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ABSTRACT

We present Kinectrack, a new six degree-of-freedom (6-DoF)
tracker which allows real-time and low-cost pose estimation using
only commodity hardware. We decouple the dot pattern emitter and
IR camera of the Kinect. Keeping the camera fixed and moving the
IR emitter in the environment, we recover the 6-DoF pose of the
emitter by matching the observed dot pattern in the field-of-view
of the camera to a pre-captured reference image. We propose a
novel matching technique to obtain dot pattern correspondences ef-
ficiently in wide- and adaptive-baseline scenarios. We also propose
an auto-calibration method to obtain the camera intrinsics and dot
pattern reference image. The performance of Kinectrack is evalu-
ated and the rotational and translational accuracy of the system is
measured relative to ground truth for both planar and multi-planar
scene geometry. Our system can simultaneously recover the 6-DoF
pose of the device and also recover piecewise planar 3D scene struc-
ture, and can be used as a low-cost method for tracking a device
without any on-board computation, with small size and only simple
electronics.

1 INTRODUCTION

6-DoF trackers are the backbone of augmented reality (AR), bridg-
ing the gap between real and virtual coordinate frames. A tremen-
dous variety of approaches exist: some use hardware such as inertial
measurement units, others are computer vision based. Some com-
puter vision approaches “look in” on the object to be tracked whilst
others “look out” to infer the object’s pose from observations of its
surroundings [6, 10, 21]. Each approach has its own strengths and
limitations in terms of cost, accuracy, robustness, form factor and
on-device power consumption. In this paper we present a low-cost
solution using only commodity hardware that provides accurate and
robust real-time tracking with minimal hardware on the object to
be tracked. Like “look in” methods, the tracking device requires no
on-board computation or communication with the host; like “look
out” methods, it offers high rotational accuracy.

Figure 1 illustrates the essential components of our system. An
infrared (IR) dot-pattern emitter, specifically the laser diffractive
optical element (DOE) from a Kinect, casts a large number of
pseudo-randomly arranged rays into an arbitrary 3D scene, and
these rays are observed by an IR camera. Knowing the dot pattern
(the reference) allows the rotation and translation of the emitter to
be determined relative to the camera, even without knowing the 3D
geometry of the scene, and even if that geometry is changing over
time.

Our system is designed to be a cheaper alternative to fixed cam-
era 6-DoF trackers (such as the Vicon motion capture system). The
system is orders of magnitude lower cost than commercially avail-
able systems, can work with a single camera (although it scales to
larger camera setups) and requires only a cheap and small form-
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Figure 1: Tracking setup. (Left) A fixed camera, and free moving
laser-pattern emitter provides the benefits of “look out” tracking, but
the moving device is very simple—a laser, optics, and battery—and
can be considerably smaller than “look in” remotes. (Right) The laser
and optics of the remote unit. In practice, an infrared laser would be
used; a visible-light unit is used here purely for illustration.

factor emitter on each tracked object. Our contributions in this pa-
per are twofold:

• A new 6-DoF tracking system for AR called Kinectrack, with
advantages over existing systems as outlined above.

• A general-purpose matching algorithm for projected dot pat-
terns: a form of “variable baseline” matching for dot projec-
tion systems.

2 BACKGROUND

There has been a great deal of research that has explored 3D pose
estimation of handheld devices for a variety of interactive scenar-
ios including AR. Here we focus on vision-based trackers as most
other technologies (e.g. inertial [29]) can be combined somewhat
orthogonally with vision.

Perhaps some of the best known tracking techniques, exempli-
fied by the commercial Vicon [25] and OptiTrack [17] systems,
have used multiple fixed IR cameras and active diffuse IR illumi-
nation of the scene to localize retro-reflective markers placed on
objects. These markers show up as a bright signal in the 2D IR
camera images, and their 3D position can be derived through tri-
angulation. Positioning multiple markers on an object enables 3D
rotation to be computed. Whilst highly accurate in 3D translation,
these systems are costly and require effort to set up and calibrate the
infrastructure. To achieve high rotation accuracy for AR applica-
tions, the markers on the roaming unit need to be spaced sufficiently
far apart, which can considerably increase the physical size of the
roaming unit. Williams and Fitzgibbon [27] address this problem
using a hologram to provide a large change in appearance for a
small change in orientation, inspiring our current work.

The reverse of the “look in” setup is to keep the marker fixed
in space and instead move a single camera to recover 6-DoF pose.
These marker-based technologies [9, 7, 24, 23] have been adopted
in a variety of AR applications, and can now even be supported
on mobile phones. A variety of marker designs have been investi-
gated including pseudo-random dot patterns [24]. However, these
systems suffer from the need for careful placement of the marker



before use, line-of-sight and occlusion issues, inaccuracies in track-
ing, and sensitivities to lighting. Systems have explored the use of
projecting multiple fixed IR markers [4, 28] to resolve some of the
issues of lighting and occlusions, the converse of our arrangement.

Removing the need for markers altogether, simultaneous local-
ization and mapping (SLAM) systems [6, 10] obtain pose from
markers naturally occurring in the scene, and, for applications in-
volving video overlays, can use just one camera. Both SLAM and
our method require a form of infrastructure: the scene. SLAM
imposes the additional constraint that the scene is sufficiently tex-
tured. Our method only requires that the scene provide quasi-planar
patches for matching and therefore also works for scenes dominated
by textureless surfaces. SLAM is suitable for free AR as the sensing
hardware moves with the user. Our method requires a fixed camera,
which dictates the working volume, but in return offers drift-free,
absolute 6-DoF pose per frame, even when the scene geometry is
changing over time. Camera placement is flexible and setup is fast.

Several systems have been proposed which track laser pointers
as interaction devices. In many instances, these are essentially 2-
DoF trackers [3, 5, 1]. Higher degrees of freedom have been ex-
plored including roll [20] and the 3-DoF of a 1D projective trans-
form [14]. Closely related to our work are 6-DoF trackers based on
ray projectors. The “Sceptre” system of Wienss et al. [26] projects
a 7-point pattern shaped like an “F”. Our system differs in that the
projected pattern has a much wider footprint, and we can match a
small subset of the pattern while obtaining accurate pose. Using
a wide-angle projector beam and requiring only a small fragment
of the project pattern to be in view at each frame permits a much
greater range of emitter poses and provides tolerance to occlusion,
non-planar scenes, and varying surface albedo. A multiple cam-
era implementation would provide full 360◦ pose if required. The
matching problem with the 7-point system is simpler than ours, so
allows matching of multiple overlapping patterns, which we have
not demonstrated. Latoschik and Bomberg [13] describe a system
which projects a regular grid onto a planar surface. Although this
gives some improved accuracy, it still requires that the central ray
of the grid is visible in every frame, making it intolerant to chang-
ing albedo or occlusion. Albitar et al. [2] propose a pattern design
to facilitate matching by a structured light coding approach. Our
matching method works with any pseudo-random dot pattern.

2.1 Wide-baseline dot pattern matching

The key to our approach is essentially the problem of establish-
ing correspondence between two views of a large set of pseudo-
randomly arranged 3D points. In the case where the correspon-
dence is induced by a simple transformation such as a similarity
transformation or homography, researchers have previously devised
hashing schemes for point-pattern lookup.

Kolomenkin et al. [11] address the “lost in space” problem of
matching an astronomical image into a reference star chart in order
to recover the attitude of a spacecraft using a camera mounted on
the spacecraft. The camera image in this case is related to the refer-
ence by a similarity transform, with unknown two-dimensional ro-
tation, translation and scale. The proposed solution uses a geomet-
ric hashing approach with two stars used to form a canonical frame
and the positions of a further two stars within this space providing
a hash code. Lang et al. [12] solve for a similarity transform for
earth-based cameras by computing invariants of four-point “quads”
of points. As they require only a similarity invariant, they generate
a four-valued vector for each quad, and index the vectors in a k-D
tree, enabling precise lookup. Nakai et al. [16] use affine invari-
ants of subsets of the nearest-neighbour graph to match document
images in a large database. They look at the n nearest neighbours
of each point, and compute invariants for each subset of size m to
provide robustness to missing points.

Our work is very much inspired by these techniques, but we

Figure 2: The matching process. A dense dot pattern projected onto
a planar surface in the scene (left) is viewed through an IR filter (mid-
dle) and matched into the stored reference pattern (right). Corre-
spondences from one or more planes allow the position of the roving
emitter to be computed.

require our matching to work under more severe perspective dis-
tortions, in scenes where there may not be large planar areas, and
rather than having a homography or other simple relation between
the scenes, we must depend on the somewhat weaker constraints
supplied by the essential matrix [8].

The image of a projected dot pattern on a plane in the scene is
related to the emitter’s reference pattern by a full projective trans-
formation. Four points are therefore required to define a canon-
ical frame that is invariant to plane orientation and emitter pose.
Additional points are then required for hashing in the canonical
frame. Each additional point required increases the likelihood that
the hashing scheme will fail due to missing points resulting from
detection failure. As the above works observe, there is a trade-off
between hash code uniqueness and robustness to missing points.

We propose a technique inspired by this hashing approach that
makes best use of all available points whilst remaining robust to
missing data. In our method a voting scheme operates on the canon-
ical frame which correctly models the effect of noise on both the
points used to define the canonical frame and the points used for
hashing. Figure 2 illustrates the matching problem we are solv-
ing. Here parts of the pattern projected by the handheld IR emitter
are observed by the camera. The goal is to match this observed
sequence with a the larger stored reference pattern.

3 DESCRIPTION

We now describe our matching and pose estimation algorithm. The
system comprises two important components: a calibration phase,
and a runtime phase.
The calibration phase computes the following:

• Intrinsic parameters of the fixed camera;

• Precise layout of the ray bundle in the emitter, called the ref-
erence pattern;

• A 2D lookup table (LUT) indexing 5-point subsets of the
emitter points (called kites) by their projective invariants (2
scalars per kite).

The runtime phase operates on each captured frame, and proceeds
as follows:

1. Detect points (subpixel centres of imaged dots);

2. Group points into kites;

3. Compute invariants for kites, index into the LUT, vote for cor-
respondences;

4. Identify correct correspondences by RANSAC for the Essen-
tial matrix E;

5. Extract rotation and translation from E.

6. Compute “gold-standard” pose from inliers.



Figure 3: The core matching unit: a quad is generated from every pair of adjacent triangles, and the quad is paired with each of its neighbours
to make kites. Kites have a perspective-invariant signature when transformed into the canonical frame in which the quad is the unit square. The
signature is made robust to noise by jittering the reference points when building the lookup table, and to missed detections by using a voting
scheme. The rightmost pair of images show an example of points extracted from a real image being mapped with noise into the canonical frame.

We will describe the run-time phase in detail, then the calibration
phase, but to begin we shall introduce some notation. Let the ref-
erence pattern, which is projected from the roaming emitter, be de-
noted by the set of 2D points

R = {r1, . . . ,rN}. (1)

At runtime, dots in an input image I are detected, giving the test set

P = {p1, . . . ,pM} (2)

The goal of our matching procedure is to efficiently compute the
correspondences {(mk,nk)}K

k=1 between P and R, indicating the
correspondence

pmk ↔ rnk (3)

Given these correspondences, the transformation between the pat-
tern emitter and camera can be recovered by estimating the essential
matrix E, which, for noiseless points would satisfy

p>mk
Ernk = 0 ∀k = 1..K. (4)

For noisy points, a two-view bundle adjustment is computationally
cheap, and yields a high-quality position estimate.

4 FINDING CORRESPONDENCES

The core of our system is the rapid identification of correspond-
ing points between the reference and detected dot patterns. We
require a method which can deal with perspective transformation,
missing dots, and positional error in the dot detection. This section
describes the process, first at a high level, and then in detail.

It is clear that if each dot were accompanied by some unique
identifier, such as a barcode or distinctive colour, correspondence
would be trivial. Existing techniques to implement such coding, for
example temporal coding or spectral modulation, would consider-
ably increase the complexity and cost of the emitter, and introduce
additional restrictions on speed of motion or scene colour. Further-
more no such techniques can reliably distinguish the several thou-
sands of dots that we project (to distinguish 4096 dots with a tem-
poral code would require a 12-frame coding window). Conversely,
if available, such techniques can be used in tandem with our pro-
cess to reduce ambiguity, for example in the presence of multiple
emitters.

As an individual dot has no distinguishing characteristics, we
group dots into small spatial groups—we chose to use 5-point
groups, which we call “kites”. A planar five-point group yields two
real-valued perspective invariants, which are quantized and used as
indices into a 2D lookup table to generate putative correspondences.
Each input frame provides a large number of groups, even on scenes
without many large planes, and after a number of pruning and ver-
ification stages, reliable correspondences are obtained, from which
a RANSAC estimation of E provides accurate pose. These stages

0◦ 30◦ 60◦ 80◦
(100%) (95.1%) (80.2%) (54.6%)

Figure 4: Stability of Delaunay triangulation. Triangulation was ap-
plied to a synthetic planar scene following a transformation (horizon-
tal scaling) to simulate a change in viewing angle of 0◦ (frontal view),
30◦, 60◦ and 80◦. The views were then stretched back for comparison
with the frontal view. Retained edges are shown in green, changed
edges in red. Percentages in brackets show a large proportion of
edges are retained up to 60◦ and even at 80◦ correct quads remain.

are now described in more detail. In some cases, the description is
in terms of functions from the OpenCV library [19], in order to be
precise about the computations involved.

4.1 Dot detection
Dot detection is achieved by contrast normalization followed by a
level-set based connected components algorithm. Contrast is nor-
malized by subtracting the mean in a 15× 15 patch at every pixel.
The zero level sets of this image are analyzed to identify closed
curves, which are filtered for appropriate size and aspect ratio. The
centres of mass of the remaining curves are used as point centres.

4.2 Generating quads and kites
For reliable tracking, we must extract kites from an arbitrary dot
pattern such that the same kites are recovered under the nuisances
described above. Delaunay triangulation is invariant to similarity
transformations, and not to perspective, so at first glance appears a
poor choice as a basis for a projectively invariant grouping primi-
tive. However, as illustrated in figure 4, and as verified in our imple-
mentation, the Delaunay triangles are surprisingly stable even when
the baseline between reference and test is quite severe. Thus we
identify four-point groups which we call quads simply by group-
ing the points in every pair of adjacent Delaunay triangles. Then
five-point groups are generated by enumerating all the points con-
nected to a given quad point by one Delaunay edge (see figure 3).
We call these neighbouring points “tail points”. Notice that there
are essentially two types of tail points: those connected to the quad
by two edges (i.e. on adjacent triangles), and those connected by
just one edge. Empirically we have found that the looser definition
(i.e. including both types) provides more reliable correspondences
overall.



4.3 Invariants of kites
A kite is represented by the points {q1,q2,q3,q4,q5} where q1..4
are the quad points, and q5 is the tail point. To compute the two
scalar invariants of the group, we determine the homography map-
ping the quad to the unit square, and apply that homography to q5,
yielding q′5. Then the group invariants are simply the (x,y) coordi-
nates of q′5. In terms of OpenCV functions, we compute

Function kiteInvariant({q1..5})

1 U = {[00], [01], [11], [10]};
2 H = getPerspectiveTransform({q1,q2,q3,q4},U);
3 q′5 = perspectiveTransform(q5,H);
4 return q′5;

It will be noticed that this calculation assumes that the order in
which the quad vertices were listed is always the same, when in
fact there is a fourfold symmetry. There are a number of strategies
to overcome this. The simplest is to try all four rotations, and gen-
erate invariants for each. This will increase the overall number of
correspondences by a factor of four, but will in general increase the
number of correct correspondences, improving the RANSAC esti-
mate, especially at highly oblique angles. This oversampling can
be done at runtime or at calibration time, when the lookup table is
built. Doing so at runtime increases the cost of this phase, but re-
duces ambiguity, whereas entering all four hypotheses into the LUT
is effective only if the LUT is sparse. As we have just 2D invariants,
and we must allow for noise on the values, the runtime approach is
preferred.

4.4 Correspondence voting
At this stage of runtime, the M test points are represented by a set of
quads, with each quad further generating a set of kites. At calibra-
tion time, the reference points have also been divided into quads and
kites, so finding correspondences between the point sets is equiva-
lent to finding correspondences between the quads. The LUT built
at calibration time is a 2D array where each cell maps from a 2D
kite invariant to a histogram of quad indices, stored as a list of (ref-
erence quad, weight) pairs, where weight represents the number of
times the reference quad was added to that cell at training time. We
defer the description of the LUT’s construction to section 5.2, and
describe here only how it is used.

Algorithm 1: Putative correspondence generation (runtime)

1 Initialize Correspondences = {};
2 foreach Q in test quads do
3 Initialize Votes[Q′] = 0 ∀Q′ in reference quads;
4 foreach one-connected neighbour q5 of Q do
5 q′5 = kiteInvariant(Q∪{q5});
6 foreach pair (Q′,w) in LUT[Quantize(q′5)] do
7 Votes[Q′]+=w;

8 Q′ = argmaxqVotes[q];
9 H =getPerspectiveTransform(Q,Q′);

10 I = inlier (test, reference) correspondences to H;
11 if |I|> 50 then
12 Correspondences = Correspondences ∪ I;

Algorithm 1 describes the process that generates the list of puta-
tive correspondences. Each quad accumulates votes from its kites
to generate a most likely corresponding quad in the reference im-
age. From this quad correspondence, a homography is computed,

Figure 5: The emitter reference pattern. The calibration method re-
covers the emitter reference pattern from multiple views by a two-
stage bundle adjustment process.

and then region growing on the points generates a list of point cor-
respondences. If this list is sufficiently large (typically we require
50 correspondences), the correspondences are added to the global
putative correspondence list.

4.5 From correspondences to pose
In order to estimate the emitter pose relative to the camera (up to
scale) for an unknown scene, we first estimate the essential matrix
from the point correspondences using a RANSAC scheme and Nis-
ter’s 5-point pose algorithm [18]. If the scene is planar (assumed
known at calibration time), we instead estimate a homography, and
compute the pose, although it is recommended that at least 2 planes
are visible. In the case of a static scene, it is possible to coarsely
identify at calibration time which regions in the (static) camera’s
field of view are planar, so the RANSAC objective can be modified
to ensure that representatives from all planes are included.

The RANSAC estimate of the emitter pose is used to initialise a
bundle adjustment (or “gold standard” estimator [8]) for the emitter
pose and scene structure relative to a world coordinate frame cen-
tred on the camera. For two views, this is quite cheap, but the cost
can be reduced further by running on only a subset of the corre-
spondences. It remains worthwhile in terms of accuracy to include
this step even when only a small number of correspondences are
included.

5 CALIBRATION

The calibration of our tracker occurs in two stages. The first stage
determines the camera intrinsics, the emitter reference pattern and
the lookup table used to index into the emitter reference. This phase
is required when a device (camera or emitter) is first introduced.
A second stage determines the camera pose relative to the scene,
and optionally the positions of coarse planar regions in the camera
field of view that will be static during tracking. In practice, both
calibration stages are done simultaneously using a procedure akin
to bundle adjustment, but it is worth emphasizing that the amount
of extra work required to update the calibration if the camera is
repositioned is smaller than the full calibration process.

5.1 Geometric calibration
In order to estimate the emitter pose relative to a camera from the
observed emitter pattern it is necessary to calibrate both the cam-
era intrinsics and the emitter reference pattern. Auto-calibration of
the system is possible from multiple images of the emitter pattern
projected onto a single plane. Images of overlapping segments of



the emitter reference pattern are matched using the technique de-
scribed in section 2.1. The homography estimates from the match-
ing process are used to register the images and initialise a bundle
adjustment parameterized by homographies. There is one homog-
raphy corresponding to each emitter pose which maps from emit-
ter normalized coordinates to camera normalized coordinates. Let
the emitter positions be given by 3× 4 projection matrices Pj for
j = 1..J and let the (fixed) camera position be given by Pc. The
fixed world plane is represented by a 4× 3 matrix M of points on
the plane, and we have the freedom to set coordinates so that it is
aligned with the Z = 0 plane, giving

M =

1 0 0
0 1 0
0 0 0
0 0 1

 . (5)

Given M,Pc, and Pj, the jth homography H j is given by

H j = PcM(PjM)−1. (6)

Having computed correspondences z jn, we can now estimate the
homographies and the reference points rn, by minimizing the
bundle-like objective

E(H1, ...,HJ ,r1, ...rN , f ,cx,cy,κ) =

∑
j
∑
n

∥∥z jn−π
(
Kφ
(

f
(
π
(
H jφ (rn)

))))∥∥ , (7)

where

π

u
v
w

 :=
(

u/w
v/w

)
, (8)

φ

(
x
y

)
:=

x
y
1

 , (9)

K :=

 f 0 cx
0 f cy
0 0 1

 , (10)

and

f
(

p
q

)
:=
(

p
q

)(
1+κ

(
p2 +q2

))
. (11)

The initial estimates of H j and rn are obtained by using stan-
dard panoramic stitching, choosing the first emitter position to be
roughly fronto-parallel to the plane. This does not affect the accu-
racy of the final converged positions, as the overall gauge is con-
strained by the camera intrinsics. The intrinsics are initialised with
standard values ( f = 1,cx = cy = 0,κ = 0).

The refined homographies are then decomposed [22] to provide
an initial rotation and translation (up to scale) to initialise a sec-
ond bundle adjustment process parameterized by camera and emit-
ter 6-DoF pose. A two stage bundle adjustment is adopted as the
homography bundle stage is less strongly nonlinear than the Eu-
clidean bundle that follows and therefore widens the basin of con-
vergence. One rotation and translation is required for the fixed cam-
era Pc = [Rc, tc] and an additional rotation and translation for each
emitter pose Pj = [R j, t j]. The second bundle is summarized by the
minimization

min∑
j
∑
n

∥∥∥z jn−π

(
Kφ

(
f
(

x̂c
jn

)))∥∥∥ , (12)

where
x̂c

jn = π

(
PcM

(
PjM

)−1
φ (rn)

)
. (13)

Figure 6: Experimental setup for the multi-planar scene. A fixed cam-
era mounted on a tripod observes a multi-planar scene at a distance
of 1.0 m. The scene depth is 0.3 m. The handheld emitter is in mo-
tion at a distance of 2.0 m from the scene. Only partial overlap is
required between the field of view of the camera (in yellow) and the
emitter beam (in red).

The emitter poses Pj are simply discarded, and system calibration
parameters (Rc, tc,cx,cy, f ,κ) are retained along with the recovered
emitter reference pattern, shown in figure 5.

In practice, a variety of engineering factors must be considered
to allow this calibration to work. The camera should view the target
plane obliquely, and at least five views should be generated of one
section of the reference pattern, by varying the emitter pose, in or-
der to constrain the camera intrinsics. Difficulties were caused by
the repetition of the Kinect pattern, but they are too esoteric to in-
clude here—simply masking the repetitions would probably be the
best way to deal with this.

Algorithm 2: Building the LUT at calibration time.

1 foreach Delaunay edge E do
2 Create quad Q′ from the two facets associated with E;
3 repeat
4 Perturb quad vertices by adding Gaussian noise;
5 H = homography mapping perturbed quad vertices to

the unit square;
6 foreach one-connected neighbour P of the quad do
7 Compute transformed coordinates for P′ = H ∗P;
8 LUT[quantize(P′)].Add(Q);

9 until #samples iterations;

5.2 Building the quad look-up table

At training time the neighbouring points vote for the current quad
index in the appropriate bin of the quantized canonical frame. Al-
gorithm 2 provides an outline of the method. In order to correctly
model the effect of noise a number of samples are generated for
each quad by adding Gaussian noise to the pixel positions of the
points in image space before the canonical frame mapping takes
place. The result of training is a two dimensional array in which
each element contains a histogram over quad indices that voted for
the position in the canonical frame corresponding to that element.



6 EXPERIMENTS

The system as described above has been implemented, and we show
two examples of its performance: a qualitative demonstration of its
use as a 6-DoF input device, and quantitative comparisons with a
Vicon tracker. Experiments run on an Intel Core i7 desktop with
a 640x480 1/4” CCD monochrome camera, 6mm lens and an IR
bandpass filter. The camera is mounted on a tripod and observes
a planar or multi-planar scene at a distance of 1.0 m, with a plane
separation of 0.3 m in the multi-planar case. The Kinect emitter is
held by the user, operating at a distance of 1.5 m – 2.5 m from the
scene. Figure 6 shows the experimental setup.

6.1 Emitter as user interface device
The supplementary material [15] shows a user moving the device
to control a virtual light sabre (four frames are shown in figure 7).
As can be observed, translational and rotational accuracy are com-
parable to other look-out systems, with a much smaller and simpler
device. As shown in the video our system can robustly track the
pointing device in real-time.

6.2 Comparison to Vicon
In figure 8 we show a 140-frame test sequence of Kinectrack com-
pared to the Vicon tracking system, which is taken as ground truth.
Translation accuracy was found to be 1.86 cm RMS error, with
RMS error in rotation of 1.29◦. This shows that at a greatly reduced
cost, setup time, and with only a single camera, adequate tracking
can be achieved when compared to a commercially available and
expensive multi-camera system.

Figure 9 shows results for scene geometry restricted to a single
plane. The accuracy of the pose estimate is reduced, particularly
with respect to translation, but it remains sufficient for many ap-
plications involving 3D user interaction with planar scenes. The
motion trajectories for the Vicon (plotted in red) when compared to
the Kinectrack system (plotted in blue) are shown in figure 10 for
both multi- and single-planar scene geometry.

7 CONSTRAINTS AND LIMITATIONS

The proposed method requires a camera to be fixed relative to the
scene, which prevents the use of the system for free AR applica-
tions where the user is permitted to move anywhere. The advantage
of a fixed camera is that it prevents the drift problem suffered by
SLAM systems by providing absolute pose every frame, even when
the scene geometry is not static. As outlined in section 5, the place-
ment of the fixed camera is flexible and the emitter and camera in-
trinsics may be pre-calibrated, so that only the external camera pose
remains to be determined once the camera has been repositioned.

The emitter beam must partially overlap at all times with some
part of the scene in the camera’s field of view. The emitter must
be designed with a wide beam spread to provide sufficient range
of movement (in the case of the Kinect sensor the diagonal field
of view is 70◦). The method is readily extended with either mul-
tiple fixed cameras or multiple emitters on the device to provide
full 360◦ coverage. Full 360◦ is available in one axis using a single
camera by suitable choice of emitter and camera placement. For ex-
ample, projecting the dot pattern onto the floor or ceiling achieves
full 360◦ freedom in terms of pan, with only tilt and roll restricted
by the emitter beam spread. By using a dense dot pattern and only
requiring a small part of that pattern to be visible in order to deter-
mine the emitter pose, the system is made robust to occlusion, non-
planar scenes and varying surface albedo. The scene must contain
some quasi-planar structure for the matching algorithm to succeed,
but the surface need only be locally flat. Examples of sufficiently
quasi-planar surfaces tested include a beach ball and a round teapot.
Robustness to varying surface albedo is important as whilst the Ki-
netic dot pattern is clearly visible on most surfaces, some surfaces
present more of a challenge, such as shiny or translucent plastics.
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Figure 8: Comparison to Vicon with multi-planar scene geometry:
Translation (top) and rotation (bottom) performance for a 140-frame
sequence (RMS error is 1.86 cm in translation and 1.29◦ in rotation.)
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Figure 9: Comparison to Vicon with single-planar scene geometry:
Translation (top) and rotation (bottom) errors for an 80-frame se-
quence (RMS error is 3.08 cm in translation and 1.53◦ in rotation.)

Figure 10: Qualitative comparison of Vicon (red) and Kinectrack
(blue) trajectories with recovered multi-planar (left) and single-planar
(right) scene geometry.

The distance of both the camera and emitter from the scene de-
termines the density of the dot pattern in the image. If the emitter
is too close or the camera too far away, the quads become too small
and matching fails due to the increase in noise relative to the canon-
ical frame. Conversely, if the emitter is too far or the camera is
too close, matching fails due to insufficient dots on any one quasi-
planar surface for matching. Emitter pose accuracy also degrades
with distance relative to the scene as the emitter beam angle sub-
tended by the camera image decreases. In practice, the emitter dot
pattern could be chosen to achieve the optimal image dot density
for the emitter and camera positions required by the application.

The use of active illumination also poses some restrictions. As



Figure 7: Example application. A user holding the emitter is augmented in an RGB camera view with a light sabre. The coordinate axes of the
camera observing the projected IR dot pattern are also shown.

with other projector-based systems, outdoor daytime use is limited
due to laser strength. In our implementation we use the Kinect
device to generate the dot pattern which has an optimal emitter-to-
scene operating range of 1.2 m to 3.0 m. Performance degrades
outside this range as multiple overlapping dots appear in the image
due to the laser DOE method used to form the dot pattern. An al-
ternative dot pattern generator would enable use over other ranges.

8 CONCLUSIONS

We have introduced a new 6-DoF tracker and demonstrated a pre-
liminary implementation, which shows that a computationally pas-
sive tracking device can provide some of the benefits of a “look out”
system as exemplified by SLAM coupled with some of the benefits
of “look in” systems such as Vicon. In particular, the system is low
cost and low effort to deploy, is robust to different piecewise planar
scene structures and works in texture-less environments and low-
lighting. It provides absolute pose with good tracking accuracy and
no drift over time.

Our system currently assumes a planar scene for its calibration
stage, which simplifies the construction of the reference pattern,
but probably reduces the calibration quality away from the target
plane. It would be interesting to see how a more 3D scene affects
the results. We also have the option to improve translational accu-
racy further in cases where the reference camera can see the device
itself. Alternatively a second room camera can be used.

Overall we feel that Kinectrack provides an interesting new
tracking technology for AR, it is cheap, robust to lighting, supports
a variety of piecewise planar scene structures, recovers scene geom-
etry and is easy to implement for real-time performance. We also
feel that the variable baseline matching algorithm described here is
general and can be used in other scenarios to find correspondence
between two frames of a pseudo random dot image.
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