. In each iteration, the optimal \(y \) on the current set of constraints is found, then violated inequalities are searched. When a violated inequality is found, it is added to the current constraint set to reduce \(S \), and (17) is re-solved with the tightened relaxation (reduced \(S \)). Here, the search for a violated inequality runs in polynomial time.

Note that the proposed HO-CC follows the concept
of soft constraints: superpixels belonging to a hyperedge are not forced but encouraged to merge if a hyperedge is highly homogeneous. This is in line with recent higher-order models for high-level image understanding [1], [34], [35].

3.4 Feature Vector

We construct a 481-dimensional feature vector \(\phi_e(x) = [\phi_{ep}(x); \phi_{eh}(x)] \) by concatenating several visual cues with different quantization levels and thresholds. The pairwise feature vector \(\phi_{ep}(x) \) reflects the correspondence between neighboring superpixels, and the higher-order feature vector \(\phi_{eh}(x) \) characterizes a more complex relation among superpixels in a broader region to measure homogeneity. The magnitude of \(w \) determines the importance of each feature, and this importance is task-dependent. Thus, \(w \) is estimated by supervised training described in Section 4.

3.4.1 Pairwise feature vector

We extract several visual cues from a superpixel, including brightness (intensity), color, texture, and shape. Based on these visual cues, we construct a 321-dimensional pairwise feature vector \(\phi_{ep} \) by concatenating a color difference feature \(\phi^c \), texture difference feature \(\phi^t \), shape/location difference feature \(\phi^s \), edge strength feature \(\phi^e \), joint visual word posterior feature \(\phi^v \), and bias as follows:

\[
\phi_{ep} = [\phi^c_{ep}; \phi^t_{ep}; \phi^s_{ep}; \phi^e_{ep}; \phi^v_{ep}; 1].
\]
(18)

- Color difference feature \(\phi^c_{ep} \): The color difference feature \(\phi^c_{ep} \) is composed of 26 color distances between two adjacent superpixels based on RGB and HSV channels. Specifically, we calculate 18 earth mover’s distances (EMDs) [36] between two color histograms extracted from each superpixel with various numbers of bins and thresholds for ground distance. In addition, six absolute differences (one for each color channel) between the means of the two superpixels and two \(\chi^2 \)-distances between hue/saturation histograms of the two superpixels are concatenated in \(\phi^c_{ep} \).
- Texture difference feature \(\phi^t_{ep} \): The 64-dimensional texture difference feature \(\phi^t_{ep} \) is composed of 15 absolute differences (one for each texture-response) between the means of two superpixels using 15 Leung-Malik (LM) filter banks [37] and one \(\chi^2 \)-distance and 48 EMDs (from various numbers of bins and thresholds for ground distance) between texture histograms of the two superpixels.
- Shape/location difference feature \(\phi^s_{ep} \): The 5-dimensional shape/location difference feature \(\phi^s_{ep} \) is composed of two absolute differences between the normalized (x/y) center positions of the two superpixels, the ratio of the size of the smaller superpixel to that of the larger superpixel, the percentage of boundary with respect to the smaller superpixel, and the straightness of boundary [4].

\(y_{ijk} \)	0	0	0	0	0	0	0	0
\(y_{ij} \)	0	0	0	0	1	1	0	0
\(y_{ik} \)	0	0	1	1	0	0	0	1

Validity valid valid valid invalid valid invalid invalid invalid

Validity invalid invalid invalid invalid invalid invalid invalid valid

| Algorithm 1 Cutting Plane Algorithm for Inference |
|-------------------|-------------------|-------------------|
| **Input:** \(w, S \leftarrow [0,1]^E \) |
| **repeat** |
| Solve LP relaxation on the current constraint set: |
| \(y \leftarrow \arg \max_{y \in S} \sum_{e_p \in E_p} \langle w_p, \phi_{ep}(x) \rangle y_{ep} + \sum_{e_h \in E_h} \langle w_h, \phi_{eh}(x) \rangle y_{eh} \) |
| \(S_{\text{violated}} \leftarrow \text{VIOLATE CYCLE INEQUALITIES (y): check (8)} \) |
| if no violated inequality found then |
| \(S_{\text{violated}} \leftarrow \text{VIOLATE HIGHER-ORDER INEQUALITIES (y): check (16)} \) |
| if no violated inequality found then |
| Integrity check |
| if no fractional-predicted label then break |
| else |
| \(S_{\text{violated}} \leftarrow \text{VIOLATE ODD-WHEEL INEQUALITIES (y): check (9)} \) |
| end if |
| end if |
| \(S \leftarrow S \cap S_{\text{violated}} \) |
| until no \(S \) has changed |

TABLE 1

Label validity for segmentation from the hypergraph (triplet graph) in Figure 1.(b).
• Edge strength feature ϕ_{ep}^e: The 15-dimensional edge strength feature ϕ_{ep}^e is a 1-of-15 coding of the quantized edge strength proposed by Arbelaez et al. [32].

• Joint visual word posterior feature ϕ_{vp}^v: The 210-dimensional joint visual word posterior feature ϕ_{vp}^v is defined as the vector holding the joint visual word posterior for a pair of neighboring superpixels using 20 visual words [38] as follows. First, a 52-dimensional raw feature vector x_j based on color, texture, location, and shape features described in [4] is extracted from the jth superpixel. Then, the visual word posterior distribution $P(v_i|x_j)$ is computed using the Gaussian RBF kernel where v_i denotes the ith visual word. Let $V_{jk}(x)$ be a 20-by-20 matrix whose elements are the joint visual word posteriors between nodes j and k defined such that

$$V_{jk}(x) = \begin{bmatrix}
P(v_1|x_j)P(v_1|x_k) \cdots P(v_1|x_k)P(v_20|x_k) \\
P(v_2|x_j)P(v_1|x_k) \cdots P(v_2|x_k)P(v_20|x_k) \\
\vdots & \vdots & \ddots & \vdots \\
P(v_20|x_j)P(v_1|x_k) \cdots P(v_20|x_j)P(v_20|x_k)
\end{bmatrix}.$$ (19)

The joint visual word posterior feature between nodes j and k, $\phi_{jk}^v(x)$, is defined as

$$\phi_{jk}^v(x) = \text{vec}(V_{jk}(x)) \oplus \text{vec}(V_{jk}^T(x)).$$ (20)

where vec(V) be the 210($=20 \times 21/2$)-dimensional vector whose elements are from the upper triangular part of V. This joint visual word posterior feature could overcome the weakness of class-agnostic features and incorporate the contextual information.

3.4.2 Higher-order feature vector

We construct a 160-dimensional higher-order feature vector ϕ_{eh} by concatenating the variance feature ϕ_{eh}^va, edge strength feature ϕ_{eh}^e, template matching feature ϕ_{eh}^{tm} and bias as follows:

$$\phi_{eh} = [\phi_{eh}^va; \phi_{eh}^e; \phi_{eh}^{tm}; 1].$$ (21)

• Variance feature ϕ_{eh}^va: The 44-dimensional variance feature is a generalized version of the color/texture difference feature used in the pairwise graph. We calculate 14 color variances among superpixels in a hyperedge based on the average RGB and HSV values and the hue/saturation histograms with 8 bins. In addition, 30 texture variances from 15 mean texture responses and texture response histogram with 15 bins are incorporated into the variance feature vector.

• Edge strength feature ϕ_{eh}^e: The 15-dimensional edge strength feature ϕ_{eh}^e is a ℓ_1-normalized histogram of the quantized edge strengths of neighboring superpixels in e_h.

• Template matching feature ϕ_{eh}^{tm}: The 44-dimensional color/texture features and 5-dimensional shape/location features of all (task-specific ground truth) regions in the training images are clustered using k-means with $k=100$ to obtain 100 representative templates of distinct regions. The 100-dimensional template matching feature vector is composed of the matching scores between a region defined by hyperedge and these templates using the Gaussian RBF kernel.

Note that in each feature vector, the bias (=1) is augmented in order to obtain a proper similarity/homogeneity measure which can either be positive or negative.

4 Structural learning

The proposed discriminant function is defined over the superpixel graph, and therefore, the ground-truth segmentation needs to be transformed to the ground-truth edge labels in the superpixel graph. For this, we first assign a single dominant segment label to each superpixel by majority voting over the superpixel’s constituent pixels and then obtain the ground-truth edge labels according to whether dominant labels of superpixels in a hyperedge are equal or not.

Using this ground-truth edge labels of the training data, we use the S-SVM to estimate the parameter vector for task-specific CC. We use the cutting plane algorithm with LP relaxation (17) for loss-augmented inference to solve the optimization problem of the S-SVM, since fast convergence and high robustness of the cutting plane algorithm in handling a large number of margin constraints are well-known [14].

4.1 Structured Support Vector Machine

Given N training samples $\{(x^n, y^n)\}_{n=1}^N$ where y^n is the ground-truth edge labels for the nth training image x^n, the S-SVM [14] optimizes w by minimizing a quadratic objective function subject to a set of linear margin constraints:

$$\min_{w, \xi} \frac{1}{2}||w||^2 + C \sum_{n=1}^N \xi_n$$ (22)

s.t. $\forall n, y \in Z(\mathcal{H}(G))$,
$$\langle w, \Delta \Phi(x^n, y) \rangle \geq \Delta(y^n, y) - \xi_n,$$
$$\forall n, \xi_n \geq 0.$$

where $\Delta \Phi(x^n, y) = \Phi(x^n, y^n) - \Phi(x^n, y)$, and $C > 0$ is a constant that controls the trade-off between margin maximization and training error minimization. In the S-SVM, the margin is scaled with a loss $\Delta(y^n, y)$, which is the difference measure between prediction y and ground-truth label y^n of the nth image. The S-SVM offers good generalization ability as well as the flexibility to choose any loss function [14].
Algorithm 2 Cutting Plane Algorithm for S-SVM

Choose: w_0, C, R, ϵ

$S_n \leftarrow \emptyset, \forall n, \quad w \leftarrow w_0, \quad \xi \leftarrow 0$

repeat

for $n = 1, ... , N$ do

Perform the loss-augmented inference by LP relaxation:

$$\hat{y}^n = \arg\max_{y \in Z(H^G)} \left((w, \Phi(x^n, y)) + \Delta(y^n, y) \right)$$

if $-(w, \delta \Phi(x^n, \hat{y}^n)) + \Delta(y^n, \hat{y}^n) > \xi_n + \epsilon$ then

$S_n \leftarrow S_n \cup \{\hat{y}^n\}$

end if

end for

Solve the restricted problem of (22) on the current set of constraints:

$$(w^*, \xi^*) = \arg\min_{w', \xi'} \frac{1}{2} \|w'\|^2 + C \sum_{n=1}^{N} \xi'_n$$

s.t. $$(w', \delta \Phi(x^n, y)) \geq \Delta(y^n, y) - \xi'_n, \forall n, y \in S_n,$$

$$\xi'_n \geq 0, \forall n$$

Update: $w \leftarrow w^*, \xi \leftarrow \xi^*$

until no S_n has changed

4.2 Cutting Plane Algorithm

The exponentially large number of margin constraints and the intractability of the loss-augmented inference problem make it difficult to solve the constrained optimization problem of (22). Therefore, we apply the cutting plane algorithm [14] to approximately solve the constrained optimization problem. The cutting plane algorithm is summarized in Algorithm 2. In each iteration, the most violated constraint for each training sample is approximately found by performing the loss-augmented inference using the LP relaxation. The computational cost for inference can be greatly reduced when a decomposable loss such as the Hamming loss is used. When a loss function can be decomposed in the same manner as the joint feature map, it can be added to each edge score in the inference. It can then be checked whether the constraint found tightens the feasible set of (22) or not, and when it does, then the parameter vector w and ξ are updated by solving the restricted problem of (22) on the current set of active constraints that includes it. The theoretical convergence and robustness of the cutting plane algorithm was studied by Tsochantaridis et al. [14]. The LP relaxations for loss-augmented inferencing can be performed by the LP relaxation which is used in the original inference.

The most popular loss function that is non-negative and decomposable is the Hamming loss which is equivalent to the number of mismatches between y^n and y at the edge level in this CC. In the proposed CC for image segmentation, however, the number of edges which are labeled as 1 is considerably higher than that of edges which are labeled as 0. This imbalance leads to the clustering of the whole image as one segment when we use the Hamming loss in the S-SVM. Therefore, we use the following modified Hamming loss function:

$$\Delta(y^n, y) = \sum_{e \in E} \Delta_e(y^n_e, y_e)$$

$$= \sum_{y_p \in E_p} (R_p y^n_p + y_{e_p} - (R_p + 1) y^n_{e_p} y_{e_p})$$

$$+ D_n \sum_{e_h \in E_h} (R_h y^n_{e_h} + y_{e_h} - (R_h + 1) y^n_{e_h} y_{e_h}),$$

where D_n is the relative weight of the loss at higher-order edge level to that of the loss at pairwise edge level. In addition, R_p and R_h control the relative importance between the incorrect merging of the superpixels and the incorrect separation of the superpixels by imposing different weights to the false negative and the false positive, as shown in Table 2. Here, we set $D_n = \frac{1}{\sum_{e} n_{e}},$ and both R_p and R_h are set to be less than 1 to overcome the unbalanced problem mentioned above.

5 Experiments

To evaluate segmentations obtained by various algorithms against the ground-truth segmentation, we conducted image segmentations on three benchmark datasets: Stanford background dataset [2] (SBD), Berkeley segmentation dataset (BSDS) [42], and MSRC dataset [43]. For image segmentation based on CC, we initially obtain baseline superpixels (438 superpixels per image on average) by the gPb contour detector and the oriented watershed transform [32] and then construct a hypergraph. The function parameters are initially set to zero, and then based on the S-SVM, the structured output learning is used to estimate the parameter vectors. Note that the relaxed solutions in loss-augmented inference are used during training, while in testing, our simple rounding method is used.

<table>
<thead>
<tr>
<th>y^n_c</th>
<th>0</th>
<th>1</th>
<th>0</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>y_c</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>Δ_e</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>k</td>
</tr>
</tbody>
</table>
to produce valid segmentation results. Rounding is only necessary when the LP relaxation fails to be exact, that is, when fractional solutions from LP-relaxed CC are obtained.

We compared the proposed HO-CC to the following three unsupervised and three supervised image segmentation algorithms:

- Mean-shift: Comaniciu and Meer [10] devised a mode-seeking algorithm to locate points of locally-maximal density in a feature space.
- Multiscale NCut: Cour et al. [44] devised a multiscale spectral image segmentation algorithm by decomposing an image partitioning graph into different scales in the normalized cut framework.
- gPb-owt-ucm: The oriented watershed transform - ultrametric contour map algorithm [32] produces hierarchical regions of superpixels obtained by using the gPb contour detector.
- gPb-Hoiem: Hoiem et al. [4] grouped superpixels based on pairwise same-label likelihoods. The superpixels were obtained by the gPb contour detector, and the pairwise same-label likelihoods estimated by a boosted decision tree were independently learnt from the training data where the same 321-dimensional pairwise feature vector was used as an input to the boosted decision tree.
- Supervised NCut: A supervised learning algorithm for parameter estimation under the normalized cut framework is applied. For this, the affinity matrix on the same pairwise superpixel graph is defined as

\[A_{jk} = \begin{cases} \min(1, \exp(-\langle w, \phi_{jk} \rangle)), & \text{if } (j, k) \in \mathcal{E}, \\ 0, & \text{otherwise}, \end{cases} \]

where the same 321-dimensional pairwise feature vector \(\phi_{jk} \) was used. Afterwards, the standard pairwise affinity learning with the square-square loss function and the gradient descent algorithm [45] is used for supervised training.
- PW-CC: The PW-CC is described in Section 2. A pairwise superpixel graph is obtained with the same 321-dimensional pairwise feature vector.

Note that we used the codes publicly released by the authors for Mean-shift, (multiscale) NCut, gPb-owt-ucm, and gPb-hoiem. Specifically, when we performed the image segmentation algorithms such as the gPb-hoiem and supervised NCut, we modified each code to use the same pairwise feature vector as for our method.

We consider four performance measures: probabilistic Rand index (PRI) [46], segmentation covering (SCO) [32], variation of information (VOI) [47], and boundary displacement error (BDE) [48]. When the predicted segmentation is close to the ground-truth segmentation, the PRI and SCO increases while the VOI and BDE decreases.

An implementation of the HO-CC is available at http://slsp.kaist.ac.kr/xe/?mid=software.

5.1 Stanford Background Dataset

The SBD consists of 715 outdoor images with corresponding pixel-wise annotations such that each pixel is labeled with either one of 7 background classes or a generic foreground class. From the given pixel-wise ground-truth annotations, we obtain a ground-truth segmentation for each image. We employed 5-fold cross-validation with the dataset randomly split into 572 training images and 143 test images for each fold.

Figure 4 shows the four measures obtained from segmentation results according to the average number of regions. Note that the performance varies with different numbers of regions, and for this reason, we designed each algorithm to produce multiple segmentations (20 to 40 regions). Specifically, multiple segmentations in the proposed algorithm were obtained by varying \(R_p (0.01 \sim 0.15) \) and \(R_h (0.4 \sim 0.6) \) in the loss function during training. When \(R_h \) is fixed, as \(R_p \) increases, the number of segmented regions of a test image tends to decrease, since the false negative error is penalized more compared to the false positive error. The same observation is also verified when \(R_p \) is fixed and \(R_h \) increases. Irrespective of the measure, the proposed HO-CC performed better than other algorithms including the PW-CC.

Figure 5 shows some examples of segmentations. The proposed HO-CC yielded the best segmentation results. Incorrectly predicted segments by the PW-CC were reduced in the segmentation results obtained by the HO-CC owing to the higher-order relations in broad regions. The gPb-Hoiem and the supervised NCut treat each edge as an independent pairwise instance during training, therefore, the segmentation results are not stable (producing inconsistent local regions) even though it uses the same pairwise features.

Regarding the runtime of our algorithm, we observed that for test-time inference it took on average around 15 seconds (graph construction and feature extraction: 14s, LP: 1s) per image on a 2.67GHz processor, whereas the overall training took 20 hours on the training set. In terms of the LP runtime, HO-CC took about four times more time than PW-CC on average.

The performance improvement is obtained from both higher-order features and higher-order constraints. Segmentation results obtained by HO-CC without higher-order features were observed to be very similar to those obtained by PW-CC: without higher-order features, higher-order constraints did not tighten the relaxation for PW-CC. However, as shown in Figure 6, we observed that the performance gap between the HO-CC with the full higher-order feature vector (160-dim) and the HO-CC with the simple higher-order feature vector (45-dim, variances only) was smaller than that between the HO-CC with the simple higher-order feature vector and the PW-CC.

In order to confirm improvements obtained by HO-
CC are statistically significant, we performed statistical hypothesis tests for each performance measure. The Friedman test [49], [50] was used to evaluate the null-hypothesis that all the algorithms perform equally well. Table 3 shows the obtained average ranks. Under the null-hypothesis, all average ranks should be equal. However, as shown in Table 3, the ranks are different, and the null-hypothesis is rejected for all the four measures. This is also verified by the obtained p-values which are numerically equal to zeros for all the four measures. Furthermore, we performed a post-hoc test, called Nemenyi test [50], [51] for pairwise comparison of algorithms, testing for the null-hypothesis of pairwise equal performance. The Nemenyi test is based on the difference of the average performance ranks achieved by the algorithms; if the difference between two ranks exceeds a critical value, the null-hypothesis is refuted. As a result, at the level $\alpha = 0.05$, with the PRI and BDE measures, the HO-CC is statistically significantly superior to all other algorithms except PW-CC, with the VOI measures, the HO-CC is statistically significantly superior to all other algorithms except Mean-shift, and with the SCO measures, the HO-CC is statistically significantly superior to all other algorithms.
Fig. 6. Obtained evaluation measures from segmentation results according to the different set of features on the SBD.

Table 3: Average ranks by Friedman test on the SBD.

<table>
<thead>
<tr>
<th></th>
<th>Mean-shift</th>
<th>Multi-NCut</th>
<th>gPb-owt-ucm</th>
<th>gPb-Hoiem</th>
<th>Supervised-NCut</th>
<th>PW-CC</th>
<th>HO-CC</th>
</tr>
</thead>
<tbody>
<tr>
<td>PRI</td>
<td>5.0168</td>
<td>5.0971</td>
<td>2.1524</td>
<td>4.6923</td>
<td>5.5692</td>
<td>2.8797</td>
<td>2.5944</td>
</tr>
<tr>
<td>SCO</td>
<td>2.0524</td>
<td>2.1850</td>
<td>2.8587</td>
<td>3.1203</td>
<td>5.0895</td>
<td>4.9133</td>
<td>5.4350</td>
</tr>
<tr>
<td>VOI</td>
<td>2.0528</td>
<td>2.1850</td>
<td>2.8587</td>
<td>3.1203</td>
<td>5.0895</td>
<td>4.9133</td>
<td>5.4350</td>
</tr>
<tr>
<td>BDE</td>
<td>2.0528</td>
<td>2.1850</td>
<td>2.8587</td>
<td>3.1203</td>
<td>5.0895</td>
<td>4.9133</td>
<td>5.4350</td>
</tr>
</tbody>
</table>

Fig. 7. Examples of partitionings by multiple human subjects and single probabilistic (real-valued) ground-truth partitioning.

5.2 Berkeley Segmentation Dataset

The BSDS300 contains 300 natural images split into the 200 training images and 100 test images. Since each image is segmented by multiple human subjects, we defined a single probabilistic (real-valued) ground-truth segmentation of each image for training in the proposed HO-CC (see Figure 7). The gPb-Hoiem and the supervised NCut used a different ground-truth for training on the BSDS: declare two superpixels to lie in the same segment only if all human subjects declare them to lie in the same segment.

Table 4 and Figure 8 shows the obtained results at a universal fixed scale (ODS) in terms of various performance measures including the boundary F-measure and the boundary precision-recall curve. Note that for each algorithm, the same parameters which produce the best F-measure were used for all other performance measures in evaluating algorithms.

For example, the level-threshold of 0.12 for gPb-owt-ucm, \(R_p \), of 0.15 for the PW-CC, and \((R_p, R_h) \) of (0.01,0.1) for the HO-CC were used for producing segmentation results at ODS listed in Table 4, since these values gave the best results with regards to the F-measure. Irrespective of the measure, the proposed HO-CC gave the best results, which are similar or even better than the best results ever reported on the BSDS300 [32], [52], [53].

We changed the level-threshold for the gPb-owt-ucm and \(R_p \) and \(R_h \) for the PW-CC and HO-CC to produce different numbers of regions per image, on average, and observed that the HO-CC always performed better than the PW-CC and the gPb-owt-ucm (see Figure 9), as on the SBD. Improvement of 1% in PRI, 1.5% in SCO, 0.1 in VOI, and 1 pixel in BDE on the BSDS test set is comparable to the improvements reported in [32], [52] (1% in PRI, 2% in SCO, 0.05 in VOI, and 1 pixel in BDE). We observed that in comparison to the PW-CC, by the proposed HO-CC, 78 segmentation results were improved, 9 results did not change, and the rest 13 results got worse on the
Fig. 8. Boundary precision-recall curve on the BSDS300 test set.

Fig. 9. Obtained evaluation measures from segmentation results of gPb-owt-ucm, PW-CC, and HO-CC on the BSDS300 test set according to the average number of regions.

We also performed experiments on the BSDS500 dataset and obtained the results at ODS. As shown in Table 5 and Figure 10, the HO-CC performed the best on the BSDS500.

We increased the number of layers from two to three by splitting the original higher-order layer into two layers according to the edge-strengths obtained from the gPb-owt, then assigned different parameter vectors to each layer. The obtained performance is shown in Table 6. The performance of the hypergraph which has the three layers (HO-CC-Layer3) was a little improved in comparison to that of the hypergraph which has the two layers (HO-CC-Layer2). This small improvement is due to a small number of hyperedges associated with the third layer.

The performances obtained by HO-CC might be influenced by candidate regions for defining higher-order edges. Therefore, we used a different superpixel-grouping method - category independent object proposals (CIOP) [54]. As shown in the Table 7, the hypergraphs based on the gPb-owt performed a little better than that based on the gPb-CIOP, but the gap is not critical.

Figure 11 shows some example segmentations on BSDS test images obtained by various segmentation algorithms. The proposed HO-CC yielded the best segmentation results.

5.3 MSRC Dataset

The MSRC dataset is composed of 591 natural images. We split the data into 45% training, 10% validation, and 45% test sets, following [43]. We used the ground-truth object instance labeling of [55], which does not contain void regions and is more precise than the original ground-truth, for both training and testing (including the performance evaluation) on the MSRC. On average, all partitioning algorithms were set to produce approximately 15 disjoint regions per image on the MSRC dataset. Regarding the performances according to the number of regions, we observed the same tendency on the MSRC dataset as on the

TABLE 5
Quantitative results on the BSDS500 test set.

<table>
<thead>
<tr>
<th></th>
<th>PRI</th>
<th>SCO</th>
<th>VOI</th>
<th>BDE</th>
<th>E</th>
</tr>
</thead>
<tbody>
<tr>
<td>gPb-owt-ucm</td>
<td>0.825</td>
<td>0.579</td>
<td>1.971</td>
<td>9.995</td>
<td>0.726</td>
</tr>
<tr>
<td>PW-CC</td>
<td>0.826</td>
<td>0.589</td>
<td>1.859</td>
<td>9.812</td>
<td>0.728</td>
</tr>
<tr>
<td>HO-CC</td>
<td>0.828</td>
<td>0.595</td>
<td>1.791</td>
<td>9.770</td>
<td>0.730</td>
</tr>
</tbody>
</table>

Fig. 10. Boundary precision-recall curve on the BSDS500 test set.

which has the two layers (HO-CC-Layer2). This small improvement is due to a small number of hyperedges associated with the third layer.

The performances obtained by HO-CC might be influenced by candidate regions for defining higher-order edges. Therefore, we used a different superpixel-grouping method – category independent object proposals (CIOP) [54]. As shown in the Table 7, the hypergraphs based on the gPb-owt performed a little better than that based on the gPb-CIOP, but the gap is not critical.

Figure 11 shows some example segmentations on BSDS test images obtained by various segmentation algorithms. The proposed HO-CC yielded the best segmentation results.

5.3 MSRC Dataset

The MSRC dataset is composed of 591 natural images. We split the data into 45% training, 10% validation, and 45% test sets, following [43]. We used the ground-truth object instance labeling of [55], which does not contain void regions and is more precise than the original ground-truth, for both training and testing (including the performance evaluation) on the MSRC. On average, all partitioning algorithms were set to produce approximately 15 disjoint regions per image on the MSRC dataset. Regarding the performances according to the number of regions, we observed the same tendency on the MSRC dataset as on the
Table 6 shows the quantitative results on the BSDS500 test set according to the number of layers.

<table>
<thead>
<tr>
<th>BSDS500 test set</th>
<th>PRI</th>
<th>SCO</th>
<th>VOI</th>
<th>BDE</th>
<th>F</th>
</tr>
</thead>
<tbody>
<tr>
<td>HO-CC-Layer2</td>
<td>0.828</td>
<td>0.595</td>
<td>1.791</td>
<td>9.770</td>
<td>0.730</td>
</tr>
<tr>
<td>HO-CC-Layer3</td>
<td>0.829</td>
<td>0.599</td>
<td>1.786</td>
<td>9.764</td>
<td>0.730</td>
</tr>
</tbody>
</table>

Table 7 shows the quantitative results on the BSDS500 test set according to different superpixel-groupings for hypergraph construction.

<table>
<thead>
<tr>
<th>BSDS500 test set</th>
<th>PRI</th>
<th>SCO</th>
<th>VOI</th>
<th>BDE</th>
<th>F</th>
</tr>
</thead>
<tbody>
<tr>
<td>HO-CC-gPb-owt</td>
<td>0.828</td>
<td>0.595</td>
<td>1.791</td>
<td>9.770</td>
<td>0.730</td>
</tr>
<tr>
<td>HO-CC-gPb-CIOP</td>
<td>0.826</td>
<td>0.592</td>
<td>1.801</td>
<td>9.797</td>
<td>0.728</td>
</tr>
</tbody>
</table>

Fig. 11. Results of image segmentation on the BSDS test set.

Table 8 shows the quantitative results on the MSRC test set.

<table>
<thead>
<tr>
<th>MSRC test set</th>
<th>PRI</th>
<th>SCO</th>
<th>VOI</th>
<th>BDE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mean-shift</td>
<td>0.734</td>
<td>0.606</td>
<td>1.649</td>
<td>13.944</td>
</tr>
<tr>
<td>Multi-NCut</td>
<td>0.628</td>
<td>0.341</td>
<td>2.765</td>
<td>11.941</td>
</tr>
<tr>
<td>gPb-owt-ucm</td>
<td>0.779</td>
<td>0.628</td>
<td>1.675</td>
<td>9.800</td>
</tr>
<tr>
<td>gPb-Hoiem</td>
<td>0.614</td>
<td>0.353</td>
<td>2.847</td>
<td>13.533</td>
</tr>
<tr>
<td>Supervised-NCut</td>
<td>0.601</td>
<td>0.287</td>
<td>3.101</td>
<td>13.498</td>
</tr>
<tr>
<td>PW-CC</td>
<td>0.773</td>
<td>0.632</td>
<td>1.648</td>
<td>9.194</td>
</tr>
<tr>
<td>HO-CC</td>
<td>0.784</td>
<td>0.648</td>
<td>1.594</td>
<td>9.040</td>
</tr>
</tbody>
</table>

6 Conclusion

This paper proposed the HO-CC over a hypergraph to merge superpixels into homogeneous regions. The LP relaxation was used to approximately solve the inference problem over a hypergraph where a rich feature vector was defined based on several visual cues involving higher-order relations among superpixels. The S-SVM was used for supervised training of parameters in CC, and the cutting plane algorithm with LP-relaxed inference was applied to solve the optimization problem of S-SVM. Experimental results showed that the proposed HO-CC outperformed other image segmentation algorithms on various datasets. The proposed framework is applicable to a variety of other tasks.
REFERENCES

