
Learning to Rank with Nonsmooth Cost Functions

Christopher J.C. Burges
Microsoft Research
One Microsoft Way

Redmond, WA 98052, USA
cburges@microsoft.com

Robert Ragno
Microsoft Research
One Microsoft Way

Redmond, WA 98052, USA
rragno@microsoft.com

Quoc Viet Le
Statistical Machine
Learning Program

NICTA, ACT 2601, Australia
quoc.le@anu.edu.au

Abstract

The quality measures used in information retrieval are particularly difficult to op-
timize directly, since they depend on the model scores only through the sorted
order of the documents returned for a given query. Thus, the derivatives of the
cost with respect to the model parameters are either zero, or are undefined. In
this paper, we propose a class of simple, flexible algorithms, called LambdaRank,
which avoids these difficulties by working with implicit cost functions. We de-
scribe LambdaRank using neural network models, although the idea applies to
any differentiable function class. We give necessary and sufficient conditions for
the resulting implicit cost function to be convex, and we show that the general
method has a simple mechanical interpretation. We demonstrate significantly im-
proved accuracy, over a state-of-the-art ranking algorithm, on several datasets. We
also show that LambdaRank provides a method for significantly speeding up the
training phase of that ranking algorithm. Although this paper is directed towards
ranking, the proposed method can be extended to any non-smooth and multivariate
cost functions.

1 Introduction

In many inference tasks, the cost function1 used to assess the final quality of the system is not the one
used during training. For example for classification tasks, an error rate for a binary SVM classifier
might be reported, although the cost function used to train the SVM only very loosely models the
number of errors on the training set, and similarly neural net training uses smooth costs, such as
MSE or cross entropy. Thus often in machine learning tasks, there are actually two cost functions:
the desired cost, and the one used in the optimization process. For brevity we will call the former the
‘target’ cost, and the latter the ‘optimization’ cost. The optimization cost plays two roles: it is chosen
to make the optimization task tractable (smooth, convex etc.), and it should approximate the desired
cost well. This mismatch between target and optimization costs is not limited to classification tasks,
and is particularly acute for information retrieval. For example, [10] list nine target quality measures
that are commonly used in information retrieval, all of which depend only on the sorted order of the
documents2 and their labeled relevance. The target costs are usually averaged over a large number
of queries to arrive at a single cost that can be used to assess the algorithm. These target costs
present severe challenges to machine learning: they are either flat (have zero gradient with respect
to the model scores), or are discontinuous, everywhere. It is very likely that a significant mismatch
between the target and optimizations costs will have a substantial adverse impact on the accuracy of
the algorithm.

1Throughout this paper, we will use the terms “cost function” and “quality measure” interchangeably, with
the understanding that the cost function is some monotonic decreasing function of the corresponding quality
measure.

2For concreteness we will use the term ‘documents’ for the items returned for a given query, although the
returned items can be more general (e.g. multimedia items).

In this paper, we propose one method for attacking this problem. Perhaps the first approach that
comes to mind would be to design smoothed versions of the cost function, but the inherent ’sort’
makes this very challenging. Our method bypasses the problems introduced by the sort, by defining
a virtual gradient on each item after the sort. The method is simple and very general: it can be used
for any target cost function. However, in this paper we restrict ourselves to the information retrieval
domain. We show that the method gives significant benefits (for both training speed, and accuracy)
for applications of commercial interest.

Notation: for the search problem, we denote the score of the ranking function by sij , where i =
1, . . . , NQ indexes the query, and j = 1, . . . , ni indexes the documents returned for that query. The
general cost function is denoted C({sij}, {lij}), where the curly braces denote sets of cardinality
ni, and where lij is the label of the j’th document returned for the i’th query, where j indexes the
documents sorted by score. We will drop the query index i when the meaning is clear. Ranked lists
are indexed from the top, which is convenient when list length varies, and to conform with the notion
that high rank means closer to the top of the list, we will take “higher rank” to mean “lower rank
index”. Terminology: for neural networks, we will use ‘fprop’ and ‘backprop’ as abbreviations for
a forward pass, and for a weight-updating backward pass, respectively. Throughout this paper we
also use the term “smooth” to denote C 1 (i.e. with first derivatives everywhere defined).

2 Common Quality Measures Used in Information Retrieval

We list some commonly used quality measures for information retrieval tasks: see [10] and refer-
ences therein for details. We distinguish between binary and multilevel measures: for binary mea-
sures, we assume labels in {0, 1}, with 1 meaning relevant and 0 meaning not. Average Precision is
a binary measure where for each relevant document, the precision is computed at its position in the
ordered list, and these precisions are then averaged over all relevant documents. The corresponding
quantity averaged over queries is called ‘Mean Average Precision’. Mean Reciprocal Rank (MRR)
is also a binary measure: if ri is the rank of the highest ranking relevant document for the i’th query,
then the MRR is just the reciprocal rank, averaged over queries: MRR = 1

NQ

∑NQ

i=1 1/ri. MRR was
used, for example, in TREC evaluations of Question Answering systems, before 2002 [14]. Winner
Takes All (WTA) is a binary measure for which, if the top ranked document for a given query is rel-
evant, the WTA cost is zero, otherwise it is one. WTA is used, for example, in TREC evaluations of
Question Answering systems, after 2002 [14]. Pair-wise Correct is a multilevel measure that counts
the number of pairs that are in the correct order, as a fraction of the maximum possible number of
such pairs, for a given query. In fact for binary classification tasks, the pair-wise correct is the same
as the AUC, which has led to work exploring optimizing the AUC using ranking algorithms [15, 3].
bpref biases the pairwise correct to the top part of the ranking by choosing a subset of documents
from which to compute the pairs [1, 10]. The Normalized Discounted Cumulative Gain (NDCG)
is a cumulative, multilevel measure of ranking quality that is usually truncated at a particular rank
level [6]. For a given query Qi the NDCG is computed as

Ni ≡ Ni

L
∑

j=1

(2r(j) − 1)/ log(1 + j) (1)

where r(j) is the relevance level of the j’th document, and where the normalization constant Ni is
chosen so that a perfect ordering would result in Ni = 1. Here L is the ranking truncation level at
which the NDCG is computed. The Ni are then averaged over the query set. NDCG is particularly
well suited to Web search applications because it is multilevel and because the truncation level can
be chosen to reflect how many documents are shown to the user. For this reason we will use the
NDCG measure in this paper.

3 Previous Work

The ranking task is the task of finding a sort on a set, and as such is related to the task of learning
structured outputs. Our approach is very different, however, from recent work on structured outputs,
such as the large margin methods of [12, 13]. There, structures are also mapped to the reals (through
choice of a suitable inner product), but the best output is found by estimating the argmax over all

possible outputs. The ranking problem also maps outputs (documents) to the reals, but solves a
much simpler problem in that the number of documents to be sorted is tractable. Our focus is on
a very different aspect of the problem, namely, finding ways to directly optimize the cost that the
user ultimately cares about. As in [7], we handle cost functions that are multivariate, in the sense
that the number of documents returned for a given query can itself vary, but the key challenge we
address in this paper is how to work with costs that are everywhere either flat or non-differentiable.
However, we emphasize that the method also handles the case of multivariate costs that cannot be
represented as a sum of terms, each depending on the output for a single feature vector and its label.
We call such functions irreducible (such costs are also considered by [7]). Most cost functions used
in machine learning are instead reducible (for example, MSE, cross entropy, log likelihood, and
the costs commonly used in kernel methods). The ranking problem itself has attracted increasing
attention recently (see for example [4, 2, 8]), and in this paper we will use the RankNet algorithm of
[2] as a baseline, since it is both easy to implement and performs well on large retrieval tasks.

4 LambdaRank

One approach to working with a nonsmooth target cost function would be to search for an optimiza-
tion function which is a good approximation to the target cost, but which is also smooth. However,
the sort required by information retrieval cost functions makes this problematic. Even if the target
cost depends on only the top few ranked positions after sorting, the sort itself depends on all docu-
ments returned for the query, and that set can be very large; and since the target costs depend on only
the rank order and the labels, the target cost functions are either flat or discontinuous in the scores
of all the returned documents. We therefore consider a different approach. We illustrate the idea
with an example which also demonstrates the perils introduced by a target / optimization cost mis-
match. Let the target cost be WTA and let the chosen optimization cost be a smooth approximation
to pairwise error. Suppose that a ranking algorithm A is being trained, and that at some iteration,
for a query for which there are only two relevant documents D1 and D2, A gives D1 rank one and
D2 rank n. Then on this query, A has WTA cost zero, but a pairwise error cost of n − 2. If the
parameters of A are adjusted so that D1 has rank two, and D2 rank three, then the WTA error is now
maximized, but the number of pairwise errors has been reduced by n − 4. Now suppose that at the
next iteration, D1 is at rank two, and D2 at rank n � 1. The change in D1’s score that is required
to move it to top position is clearly less (possibly much less) than the change in D2’s score required
to move it to top position. Roughly speaking, we would prefer A to spend a little capacity moving
D1 up by one position, than have it spend a lot of capacity moving D2 up by n − 1 positions. If j1

and j2 are the rank indices of D1, D2 respectively, then instead of pairwise error, we would prefer
an optimization cost C that has the property that

|
∂C

∂sj1

| � |
∂C

∂sj2

| (2)

whenever j2 � j1. This illustrates the two key intuitions behind LambdaRank: first, it is usually
much easier to specify rules determining how we would like the rank order of documents to change,
after sorting them by score for a given query, than to construct a general, smooth optimization cost
that has the desired properties for all orderings. By only having to specify rules for a given ordering,
we are defining the gradients of an implicit cost function C only at the particular points in which
we are interested. Second, the rules can encode our intuition of the limited capacity of the learning
algorithm, as illustrated by Eq. (2). Let us write the gradient of C with respect to the score of the
document at rank position j, for the i’th query, as

∂C

∂sj

= −λj(s1, l1, · · · , sni
, lni

) (3)

The sign is chosen so that positive λj means that the document must move up the ranked list to
reduce the cost. Thus, in this framework choosing an implicit cost function amounts to choosing
suitable λj , which themselves are specified by rules that can depend on the ranked order (and scores)
of all the documents. We will call these choices the λ functions. At this point two questions naturally
arise: first, given a choice for the λ functions, when does there exist a function C for which Eq. (3)
holds; and second, given that it exists, when is C convex? We have the following result from
multilinear algebra (see e.g. [11]):

Theorem (Poincaré Lemma): If S ⊂ Rn is an open set that is star-shaped with respect to the origin,
then every closed form on S is exact.

Note that since every exact form is closed, it follows that on an open set that is star-shaped with
respect to the origin, a form is closed if and only if it is exact. Now for a given query Qi and
corresponding set of returned Dij , the ni λ’s are functions of the scores sij , parameterized by the
(fixed) labels lij . Let dxj be a basis of 1-forms on Rn and define the 1-form

λ ≡
∑

j

λjdxj (4)

Then assuming that the scores are defined over Rn, the conditions for the theorem are satisfied and
λ = dC for some function C if and only if dλ = 0 everywhere. Using classical notation, this
amounts to requiring that

∂λj

∂sk

=
∂λk

∂sj

∀j, k ∈ {1, . . . , ni} (5)

This provides a simple test on the λ’s to determine if there exists a cost function for which they are
the derivatives: the Jacobian (that is, the matrix Jjk ≡ ∂λj/∂sk) must be symmetric. Furthermore,
given that such a cost function C does exist, then since its Hessian is just the above Jacobian, the
condition that C be convex is that the Jacobian be positive semidefinite everywhere. Under these
constraints, the Jacobian looks rather like a kernel matrix, except that while an entry of a kernel
matrix depends on two elements of a vector space, an entry of the Jacobian can depend on all of the
scores sj . Note that for constant λ’s, the above two conditions are trivially satisfied, and that for
other choices that give rise to symmetric J , positive definiteness can be imposed by adding diagonal
regularization terms of the form λj 7→ λj + αjsj , αj > 0.

LambdaRank has a clear physical analogy. Think of the documents returned for a given query as
point masses. λj then corresponds to a force on the point mass Dj . If the conditions of Eq. (5)
are met, then the forces in the model are conservative, that is, they may be viewed as arising from
a potential energy function, which in our case is the implicit cost function C. For example, if the
λ’s are linear in the outputs s, then this corresponds to a spring model, with springs that are either
compressed or extended. The requirement that the Jacobian is positive semidefinite amounts to the
requirement that the system of springs have a unique global minimum of the potential energy, which
can be found from any initial conditions by gradient descent (this is not true in general, for arbitrary
systems of springs). The physical analogy provides useful guidance in choosing λ functions. For
example, for a given query, the forces (λ’s) should sum to zero, since otherwise the overall system
(mean score) will accelerate either up or down. Similarly if a contribution to a document A’s λ is
computed based on its position with respect to document B, then B’s λ should be incremented by
an equal and opposite amount, to prevent the pair itself from accelerating (Newton’s third law, [9]).

Finally, we emphasize that LambdaRank is a very simple method. It requires only that one provide
rules for the derivatives of the implicit cost for any given sorted order of the documents, and as we
will show, such rules are easy to come up with.

5 A Speedup for RankNet Learning

RankNet [2] uses a neural net as its function class. Feature vectors are computed for each
query/document pair. RankNet is trained on those pairs of feature vectors, for a given query, for
which the corresponding documents have different labels. At runtime, single feature vectors are
fpropped through the net, and the documents are ordered by the resulting scores. The RankNet cost
consists of a sigmoid (to map the outputs to [0, 1]) followed by a pair-based cross entropy cost, and
takes the form given in Eq. (8) below. Training times for RankNet thus scale quadratically with the
mean number of pairs per query, and linearly with the number of queries.

The ideas proposed in Section 4 suggest a simple method for significantly speeding up RankNet
training, making it also approximately linear in the number of labeled documents per query, rather
than in the number of pairs per query. This is a very significant benefit for large training sets. In fact
the method works for any ranking method that uses gradient descent and for which the cost depends
on pairs of items for each query. Most neural net training, RankNet included, uses a stochastic
gradient update, which is known to give faster convergence. However here we will use batch learning

per query (that is, the weights are updated for each query). We present the idea for a general ranking
function f : Rn 7→ R with optimization cost C : R 7→ R. It is important to note that adopting
batch training alone does not give a speedup: to compute the cost and its gradients we would still
need to fprop each pair. Consider a single query for which n documents have been returned. Let the
output scores of the ranker be sj , j = 1, . . . , n, the model parameters be wk ∈ R, and let the set of
pairs of document indices used for training be P . The total cost is CT ≡

∑

{i,j}∈P C(si, sj) and its
derivative with respect to wk is

∂CT

∂wk

=
∑

{i,j}∈P

∂C(si, sj)

∂si

∂si

∂wk

+
∂C(si, sj)

∂sj

∂sj

∂wk

(6)

It is convenient to refactor the sum: let Pi be the set of indices j for which {i, j} is a valid pair, and
let D be the set of document indices. Then we can write the first term as

∂CT

∂wk

=
∑

i∈D

∂si

∂wk

∑

j∈Pi

∂C(si, sj)

∂si

(7)

and similarly for the second. The algorithm is as follows: instead of backpropping each pair, first n
fprops are performed to compute the si (and for the general LambdaRank algorithm, this would also
be where the sort on the scores is performed); then for each i = 1, . . . , n the λi ≡

∑

j∈Pi

∂C(si,sj)
∂si

are computed; then to compute the gradients ∂si

∂wk
, n fprops are performed, and finally the n back-

props are done. The key point is that although the overall computation still has an n2 dependence
arising from the second sum in (7), computing the terms ∂C(si,sj)

∂si
= −1

1+es1−s2
is far cheaper than the

computation required to perform the 2n fprops and n backprops. Thus we have effectively replaced
a O(n2) algorithm with an O(n) one3.

6 Experiments

We performed experiments to (1) demonstrate the training speedup for RankNet, and (2) assess
whether LambdaRank improves the NDCG test performance. For the latter, we used RankNet as a
baseline. Even though the RankNet optimization cost is not NDCG, RankNet is still very effective
at optimizing NDCG, using the method proposed in [2]: after each epoch, compute the NDCG
on a validation set, and after training, choose the net for which the validation NDCG is highest.
Rather than attempt to derive from first principles the optimal Lambda function for the NDCG target
cost (and for a given dataset), which is beyond the scope of this paper, we wrote several plausible λ-
functions and tested them on the Web search data. We then picked the single λ function that gave the
best results on that particular validation set, and then used that λ function for all of our experiments;
this is described below.

6.1 RankNet Speedup Results

Here the training scheme is exactly LambdaRank training, but with the RankNet gradients, and with
no sort: we call the corresponding λ function G. We will refer to the original RankNet training as
V1 and LambdaRank speedup as V2. We compared V1 and V2 in two sets of experiments. In the
first we used 1000 queries taken from the Web data described below, and in the second we varied
the number of documents for a given query, using the artificial data described below. Experiments
were run on a 2.2GHz 32 bit Opteron machine. We compared V1 to V2 for 1 layer and 2 layer
(with 10 hidden nodes) nets. V1 was also run using batch update per query, to clearly show the gain
(the convergence as a function of epoch was found to be similar for batch and non-batch updates;
furthermore running time for batch and non-batch is almost identical). For the single layer net, on
the Web data, LambdaRank with G was measured to be 5.1 times faster, and for two layer, 8.0 times
faster: the left panel of Figure 1 shows the results (where max validation NDCG is plotted). Each
point on the graph is one epoch. Results for the two layer nets were similar. The right panel shows
a log log plot of training time versus number of documents, as the number of documents per query

3Two further speedups are possible, and are not explored here: first, only the first n fprops need be per-
formed if the node activations are stored, since those stored activations could then be used during the n back-
props; second, the e

si could be precomputed before the pairwise sum is done.

varies from 4,000 to 512,000 in the artificial set. Fitting the curves using linear regression gives
the slopes of V1 and V2 to be 1.943 and 1.185 respectively. Thus V1 is close to quadratic (but
not exactly, due to the fact that only a subset of pairs is used, namely, those with documents whose
labels differ), and V1 is close to linear, as expected.

0 5 10 15 20 25 30
0.3 5

0.4

0.45

0.5

0.55

0.6

0.65

0.7

Seconds

ND
CG

LambdaRank Speedup
RankN et T r ai ni ng

8 9 10 11 12 13 14
-3

-2

-1

0

1

2

3

4

5

6

7

Lo
g S

ec
on

ds
 pe

r E
po

ch

L og N u m b er of D ocu m ent s

RankN et T r ai ni ng
LambdaRank Speedup

Figure 1: Speeding up RankNet training. Left: linear nets. Right: two layer nets.

6.2 λ-function Chosen for Ranking Experiments

To implement LambdaRank training, we must first choose the λ function (Eq. (3)), and then sub-
stitute in Eq. (5). Using the physical analogy, specifying a λ function amounts to specifying rules
for the ‘force’ on a document given its neighbors in the ranked list. We tried two kinds of λ func-
tion: those where a document’s λ gets a contribution from all pairs with different labels (for a given
query), and those where its λ depends only on its nearest neighbors in the sorted list. All λ functions
were designed with the NDCG cost function in mind, and most had a margin built in (that is, a force
is exerted between two documents even if they are in the correct order, until their difference in scores
exceeds that margin). We investigated step potentials, where the step sizes are proportional to the
NDCG gain found by swapping the pair; spring models; models that estimated the NDCG gradient
using finite differences; and models where the cost was estimated as the gradient of a smooth, pair-
wise cost, also scaled by NDCG gain from swapping the two documents. We tried ten different λ
functions in all. Due to space limitations we will not give results on all these functions here: instead
we will use the one that worked best on the Web validation data for all experiments. This function
used the RankNet cost, scaled by the NDCG gain found by swapping the two documents in ques-
tion. The RankNet cost combines a sigmoid output and the cross entropy cost, and is similar to the
negative binomial log-likelihood cost [5], except that it is based on pairs of items: if document i is
to be ranked higher than document j, then the RankNet cost is [2]:

CR
i,j = sj − si + log(1 + esi−sj) (8)

and if the corresponding document ranks are ri and rj , then taking derivatives of Eq. (8) and
combining with Eq. (1) gives

λ = N

(

1

1 + esi−sj

)

(

2li − 2lj
)

(

1

log(1 + i)
−

1

log(1 + j)

)

(9)

where N is the reciprocal max DCG for the query. Thus for each pair, after the sort, we increment
each document’s force by ±λ, where the more relevant document gets the positive increment.

6.3 Ranking for Search Experiments

We performed experiments on three datasets: artificial, web search, and intranet search data. The
data are labeled from 0 to M , in order of increasing relevance: the Web search and artificial data
have M = 4, and the intranet search data, M = 3. The corresponding NDCG gains (the numerators
in Eq. (1)) were therefore 0, 3, 7, 15 and 31. In all graphs, 95% confidence intervals are shown.
In all experiments, we varied the learning rate from as low as 1e-7 to as high as 1e-2, and for each

experiment we picked that rate that gave the best validation results. For all training, the learning
rate was reduced be a factor of 0.8 if the training cost (Eq. (8), for RankNet, and the NDCG at
truncation level 10, for LambdaRank) increased over the value for the previous epoch. Training was
done for 300 epochs for the artificial and Web search data, and for 200 epochs for the intranet data,
and training was restarted (with random weights) if the cost did not reduce for 50 iterations.

6.3.1 Artificial Data

We used artificial data to remove any variance stemming from the quality of the features or of the
labeling. We followed the prescription given in [2] for generating random cubic polynomial data.
However, here we use five levels of relevance instead of six, a label distribution corresponding to
real datasets, and more data, all to more realistically approximate a Web search application. We
used 50 dimensional data, 50 documents per query, and 10K/5K/10K queries for train/valid/test
respectively. We report the NDCG results in Figure 2 for ten NDCG truncation levels. In this clean
dataset, LambdaRank clearly outperforms RankNet. Note that the gap increases at higher relevance
levels, as one might expect due to the more direct optimization of NDCG.

1 2 3 4 5 6 7 8 9 10
0.50

0.52

0.54

0.56

0.58

0.60

0.62

Truncation Level

L a m b d a R a n k L i n e a r
R a n k N e t L i n e a r

1 2 3 4 5 6 7 8 9 10

0.55

0.60

0.65

0.70

0.75

Truncation Level

ND
CG

LambdaRankTwoLayer
RankN et TwoLayer
LambdaRankLi near
RankN et Li near

Figure 2: Left: Cubic polynomial data. Right: Intranet search data.

6.3.2 Intranet Search Data

This data has dimension 87, and only 400 queries in all were available. The average number
of documents per query is 59.4. We used 5 fold cross validation, with 2+2+1 splits between
train/validation/test sets. We found that it was important for such a small dataset to use a rela-
tively large validation set to reduce variance. The results for the linear nets are shown in Figure 2:
although LambdaRank gave uniformly better mean NDCGs, the overlapping error bars indicate that
on this set, LambdaRank does not give statistically significantly better results than RankNet at 95%
confidence. For the two layer nets the NDCG means are even closer. This is an example of a case
where larger datasets are needed to see the difference between two algorithms (although it’s possible
that more powerful statistical tests would find a difference here also).

6.4 Web Search Data

This data is from a commercial search engine and has 367 dimensions, with on average 26.1 doc-
uments per query. The data was created by shuffling a larger dataset and then dividing into train,
validation and test sets of size 10K/5K/10K queries, respectively. In Figure 3, we report the NDCG
scores on the dataset at truncation levels from 1 to 10. We show separate plots to clearly show the
differences: in fact, the linear LambdaRank results lie on top of the two layer RankNet results, for
the larger truncation values.

7 Conclusions

We have demonstrated a simple and effective method for learning non-smooth target costs. Lamb-
daRank is a general approach: in particular, it can be used to implement RankNet training, and it

1 2 3 4 5 6 7 8 9 10
0.60

0.62

0.64

0.66

0.68

0.70

0.72

Truncation Level

ND
CG

RankNetLinear
Lam b d aRankLinear

1 2 3 4 5 6 7 8 9 10
0.60

0.62

0.64

0.66

0.68

0.70

0.72

Truncation Level

ND
CG

RankNetT w o Lay er
Lam b d aRankT w o Lay er

Figure 3: NDCG for RankNet and LambdaRank. Left: linear nets. Right: two layer nets

furnishes a significant training speedup there. We studied LambdaRank in the context of the NDCG
target cost for neural network models, but the same ideas apply to any non-smooth target cost, and
to any differentiable function class. It would be interesting to investigate using the same method
starting with other classifiers such as boosted trees.

Acknowledgments

We thank M. Taylor, J. Platt, A. Laucius, P. Simard and D. Meyerzon for useful discussions and for
providing data.

References

[1] C. Buckley and E. Voorhees. Evaluating evaluation measure stability. In SIGIR, pages 33–40, 2000.

[2] C.J.C. Burges, T. Shaked, E. Renshaw, A. Lazier, M. Deeds, N. Hamilton, and G. Hullender. Learning to
Rank using Gradient Descent. In ICML 22, Bonn, Germany, 2005.

[3] C. Cortes and M. Mohri. Confidence Intervals for the Area Under the ROC Curve. In NIPS 18. MIT
Press, 2005.

[4] Y. Freund, R. Iyer, R.E. Schapire, and Y. Singer. An efficient boosting algorithm for combining prefer-
ences. Journal of Machine Learning Research, 4:933–969, 2003.

[5] J. Friedman, T. Hastie, and R. Tibshirani. Additive logistic regression: A statistical view of boosting. The
Annals of Statistics, 28(2):337–374, 2000.

[6] K. Jarvelin and J. Kekalainen. IR evaluation methods for retrieving highly relevant documents. In SIGIR
23. ACM, 2000.

[7] T. Joachims. A support vector method for multivariate performance measures. In ICML 22, 2005.

[8] I. Matveeva, C. Burges, T. Burkard, A. Lauscius, and L. Wong. High accuracy retrieval with multiple
nested rankers. In SIGIR, 2006.

[9] I. Newton. Philosophiae Naturalis Principia Mathematica. The Royal Society, 1687.

[10] S. Robertson and H. Zaragoza. On rank-based effectiveness measures and optimisation. Technical Report
MSR-TR-2006-61, Microsoft Research, 2006.

[11] M. Spivak. Calculus on Manifolds. Addison-Wesley, 1965.

[12] B. Taskar, V. Chatalbashev, D. Koller, and C. Guestrin. Learning structured prediciton models: A large
margin approach. In ICML 22, Bonn, Germany, 2005.

[13] I. Tsochantaridis, T. Hofmann, T. Joachims, and Y. Altun. Support vector machine learning for interde-
pendent and structured output spaces. In ICML 24, 2004.

[14] E.M. Voorhees. Overview of the TREC 2001/2002 Question Answering Track. In TREC, 2001,2002.

[15] L. Yan, R. Dodlier, M.C. Mozer, and R. Wolniewicz. Optimizing Classifier Performance via an Approxi-
mation to the Wilcoxon-Mann-Whitney Statistic. In ICML 20, 2003.

