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Abstract

In this paper we consider a stochastic model describing the varying number of flowsin a
network. This model features flows of two types, namely file transfers (with fixed volume)
and streaming traffic (with fixed duration), and extends the model of Key, Massoulié, Bain and
Kelly [27] by alowing more genera bandwidth allocation criteria. We analyse the dynamics
of the system under a fluid scaling, and show Lyapunov stability of the fluid limits under a
natural stability condition. We provide natural interpretations of the fixed points of these fluid
limits.

We then compare the fluid dynamics of file transfers under (i) balanced multipath routing
and (ii) paralel, uncoordinated routing. We show that for identical traffic demands, parallel
uncoordinated routing can be unstable while balanced multipath routing is stable.

Finaly, we identify multi-dimensional Ornstein-Uhlenbeck processes as second-order ap-
proximations to the first-order fluid limit dynamics.

1 Introduction

The behaviour of large-scale communication networks, such as the current Internet, has proved to
be a rich seam to mine for the research community, with research spanning many disciplines and
with many questions still unanswered. In this paper we seek to describe such a network at the
flow level, using stochastic analysis and optimisation theory. In particular, we study networks that
are large and scaled in such away that first-order behaviour is well-described by the deterministic
limits of the underlying stochastic process, and where second-order behaviour is characterised by
certain diffusion processes.

The models we describe apply generally to a variety of resource allocation situations, however
they are motivated by high-speed packet networks, where there is some notion of flow between
end-points in the network, and where a flow comprises a number of packet transfers. For example,
think of TCP flows in the current Internet. TCP is used to carry so-called elastic traffic, which
can adapt its rate to the underlying network conditions. Much current research has focussed on
the design of rate-control algorithms and their behaviour under essentially static traffic patterns,
where the load on the network is determined by a fixed, a priori given, number of flows; see for



example [40]. In contrast, we consider flow-level models under stochastic load, building on the
foundations laid by Massoulié and Roberts[32], and others[13, 4, 6].

The paper falsinto two parts. First, we characterise the performance of an integrated network
with heterogeneous traffic of two types, which we label ‘streaming’ or ‘file transfers'. In this part
of the paper we summarise previous literature and generalise the results of [27]. A specific gener-
aisation covers multipath routing and is sufficiently important to be treated separately, which we
do in the second part of the paper. There, we explore differences between so-called “ coordinated”
and “uncoordinated” multipath routing; for ease of exposition we elide the streaming traffic in
these comparisons. For both parts of the paper the analysis uses fluid limits and bandwidth sharing
models. At the end of the paper we outline how diffusion models can be used to describe behaviour
of fluctuations around the fluid limits.

By ‘file transfers’, we mean flows which have a given volume to transfer: the volume may be
random, but is independent of the state of the network. Conversely, ‘ streaming traffic’ has a given
duration (holding time); the holding time may be random but is independent of network conditions.

In the current internet, streaming traffic may be carried by TCP or UDP. At the time of writing,
TCP is the dominant transport protocol, measurements on a backbone [21] show TCP comprises
70% of the flows, and 90% when measured by volume, with UDP the main alternative protocol.
Although streaming volumes are currently relatively small, we would like to explore what happens
in different scenarios.

How streaming traffic (or more generally UDP) should co-exist with file-transfers is a vexed
question. Some see UDP as inherently problematic. UDP has no flow control, which has led some
authors to argue that streaming traffic should be “TCP-friendly” [17], while others have argued
that some form of distributed or end-point admission control is hecessary to assure some form of
quality of service [23, 10, 3]. Analyses of traffic integration models, assuming either prioritization
in favour of streaming traffic, admission control for streaming traffic, or fair sharing between all
flows, can be found in references [2, 15, 7, 35].

The emergence of Voice Over IP (VOIP) provokes questions about the integration or not of
different types of traffic.

The analysis of streaming traffic on its own givesrise to a product-form solution under certain
reasonable assumptions, a form which is preserved under certain types of call admission con-
trol [23]. Moreover the limiting behaviour as the size of the system grows leads naturally to a
non-degenerate limit for the (scaled) number of connections. In contrast, a similar scaling applied
tojust file transfer traffic leads to a distribution that is either unstable or has mean zero; it has been
suggested [12] that such a model is flawed, lacking any self-limiting behaviour. We shall see that
this criticism is avoided when the two types of traffic are mixed, and that the presence of even a
small amount of streaming traffic has a stabilising effect.

Multipath routing has potential benefits in terms or performance and reliability, and recent
work [20, 25] has shown that stable multi-path rate-adaptive algorithms can be constructed. One
possible application scenario isin overlay networks, and another is where hosts are multi-homed.
We show the benefits at the flow level of such routing, wherethereis some coordination so that each
flow is able to optimally spread its load amongst different routes, and compare this with the case



of limited coordination: the flow is spread amongst the different routes but they act independently
to transfer the data. The latter is simpler to implement with existing transport protocols, but has
potential disadvantagesin terms of both efficiency and stability.

The outline of the paper is asfollows. In section 2 we describe the bandwidth sharing models,
gradually increasing complexity. In al cases, we are able to express the sharing modelsin terms of
an optimisation, where flows have some notional associated utility function, which can be thought
of asan abstraction that various rate-all ocation schemesimplicitly follow. Wefirst start with the so-
caled a-fair sharing scheme, for which TCP-friendliness is a special case, for a general network
with fixed routing and fixed capacity constraints. We extend this in a number of ways, first by
allowing more generalised utility functions, and secondly by relaxing the assumptions on sharp
capacity constraints, to alow for feedback from the network that may be signalled by packet loss,
packet delay, or explicitly, perhaps via packet marking. We then discuss more general routing
schemes, allowing traffic to be spread across routes in a coordinated way (multi-path routing) or a
relatively simple way (paralel routing).

In section 3, we describe the flow-level stochastic model, where flows arrive as a Poisson
process, and depending on their type have either a fixed mean duration or a fixed mean volume.
In section 4 we explore the limiting dynamics under a large systems scaling: we show that there
isaunique invariant point for the scaled process, and give an interpretation in terms of a‘reduced
capacity’. Informally, the file transfers place an irreducible load on the network, if we remove this
and a notional associated capacity, then what is left, the reduced capacity, is shared out amongst
the streaming traffic, whose allocation aso determines that of the file-transfers. Although we only
consider the situation where streaming flows always join and receive a fair bandwidths share, the
performance predictions derived from the fluid limits also apply to a different model of integration,
where streaming flows join the system under a dynamic admission control policy, and use a fixed
capacity if admitted; see [27] for details.

We then show that, under natural stability conditions, the dynamics are asymptotically stablein
the sense of Lyapunov. For flexible routing, we show that multi-path routing spreads the load out
amongst those routes which have the same minimum end-to-end cost, thus balancing load optimally
between multiple paths.

We give examples of multipath routing and parallel routing in Section 5, where we focus on
the case where now there are only file-transfers. We provide examples of topologies for which
multipath routing has a strictly larger stability region than parallel routing.

In section 6 we look at second-order properties of the scaled processes, and show that under
natural assumptions when streaming flows are present, the deviations of the scaled processes about
their mean can be described as coupled Ornstein-Uhlenbeck processes. We draw some conclusions
in Section 7.



2 Bandwidth Sharing Criteria

We now review a number of network bandwidth allocation criteriafor competing flows, presented
in the order of increasing generality. Throughout this section, flows can be of several types, indexed
by r € R, where R is a countable set, and N,. denotes the number of type r-flows, for N,. anon-
negative integer.

2.1 (w,«) fairness, fixed routes and sharp capacity constraints

Consider a network with resources labelled by j € J. For the moment, let aflow of type r identify
a non-empty subset of J (which can be interpreted as the set of resources used by a flow on route
r). Set A;, = 1if resource j liesonroute r (i.e. j € r), and A;. = 0 otherwise. We assume
positive finite capacities (C;,j € J). Given afixed parameter oo € (0,00) and strictly positive
weights (w,,r € R), we suppose that the bandwidth allocation to each of the N, type r flowsis
x,, Wherex = (x,,r € R) isasolution to the following optimization problem:

11—«
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max

imise Zwrer — 1

reR
subjectto Y " A;Na, < Cj, jEJT 2
reR
over z, >0, reR. 3

Call the resulting alocation aweighted a-fair allocation [34].

The strict concavity of the objective function (1) as a function of (z,,r : N, > 0) and the
convexity of the constraints ensures that for any solution x to (1-3), the component z,. is uniquely
determined if N, is positive. The solution to the problem (1-3) can be expressed in terms of
Lagrange multipliers (p;, j € J) asfollows

1/«
w
= =—F ; 4
(Zj ijjr>

where there is one non-negative multiplier p; for each of the capacity constraints (2), which satisfy
the constraint qualification conditions

pj >0, pj (Cj - ZAerr$r> =0, jeJ ©)

These are the so-called complementary slackness conditions. This representation in terms of La
grange multipliers holds because the above optimisation problem satisfies the so-called Slater con-
ditions, i.e. there exists a vector x € IR%ZE such that for al j € J, constraint (2) is met at x, and
is met with strict inequality for j such that the constraint is not affine ; see e.g. [8], p.226 or [38],
Theorem 28.2, p.277.



When w, = 1,7 € R, thecasesa — 0, « — 1 and o — oo correspond respectively
to an alocation which achieves maximum throughput, is proportionally fair or is max-min fair
[6, 34]. Weighted «-fair alocations provide a tractable theoretical abstraction of decentralized
packet-based congestion control agorithms such as TCP.

If « = 2 and w, is the reciprocal of the square of the round trip time on route r, then the
formula (4) is a version of the inverse square root law familiar from studies of the throughput
of TCP connections [16, 33, 36]. A flow carrying streaming traffic is termed TCP-friendly if,
inter alia, it adapts its rate to correspond with the steady-state rate of a TCP connection, usually
characterised in terms of aversion of the inverse square root law [17].

The relations (1-5), and more refined versions of these relations, can be solved to give pre-
dictions of throughput, given the numbers of flows NV present [1, 11, 19, 39]. Given N, network
performance along different routes can be predicted. But what determines the behaviour of N?
One aim of this paper is to better understand how the behaviour of N is influenced by the mix of
traffic types present, and how NN is affected if we allow more flexible routing.

2.2 Generalised fairness: bandwidth utility functions

Our first, smple, extension of the above framework is to generalise the objective function in the
above optimisation problem, while still identifying flow types » with subsets of resources j € J.
We now let the rate alocation z,. to type r flows be the solution of

maximise > NU () (6)
reER
subject to Z AjyNyx, <Cj, jEJ (7)
reR
over z, >0, reR. (8)

where U,. isan increasing, strictly concave function on R, for al » € R. Here U, isinterpreted as
the utility function of type r flows, U,.(x,.) then representing the value of atype r flow proceeding
at rate x,.. Thusthe allocation x maximises the total utility under the network capacity constraints.
Our assumptions ensure uniqueness of the allocation vector x, and for technical convenience we
also assume in addition that U, istwice differentiable on (0, +o0).

The optimisation (1-3) of the previous section corresponds to the special case

Ur(z) = wez'™2/(1 = a).

The extension considered here isinteresting because there are utilities of interest which may not be
a-fair, for example a more refined analysis of TCP has suggested that it might allocate bandwidth
according to the above criterion, with U,.(z) = 7, arctan(r,.x), where 7, is the round-trip time
for type r-flows; see[29] and [22].



2.3 Generalised constraints: relaxed capacity constraints

A second way in which we generalise the problem is by allowing more general constraint func-
tions than constraining hyperplanes, and where for convenience we move the constraints into the
objective function. The bandwidth allocation x is then defined as the solution of

maximise > N.Up(z,) — T (Nx;C) (9)
reR
over . >0, reER, (10

where the strictly concave utility functions U, are asin (6-8), and I is a penalty function, assumed
to be convex and non-decreasing in its first argument Nx := (N,z,),er. Its second argument
represents the notional network link capacities.

This does indeed extend the previous framework, which is recovered by the choice I'(z; C') =
Go(z; C), where

0 if S.erdjpz <Cy jEJ,

+o00 otherwise. (11)

Go(z; C) = {
For instance one might consider continuoudly differentiable penalty functions G.(z; C') that satisfy
lim Ge(2; C) = Go(z; 0),

and study the corresponding alocations . (¢).
In addition to convexity, we shall make the following two critical assumptions about the penalty
functionI'(z; C).

LT (z;C)=T(Lz; LC), zeRY CeR{,L>0. (12)

This condition ensures that the rate all ocation x isleft unchanged after simultaneously rescaling by
some number L both the numbers of flows and the capacities.
Another useful instance of this general framework is asfollows. The penalty function I" can be

of theform
T(z;C)=> T, (Z AjrzT;cj>, (13)

jeJ reR

where I'; is then a penalty function associated with capacity C; and is a function of the load on
the link, so that in the new optimisation problem the sharp capacity constraint C; isrelaxed. This
formulation arises naturally from packet level models, with z,. the mean rate of a stochastic packet
generation process. For example, if the resources j correspond to output ports of routers, then
there is a limited amount of buffering available, and packets will be dropped if the capacity is
exceeded, or more generally marked according to some active queue management technigue such
as RED [18]. We may interpret p;(y;/C;) as the probability of dropping (or marking) a packet
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at resource j when the load on the resource is y; and its capacity is C;. In other words when
the load on a resource is y;, a proportion of the load p;(y;/C};)y; is dropped or marked, and
L;(y;;C;) = J37 pj(n/Cj)dn isthe rate at which ‘cost’ isincurred at the resource. Note that for
such T, the scaling condition (12) holds.

For example we may consider,

e bufferless resources: we can take p; (y;/C;) = [y; — Ci1" /ly;l;

e small buffers of size b, where small meansb = o(C). For exampleif packets are dropped (or
marked) when the buffer content exceeds b then we can use p; (v, /C;) = min(1, (y;/C;)®).
Note that more sophisticated marking strategies such as Virtual Queue marking may produce
marking functions of the form p;(y;/C;) = min(1, (b + 1)(y;/C;)®). We may use more
accurate models to model the queuing behaviour as a Markov chain in equilibrium - see for
example [31].

¢ moderate buffers, of size O(+/C'). We can use large deviation approximates to derive bounds
when the resource is not overloaded, and which behaves in overload like a bufferless re-
source. See [37] for some more details and interesting discussion on the impact of buffer
Sizes.

e average delay: asimplechoice hereistotakep;(y;/C;) proportiona to 1/(1—y;/C;) when
y; < C;, and +oo otherwise, which acts as a smooth relaxation of a sharp capacity bound.

24 Multi-path forwarding

Ancther instance of the framework (9-10) aims at modeling multi-path traffic forwarding, and is
important enough to deserve a separate treatment. Consider the situation where thereisaset S of
routes s € S available in the network, and each type-r flow may split its traffic among a subset of
routes. Let B be the route-flow incidence matrix, with B,,. = 1 if type r-flows may use route s,
and B, = 0 otherwise, where now we let A = (A;,) denote the link-route incidence matrix.

In this context we define the candidate rate alocations x, as the solution to the following
optimisation problem:

Maximise Z N, U, (Z Bsrﬂfsr) — Z Fj <Z N, Z AjSBSTxST‘; Cj) (14)

rerR seS jeJ reR seS
over z, >0, reR, seS. (a5

The variable z, represents the sending rate of type r-users along route s, and I';(y;; C;) is the
cost for sending at rate y; over link j, assumed to be convex and non-decreasing.

Alternatively, by introducing the variables z,, = s Bsxs, and optimising first over the
individual route rates x4, with total rates x,- kept fixed, we see that the per-user rates x,- can also



be characterised as solutions of the generic optimisation problem (9-10), with the specific choice
of acost function:

I'(z; C) = inf {ZFj (yj;Cj)} , (16)

jE€J
where the infimum is taken over the set of variables y; such that

Elysr > 07 Z Bs?“ysr = Zr, Z Ajs Z Bsrysr =Yj- (17)
sES seS reR

The multipath formulation was first described in [24]. Recent work of Han et a. [20] and
Kelly and Voice [25] have shown how to construct distributed rate control algorithms which per-
form this optimisation implicitly. In particular, Kelly and Voice describe per-route controllers and
corresponding gain parameter selection strategies which ensure non-oscillatory convergence to the
desired alocation, while having the appealing property that each gain is chosen solely on the basis

of the round-trip delay of the corresponding route.

2.5 Parallée routing

The multipath forwarding problem we just described assumes that a type r-flow can coordinate
responses across routes and hence balance flows across available routes. Although such coordina-
tion across routes is conceptually simple, there are issues and problems in implementing it. For
example, it breaks the semantics of most current transport layer protocols in the Internet (such as
TCP) and hence requires application layer implementation, or use of protocols such as SCTP [41].
An aternative approach, which requires no coordination or balancing across routes comprises set-
ting up for each flow independent connections in parallel, and individually adjusting their flows to
maximise their per-route utility, the volume of each type r flow being spread across routes. This
corresponds to the following optimisation

Maximise ZNTZUST('IST) — ZF] <Z erAstsrxsr;Cj> (18)

rerR seS jeJ reR seS
over x4, >0, s€85, reR, (19

where as before B is the flow-route incidence matrix and A = (A;,) the link-route incidence
matrix. As a specific example, paralel TCP connections would correspond to different utility
functions in the case where routes have different round trip times, motivating the dependence of U
upon both s and r.

3 Flow level stochastic model

We now describe our model of how flows arrive and depart. Our aim isto generalise the stochastic
model for file transfersintroduced in [32] to include streaming flows. For ease of exposition and in
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this section only, we assume the baseline single-route problem, where flows of type r are associated
with unique routes, allowing usto use type and route interchangeably. The extensions to multipath
or parallel connections are natural and obvious.

Let NV, be the number of document transfers of type r, and let M, be the number of streaming
flows on route r. Define the indicator function I[r = s] = 1if r = s, I[r = s] = 0 otherwise. Let
TsN = (N, + I[r = s],r € R), withinverse T, ' N = (N, — I[r = s],7 € R). We suppose that
(N, M) = (N,,r € R; M,,r € R) isaMarkov process, with state space Z¢ x Z and non-trivial
transition rates

q(N, M), (T, N,M)) = v, q((N,M),(TT_lN,M)):WNTxT(N%—M), reR

q((N,M), (N, T,M)) = &, q((N,M),(N,T-*M))=M,n,, reR

for (N,M) € Z} x Z%, where x(N) is a solution to the optimisation problem (9-10). This
corresponds to a model where new file transfers arrive on route r as a Poisson process of rate v,
new streaming flows arrive on route r as a Poisson process of rate «,, and z,.(N + M) is the
bandwidth allocated to each flow on route r, whether it is afile transfer or streaming flow. A file
transfer on route r transports a file whose size is exponentialy distributed with parameter 1., and
astreaming flow on route r has an exponentially distributed holding time with parameter 7,..

If K, = 0,r € R, and in the particular case where the rate allocations are defined via (1-3),
then this model reduces to the model introduced by Massoulié and Roberts [32], in which there are
no streaming flows, only filetransfers. For thiscase, De Veciana, L ee and Konstantopoulos[13] and
Bonald and Massoulié [6] have shown that a sufficient condition for the Markov chain (N (t),t >
0) to be positive recurrent is that

ZAjrpT < Cj7 .7 € J7 (20)

where p, = v,-/p.; this condition is also necessary [26]. The condition isnatural: p,. istheload on
route r, and we can identify the ratio of the two sides of the inequality (20) as the traffic intensity
at resource j. Kelly and Williams [26] have explored the behaviour of a fluid model for this case
in heavy traffic, when the inequalities (20) are close to being tight, which is a key step towards
proving state space collapse. The papers [6, 13, 26] al make use of a fluid model of the Markov
process, an approach which we shall adopt for our analysis of the extended model.
In the more general framework (9-10), the natural extension of Condition (20) isthe following.
For some § € (0,00)%,
U.(6;) >TL(p+06;C), reR, (21)

for all vectors I (p + §; C) that are subgradients of the function I in its first argument. When
the function T is differentiable, there is only one subgradient, which coincides with the ordinary
gradient, that isthe vector of partial derivatives. At apoint whereI failsto be differentiable, severa
subgradients may exist; we refer the reader to [38], p.214 for a definition and basic properties of



sub-gradients of convex functions. This condition ensures that the allocation vector x has positive
components, and satisfies
Ul(z,) =T,(Nx;C), (22)

where " isthe partia derivative or a subgradient of the functionT'(+; C') at Nx.

We now verify that Condition (21) specializes to (20) in the specia case where the penalty
function T" captures sharp capacity constraints, and is given by (11). In this case, the subgradient
of I' at each vector z such that, for al j € J, ZTE’R Aj,z < C;isthenull vector. Thus, provided
forall r € R, U/(e) ispositive for small enough ¢ > 0, and (20) holds, Condition (21) is satisfied.
Since any strictly concave non-decreasing functions U, satisfy the first requirement, then indeed
(21) holds whenever (20) does.

Let usinterpret Condition (21) in the context of multipath forwarding described in Section 2.4,
assuming that the link cost function I'; represents a sharp capacity constraint, that isI';(z) = 0 if
z < Cj, and 400 otherwise. It is easily seen that, for avector z = {z, },cr, provided there exist
ysr and y = {y;}cs such that (17) holds, and y; < C; for all j € J, then the unique subgradient
of " at z isthe null vector. Thus, Condition (21) is satisfied provided the loads p,- can be split into
route loads p,,- such that we have the natural constraint

Z Astsrpsr < Cj, J € J.
seS,reR

We shall henceforth assume that x, > 0, € R, and that condition (21) is satisfied.

4 Large capacity scaling: fluid models

Next we consider afluid model, which can be thought of asaformal law of large numbers approx-
imation under the scaling

(n,m)(t) = (NLL(t>, Mﬁ”) L — oo,

where (N, (t), M1, (t)) isthe model of the previous Section but with C;, j € J, and vy, k., € R,
replaced by LC;, 5 € J, and Lv,, Lk,,r € R, respectively. The fluid model is an approximation
appropriate for the case where C;,j € J, and v, k., € R, are all large, an important case in
applications.

Alternatively, in the absence of streaming flows, the fluid model corresponds to the dynamics
of the original Markov process describing the number of file transfers, after simultaneous rescaling
of both time and space. Such rescaling is known as a hydrodynamic, or fluid scaling. It isimportant
because ergodicity of the original stochastic process can be established by proving stability of the
fluid model, an approach popularised by Dai [14].
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4.1 Fluid model dynamics

An explicit construction of the Markov processes of interest can be obtained from independent
unit rate Poisson processes, =; ,, i € {1,...,4}, 7 € R. The trgectories of N, M can then be
represented as solutions to the following equations (see e.g. [9]):

{ No(T) = N, (0) + Zy,(Lv, T) — Es, ( I e N () (N (2) + M(8); LC)dt> S

M,(T) = M,(0) + Eg,(Lr,T) — Ey, ( I mM,(t)dt) .

Therescaled quantities N,./ L, M,/ L are then expected to satisfy in thelimit L. — oo the following
eguations:

{ ne(T) = np(0) + 5T — gy [y (B)2, (n(t) + m(t); C)dt,
mp(T) = my(0) + kT — 1 [ my(t)dt.

where we used the homogeneity property (12) according to which x(n, C') = x(Ln, LC'). We do
not attempt here to prove rigorously the convergence of the rescaled processes to the solutions of
these systems of equations, but rather address the reader to [30], for ageneral reference where con-
ditions under which thistype of convergenceisvalid can befound, or to the forthcoming paper [28],
for afull treatment of the single resource case.

In the remainder of this section, we thusfocus on the following system of differential equations:

np(t) = v — gy (D (n(t) + m(t);C), rER (24)
—my(t) = Ky —npmy(t), T ER. (25)
Note that our assumption that x, > 0,7 € R, impliesthat m,(t) > 0,7 € R,t > 0.

4.2 Stationary points

Let usfirst describe the invariant points under the generalised sharing criterion (9-10). We have:

Proposition 1. Provided the condition (21) is satisfied, the differential equations (24,25) have a
unique invariant point, (n, m). It takes the form

my = K/T/TlTu iy = pr/jra reR, (26)
where the equilibrium allocation x is the unique solution of

maximise Y Uy (z,) — T (hx + p; C) (27)
reR
over . >0, reR, (28)
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Proof. The expressions (26) are readily derived from the differential equations (24,25). At any
time ¢, the allocation vector x is characterised by

{U@)}er = (0 +m)x;C) = By} e

where 3, is the Lagrange multiplier associated with the constraint z,, > 0, and as such satisfies
Br >0, Bra, = 0, and {T").((n + m)x; C)},cr isasubgradient of I'. Therefore at an invariant
point we have

U;(i'r) = F;(P + mx; C) - /87’7 reR. (29)
This is enough to characterise z, as the solution to (27-28), which we know is unique by strict

convexity of the U,.. The stability condition (21) now guarantees that necessarily, z, > 0 for all r,
and thus 7o, isfinite. O

The invariant point has the following interpretation: the file transfers of type » contribute an
irreducible load p,- on each resouce they are associated with. The streaming traffic then shares out
what remains after the load has been accounted for (obtained via equation (29)) which determines
the rate that streams of type r receive and hence under our sharing assumptions also determine the
rate that file transfers of type r receive. If we can find reduced capacities C‘j such that

I'(p+m%;C) =T.(m%;C) reRrR (30)

then at the invariant point, the file transfers determine the reduced capacities, and the streaming
traffic shares the reduced capacity network as if it were the only load on this reduced network;
the associated rates the streaming traffic receive then determine the rates the file-transfers receive.
As remarked above, it is often the case that 1“3 is afunction of the ‘load’, in which case thereis a
natural ‘reduced capacity’. Thisisillustrated next in the context of sharp capacity constraints.

4.2.1 Sharp capacity constraints

We next specialise this result to particular cases of interest. Consider first (w, «)-fair bandwidth
sharing with sharp capacity constraints (1-3). Define the reduced capacities

éj = Cj - Z Ajrpra Jed (31)
reR

Then the reduced capacity Cj on resource j isjust the amount by which inequality (20) failsto be
tight. The reduced capacities will determine the capacity available to streaming flows in a sense
that we shall now make precise.

Proposition 2. Provided the condition (20) is satisfied, the differential equations (24,25) have a
unique invariant point, (n, m), given by (26). The equilibrium allocation x satisfies

Wy

1/a
Ty = ’ 32
; (szj Aﬁ) (32
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for somep € Ri. The pair (x, p) forms a solution of equation (32) and the conditions

p; >0, p (Cy - ZAjrmrxr) =0 jel, (33)
and together these relations determine x uniquely.

Proof. The equilibrium rate vector x solves the optimisation problem (27,28), where I" is now
given by (11). Note that for the penalty function Gy, Go(rix + p, C) = Go(hx, C), hence it
follows that the equilibrium rate vector x may be characterised as the vector of (w, a)-fair alo-
cations of the residual capacities C' when there are 7, flows along route . The corresponding
characterisation (4,5) then yields (32,33). O

Equations (26,32) describe the vector i, of dimension |R|, in terms of p, a vector which may
have a much smaller dimension, |.J|, a phenomenon first noted in the balanced fluid model of [26].

The reduced capacities (C;,j € J) that remain after this load is satisfied are available to be
shared amongst streaming traffic, and determine the bandwidth allocation to flows on route r for
both types of traffic.

When k, = 0,r € R, the unique invariant point of the fluid model isn = 0 [13, 6]. Itis
notable that the inclusion of streaming traffic within the fluid model forces the components of i to
be positive.

We next describe the equilibrium points resulting from the generalised sharing criterion (9,10),
when the penalty function I" is given by (16,17).

4.2.2 Multipath forwarding
Using the notation of Section 2.4, we have at the equilibrium point that

By >0= U/ &gr) =Y Ajl(§;:Cj) —Barr €R, s€S (34)
s'eS jeJ

where
gj = Z Astsr(ﬁr + mr)fi'sra
seS,;reR

and j,, isthe Lagrange multiplier associated with the constraint x5, > 0 and satisfies the constraint
qualification conditions 3,5 > 0, G-sZs = 0, and 1“; denotes a subgradient of I';. For any fixed
r, it then follows that there exists acritical value p, such that the “prices’ > . ; A;51";(9;; C;) on
any route s such that B, = 1 must coincide with p,. if 4. > 0, and be less than p, otherwise.

Denote by p,, the fraction 7,24, of load p, offered by type r-flows that, in equilibrium, is
carried along route s. The above property justifies the following interpretation. With multipath
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routing, in equilibrium the load fractions p,. are such that the overall cost

er ( Z AjsBsr(psr +mr@87");cj>

jeJ SES,reR

isminimised. When no streaming traffic is present, this can be rephrased asfollows. Independently
of the choice of flow utility functions U,., under multipath routing, at equilibrium the offered load
is split optimally across availables routes.

Even though %, > 0, note that it is perfectly possible to have . = 0 for some s— indeed the
rates are zero on al *high-cost’ routes with prices strictly larger than p,..

4.2.3 Paralle routing
In the paralléel routing case, at the invariant point
U;(fi'sr) = ZAster;‘(gj; C]) —BarER, €S (35)
=

hence potentially Z,,. > 0 for al s such that A;, B, = 1. In other words, the load is spread across
all routes that type r traffic can use in a possibly inefficient way; thisis discussed in greater detail
in Section 5.

4.3 Asymptotic stability

We now establish convergence to the equilibrium point of the dynamics (24,25), assuming the
stability condition (21) is satisfied.

In order to do so, we shall first treat the case where there are no streaming flows. The fluid
dynamics for the file transfers are then described as

%nr(t) =v, — penyze(n(t); C), rER, (36)

where as before x(n; C') solves (9,10). We then have the following result:

Theorem 1. Under the stability conditions (21), and provided that the penalty function I" is strictly
increasing in each of its coordinates, the function L(n) defined by

L) =3 S () — e Tp)} (37)

rer 7

where I''(p) isa sub-gradient of T" at p, and

frlm = [0 (%) do (@)

xT
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isa Lyapunov function for the dynamics (36). These dynamics converge to the set of vectors n such
that nz(n; C') = p, which isin turn also characterised as the set of vectors satisfying

R Pr
fip = (39)
7 (T(p)
where I (p) spans the set of sub-gradients of I" at p. This set of limit points is thus reduced to a
single point if and only if I" admits only one sub-gradient at p.

Proof. Since we have assumed that T" is strictly increasing in each of its coordinates, it follows that
the rate z,.(n) goes to zero as n,- goes to zero, and hence the trgjectories n, stay away from the
boundary of the orthant R”?. Define the function ¢ as

o)=Y 0. (2) - (o)

reER

Since the function ¢ is strictly concave on its domain (that is, the set of points where it is finite)*,
and since by the stability condition (21), the vector p belongs to its domain, it holds that for any
super-gradient ¢'(p) of ¢,

Z ¢;*(:0) (pr — npwr(n)) <0,

and this inequality is strict unless nx = p. For the specific super-gradient ¢/.(p) = U/ (p,/ny) —
I'! (p), where I (p) is the specific sub-gradient of I used in the definition of the function L, the

left-hand side reads
S {ur (2) = o) o = v,

r

and isthus equal to

OL d d
D iy (000 g = G Lin(E)
Thus the value of L(n) decreases strictly along the trajectories of the system, except at points n
such that nx(n; C') = p. Such points are indeed alternatively characterised as solutions of (39).
Finally, the function L is such that the level sets {n : L(n) < A} are bounded for al finite A, by
stability condition (21). It isthus a proper Lyapunov function. O

We now apply this result to establish stability of the dynamics (24-25).
Corollary 1. Under the stability condition (21), the dynamics (24-25) are asymptotically stable.

Proof. We shall only treat the special case where the m,. have aready converged to their equilib-
rium values, m,.. Asthe convergence of m(t) to m does not depend on the evolution of n(¢), the
general case can be deduced by continuity arguments. We now show that the n,. evolve according

*Strict concavity of ¢ follows from concavity of the two termsin its definition, and strict concavity of itsfirst term.
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to (36) for some suitable choice of a penalty function T. Indeed, (36) holds, with the rate vector x
solving

maximise ¢(x,y) Z nyUp(xy) + 1y Ur(yr) — I' (nx + my)
reR
over Tr,yr >0, 7 € R.

Performing the optimisation over the y;, first, the corresponding allocation vector x is again the
solution of (9-10), with I replaced by I", which is defined by

[(z) :=inf {F z + my) Zmr Yr } , (40)
reR
over y, >0,7 € R.

It isreadily seen that fjs increasing in each coordinate since each U, is assumed to be strictly in-
creasing. Convexity of I' also holds: this can be verified directly, but also follows from recognising
that I" is the inf-convolution of two convex functions, and as such convex itself. O

Remark 1. By comparing equations (26-28) of Proposition 1 with (39), we obtain the following
identification: T"(p; C') = I (p 4+ nix; C), where T isasin (40).

Besides, the proof of Corollary 1 suggests the following inter pretation. Theimpact of streaming
flows on file transfers can be simply captured by a suitable change in the penalty function, namely
replacing the original function T by I as defined in (40).

5 Uncoordinated parallel versus balanced multipath routing

In the present section we compare the performance of coordinated multipath routing with parallel
routing. For ease of exposition we assume only file transfers are present. This involves no loss of
generality, since we could capture the influence of streaming traffic by redefining the cost function,
asin Remark 1 above.

The stability results of Theorem 1 provide stability conditions for multipath forwarding, asthis
fits in the general alocation framework (9-10). However we have not provided general stability
results for parallel connections. We now give a counter-example which illustrates that, in general,
the use of parallel, uncoordinated connections reduces the stability region.

Consider the triangle network of Figure 1. Flows between any two pairs of nodes (say B-C)
can go along the one-link route (B-C) between the nodes, or use the aternate two-hop route (B-
A-C). All three links are assumed to be of unit capacity. We denote by p 4 the load to be carried
from B to C, and call the corresponding file transfers type-A, and symmetrically pp and p¢ for file
transfers of types B and C. Standard manipulations show that, when both direct and indirect routes
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Figure 1: Example network where parallel uncoordinated connections lead to inefficiency

are allowed, the capacity region is described by

pB+pc <2,
pc +pa < 2, (41)
pa+pp < 2.

In the symmetric case when all three offered loads coincide, the stability conditionreads p < 1. In
this case, stability can be achieved without using the aternate routes.

Let us now see what happens when each file transfer uses two connections, one direct and one
indirect. For definiteness assume that the all ocation to each connection is a-fair, with equal weights
for all connections. Let n4 (resp. np, nc) denote the number of type-A (respectively, — B, —C)
filetransfers. Then file transfers of type i proceed at rate z;, i = A, B, C', where

L\ e ) 1/a
b= () ()
B = (l%) + (pA-}-pc) ’

(1 1/a 1 1/a
o = () + (o)

and the p;’s are the Lagrange multipliers associated with the link capacity constraints. They are

uniquely determined by
= (1%)11/& t s (pAiprl/a +ne (PAipB)ll/a =1,
nb <Ii> : t e <7’Aip3) " T na (PBipc) " =L (42)
ne <I%) " +na (pBiPC)l/a +tnp <pA-1ch)1/a =L

Thefluid equations, in the case of symmetric loads, then read

d

anz(t) =v—uzi(n(t), i=A4AB,C. (43)
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We have the following:
Proposition 3. Define p as \/u, and

. 1 _|_2—1/Oc
p= 1_+,21—1/a'
The solution n(t) to the system of differential equations (43) diverges to infinity whenever p > p*.
In particular, when o = 2, the systemis unstable provided p > 1/\/5 ~ 0.71.
Conversely, the solution n(¢) decreases to zero intime at most 0[n 4(0) + np(0) + nc(0)] for
a suitable constant 6 > 0 whenever p < p*.

(44)

Proof: We shall rely on monotonicity properties of the allocations, which we summarisein the
following lemma, the proof of which relies on elementary manipulations of (42), and is left as an
exercise.

Lemmal. Assumeng < ng < nc. Thenit holds that:

pa < pB < pc, (45)
1/a 1/o 1/a
na <1> <np <1> <nc (1) , (46)
pA PB bc
1 1/a 1 1/a 1 1/a
n <n <n . 4
A(pB+p0) o B(]?A+pc> o C<pA+pB) (47)

We shall now deduce the following. Supposen 4 < np < n¢. Then it holds that
nazra < p*, (48)

where p* isdefined in (44). Indeed, assume that it is not so, that is

1 1/« 1 1/«
nA <—> —i—nA( > > p*. (49)
pA DB+ pC
Then, using the inequalities (45), we obtain that necessarily
1 1/
na <—> (1 + 2_1/°‘> > p*. (50)
pA

On the other hand, (49) and the first equation of (42) imply that

1 1/ 1 1/ 1 1/
P —mna +nB< ) +nc< ) < 1.
(pB + pc) ba +pc bA+ DB

The sum of the two middle termsin the left-hand side is positive, by (47), so that

1 1/a
ne <1-p*.
<pA +p3> ’
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By (45), this further implies
1/a
ne <i> <21 — p¥).
yuej
In view of (46), thisimplies

1 Lo < 21/04(1 *) 14
n — — e A —
4\ pa P = o1/
which contradicts (50), thus establishing the desired inequality (48).
Thus, whenn 4 < np < ng, we necessarily have that

d

E”A(t) >p(p—p").

Thus the minimum of the three components increases at rate 1.(p — p*), which establishes the first
half of the proposition.

The second half is established in asimilar manner: by adirect adaptation of the argument used
to establish (48) one can show that, whenns < np < n¢, the alocation z¢ isat least p*. Thus,
the largest of n 4, np and nc decreases to zero at speed at least 1.(p* — p), which establishes the
second half of the proposition. a

*

Remark 2. In the case where p < p*, the second half of the proposition, combined with Dai’s
stability criterion [ 14] shows that the original stochastic systemisergodic.

It can also be shown with additional work that the original stochastic systemistransient under
theassumption p > p*. \We omit the detailed argumentsin the present paper. Together, these results
show that p* isindeed the exact capacity of the triangle network of Figure 1 under symmetric loads.

Aswe have just seen, the use of parallel, uncoordinated connections can lead to strictly smaller
capacity regions than coordinated multipath transfers. We now discuss a specific case of interest
where the capacity region is the same for coordinated multipath and for uncoordinated parallel
connections.

Consider the case where each file transfer type r can use several pathsp € P,., and each such
path consists of a single link, as illustrated by Figure 2. The resources are then a collection of
links, denoted by ¢ € £, and I';(+) is the cost function associated with link ¢. For definiteness, let
us consider first sharp capacity constraints: I'y(z) = 0 if x < Cy, and +oo otherwise. As usudl,
denote by p,- the offered load due to type-r users.

The stability condition, in this context, can be described in the following simple manner:

Y < ), Cn SCR (51)

res teL(S)

where the subset of links £(S) is defined to be the union of the sets P(r) for al r» € S. Indeed,
clearly the conditions with non-strict inequalities instead of strict ones are necessary for the exis-
tence of a feasible allocation of each load p, to the linksin P(r). The fact that these conditions
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Figure 2: Example network with 1-hop routes: parallel unccordinated connections achieve maximal
stability region

are also sufficient is known as Hall’s theorem (see e.g. [5], p.77) in the case where the p,- and the
Cy dl equal 1. Thisextends (i) to integral loads and capacities by splitting each traffic source and
link into components with unit capacity, (ii) to rational loads and capacities by rescaling, and (iii)
to arbitrary positive loads and capacities by continuity.

Denoting as usua by n, the number of type r-users, and by U,., the utility function used to
determine their allocated rate vialink ¢, the allocation z,(n) to type-r usersis then specified as

Ty = Tyt (52)
LeP(r)

where the z,.,, maximise

an Z Uré(:pré) *ZFZ ( Z nrxrf) . (53)
)

T LeP(r el rleP(r)
We now establish the following

Proposition 4. Assume that for all links ¢, and all user types r, s such that £ € P(r) N P(s), the
ratio g{”j Eig is bounded away from zero and infinity, uniformly in x € R,.. Then, under the stability
condition (51), the solutions to the system of differential equations
d
dt
where z, is specified by (52-53) return to zero intime at most 6 ) n,.(0) for some suitable
constant 6.

nr(t) = Vr = Ty Ty (54)

Proof: Let W(t) = >, cquy 'n.(t) denote the expected amount of work present in the
system. We argue that, whenever W (¢) > 0, it holds that

d
dt ( ) — 6?
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where

€= min Z Cyp— Z orl -
SCR,S#0 Leﬁ(s) =
Indeed, let R4 (¢) denote the set of user typesr such that n,.(¢) > 0. By the assumption of bounded-

ness of the ratio of derivatives of utility functions, it holds that the capacity C, of links ¢ in L(R1)
isentirely used by users of types r belonging to R,. Thus, it holds that

h
W(t + h) B W(t) = ZTGR LH_ reR1(u) (pT’ - nrxr< (U)) du
t+h
= ZSC'R f " 1R1 =S <Z7«€3 Pr — ZZE[:(S) Cg) du
< —Eft 17g1 @du.

Thisestablishesthat 1V (¢) decreasesindeed at rate at least e until it reaches 0, concluding the proof.
]

Remark 3. Even for network topologies asin the previous proposition, where parallel connections
achieve stability whenever synchronised parallel connections do, one may still prefer the latter
allocation to the former. For instance, consider a single type of users, who can simultaneously
access two resources, ¢1 and /5, with associated cost functions I'; and I'; respectively. We know
from the comments in Section 4.2.2 that, using coordinated multiple connections, the load p is at
equilibrium splitinto p; and p2 so that the cost I' (p1) + I'2(p2) 1S minimised.

In contragt, in the case of parallel, uncoordinated connections, based on respective utility
functions Uz, Us, at equilibriumthe loads p; and p» are now specified by the fixed point equations

in the variables:
p1+ p2 = p,
pPi = NIy, 1= 1727

Ul(z;) = Ti(nx;) + B, i = 1,2,
where §3; is the Lagrange multiplier associated with the constraint z; > 0 in the optimisation

problem
Maximise n [Ul(.l‘l) + UQ(xQ)] — Fl(nwl) — FQ(TL.I‘Q).

Consider for instance the case where Uy (z) = Us(z) = log(x), and I';(z) = p;z, and assume
p1 < pe. Inthe coordinated case, we obtain p; = p, p2 = 0, and a corresponding cost of pp; .

In the uncoordinated case we obtain p; = pp2/(p1 + p2), p2 = pp1/(p1 + p2) and a corre-
sponding cost of pp1 [2p2/(p1 + p2)], larger than the optimal cost by a factor of 2ps /(p1 +p2). This
illustrates the fact that, even when stability is not lost, lack of coordination can still be detrimental.

6 Second-order properties

The aim of the present section is to establish diffusion approximations for the rescaled Markov
processes (L' N,.(t), L=*M,(t)),er of Section 3 around the fluid limits n,.(t), m,(t), evolving

21



according to (24,25), that have been studied in Section 4. The derivations in this section are purely
formal, and no rigorous justification is provided; we address the reader to [28] for a rigorous
treatment of the single link scenario. This section is included for completeness and to illustrate
how subtler performance issues could be addressed.

We introduce the perturbation processes

ur(t) =
vp(t) =
together with the noise processes
1
ir(t) = —=
irt) = —=
where the =; , are the unit rate Poisson processes appearing in the representation (23). By taking

n(0) = n, and m(0) = m, assuming differentiability of the allocation vector x with respect to the
flow numbers n,., we obtain formally the limiting equations for the perturbation processes u, v:

UT(T) = ur(o) + gl,r(VrT) - fQ,r(VTT)
e Jy drr(Odt = pe o e e (22 ) (84 105 C) (us(t) + vs(0) dt,
ve(T) = v:(0) + 53,7”("57”T) - 547r(“rT) —r fo vy (t)dt.

Replacing the noise processes ¢; . by standard Wiener processes, we can aternatively write these
asthe following system of stochastic differential equations:

d(:) _ _( %] +0(uﬁJD M[I;JJD > (:) dt+< WS_VJ W(;_HJ >d($) (55)

where [a] represents the diagonal matrix with entries a,- on the diagonal, D is the square matrix
with entries dx,. /On, evaluated at n + m, and W, W areindependent, standard |R|-dimensional
Wiener processes. In the above, for compactness of representation we have also replaced &; ,, — &a
by \/§W17T where W1 ,. is again a standard Wiener process, and similarly for &3, — &4,

This characterises the perturbation processes u, v as coupled Ornstein-Uhlenbeck processes.
Correlations can then be determined from the matricesin the above representation. Thematrix D is
determined asfollows, in the special casewherel” and U aretwice differentiable. By differentiating
equation (22), denoting by H the Hessian matrix of T', evaluated at nx, one obtains

[U"(&)| D= H ([%] + [a] D),

(N (t) = L. (1)) ,
(Mr(t) - Lmr (t)) 3

shek

(Zir(Lt)—Lt), ie{l,---,4}, reR, t>0,

so that )
D=—(H[n|-[U"&)]) HI[x]. (56)

For the sake of illustration, consider the case where I' isasin (13), where the individual penalty
functionsI'; are twice differentiable. The Hessian matrix H then reads:

H=A"[y"| A
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where the diagonal entry 7' is given by

LF/( Z'r' Ajrjr(ﬁf + 1)
cz C; '

Remark 4. By removing the m-component, that describesthe streaming flows, in the above Ornstein-
Uhlenbeck process, which isformally done by setting x and v to zero, we obtain a reduced Ornstein-
Uhlenbeck process for the fluctuations in the n-component.

This is counter-intuitive, as one expects, from standard heavy traffic theory, the diffusion ap-
proximation of the m-component to behave like a reflected brownian motion instead. Such an ex-
pectation isbacked by simulation resultsreported in [ 27] . However, the above Ornstein-Uhlenbeck
processlimit is obtained based on the assumption that the penalty function I'" is twice differentiable,
whereas reflected Brownian motions in heavy traffic limits arise in the presence of sharp capacity
constraints, hence non-differentiable I'. These issues are investigated in greater detail in [28].

7 Conclusion

We have studied a flow level model of Internet congestion control, that represents the randomly
varying number of flows present in a network. Bandwidth was assumed to be dynamically shared
between file transfers and streaming traffic, according to a fairness criterion that includes TCP
friendliness as a specia case. Through the construction of an appropriate Lyapunov function we
have established stability, under conditions, for a fluid model of the system. The presence of fair-
sharing streaming traffic results in a non-degenerate fluid model. Analysis of the model suggests
that file transfers are seen by streaming traffic as reducing the available capacity, whereas for file
transfers the presence of streaming traffic amounts to a simple modification in the network penalty
function.

While we have assumed that streaming traffic fairly shares the capacity with file transfers,
our model can be adapted to the case where streaming flows have a minimum or fixed bandwidth
requirement, and admission control is used so that the aggregate rate used by streaming traffic
competes fairly with file transfers. For details see [27].

The general bandwidth allocation criterion we have considered encompasses balanced multi-
path routing, which could be implemented by modifying the existing TCP transport protocol as
in the proposals of [20, 25]. We have also compared the performance of such routing to paralel,
uncoordinated routing, which may be implemented with fewer changes to existing protocols. We
have shown that the latter may strictly reduce the capacity region of the network as compared to the
former. This strengthens the case for deploying modified versions of Internet transport protocols
as those described in [20, 25].

Finally, we have formally identified second-order diffusion approximations to the first-order

fluid limits of the number of flows in progress. These provide a basis for refined performance
evaluation of integrated network-wide data transfer.
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