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ABSTRACT
In a multi-threaded execution, threads may negatively inter-
fere when their private data contends for shared cache or
positively interact when the data brought in by one thread is
used by other threads. This paper presents a model of such
cache behavior to predict locality without exhaustive simula-
tion and provide insight into trends. The new model extends
prior work that assumes no data sharing and uniform thread
interleaving. Based on a single pass over an interleaved ex-
ecution trace, we compute a set of per-thread statistics that
includes the effect of thread interleaving and data sharing.
The per-thread statistics is then composed to predict perfor-
mance for all cache sizes, either for sub-clusters of threads
or for futuristic environments with a larger number of similar
threads.

We evaluate and validate our model against exhaustive
simulation using a server application running on a quad-core
machine and productivity, multimedia and gaming applica-
tions running on a dual-core machine. The results indicate
that our model is accurate and relies on incorporating both
irregular thread interleaving and data sharing to achieve this
accuracy. In addition, it identifies and separates individ-
ual factors affecting locality and scalability and hence opens
new possibilities in performance tuning, program schedul-
ing, and hardware cache design for concurrent applications.

1. INTRODUCTION
The hardware industry has embraced multi-core pro-

cessors and future machines will likely include an in-
creasing number of processor cores. This will result in
multi-threaded applications becoming more common-
place and increase the performance impact of locality
as the memory system and shared on-chip caches serve
data to a large number of processor cores. Recent use of
in-order cores by processors such as Larabee [33] makes
cache simulation a viable strategy for modeling program
locality and performance. An accurate locality model
for multi-threaded applications that quantifies how con-
current threads interact with the memory hierarchy and
∗The primary pieces of this work were developed at Mi-
crosoft Research, Redmond, where the first author worked
as a visiting researcher.

how their data usage affects the efficiency and scalabil-
ity of the system would be very useful in evaluating
software and hardware design decisions and improving
scheduling at the application, operating system, virtual
machine, and hardware levels.

Locality is defined by active data usage. For a mem-
ory access to data block a, the locality of the access
depends on the amount of data that has been accessed
since the last reference to a. This metric is known as
reuse distance or LRU stack distance. In a concurrent
environment, the locality of one thread is affected by
the data access in other threads. In the absence of data
sharing, the effect is purely negative. The reuse distance
of an access by one thread is inflated by data access
from concurrent threads. This effect is first modeled
by Suh et al. [35] for time-shared execution and Chan-
dra et al. [8] for interleaved execution. The two studies
considered multiple instances of independent applica-
tions running concurrently rather than a single multi-
threaded application.

In this paper, we present a locality model for multi-
threaded code. We use a similar model as Suh et al. [35]
and Chandra et al. [8] but extend it with two compo-
nents necessary for multi-threaded applications: thread
interleaving and data sharing. A multi-threaded appli-
cation may have internal dependences that cause non-
uniform interleaving among threads. It is possible that
not all threads are active at all times. A model must
consider the precise interleaving in order to precisely
model thread interaction.

The second issue is shared data. It has two effects
on locality. First, the amount of data access by mul-
tiple threads is not purely additive if some of the data
accessed is the same. Second, there is the benefit of
an intercept, in which a thread can avert a cache miss
if the data block it is accessing has just been brought
in by another thread. An intercept is a phenomenon
unique for a multi-threaded execution. Because of it,
parallel execution can have a positive effect on locality
in that a reuse distance in a thread may be shortened
when executing with other threads.

Models of data sharing have been devised for scientific



applications [23,28], divide-and-conquer algorithms [9],
and cache-coherence machines [4, 15, 17]. These mod-
els analyze the identity, the size, and the frequency of
shared data but not the locality. Our model focuses on
the locality and its allied factors: the locality of individ-
ual threads, the amount of data sharing, and the degree
of interleaving. The individual locality and mutual in-
terleaving affect the amount of data sharing, which in
turn affects the probability of intercepts and the aggre-
gate locality.

Our model is trace based. It computes a set of per-
thread metrics in a single pass over a concurrent ex-
ecution. The per-thread model contains statistics of
locality, data sharing, and interleaving. For a system of
p threads, the model can compute all O(2p) sharing re-
lations by composing per-thread statistics without hav-
ing to traverse the trace again. The composibility of
our model allows us to easily analyze concurrent execu-
tions that only involve a subset of application threads
or executions that include a larger number of similar ap-
plication threads. In addition, to computing miss rates
for a shared cache, we briefly describe an extension that
permits modeling of coherence misses in the interleaved
execution on a partitioned cache.

The rest of the paper is organized in accordance with
our main contributions.

• A composable per-thread data sharing model that
is scalable and allows investigating concurrent ex-
ecutions with a smaller or larger number of similar
threads (Sections 5.1 and 5.2)

• A model for irregular thread interleaving, which
is integrated with the data sharing model (Sec-
tion 4.3).

• Evaluating and validating the two new models us-
ing four real-world multi-threaded applications and
showing how the model can be used to answer in-
teresting questions about application locality and
scalability (Section 6).

2. BACKGROUND
For each memory access, the LRU stack distance or

reuse distance is the number of distinct data elements
accessed between this and the previous access to the
same datum. The locality of an execution is given by
the distribution of all finite reuse distances, which we
call the locality signature. Locality signature gives the
capacity miss rate in caches of all sizes [30]. It can
also be used to estimate the effect of cache associativ-
ity [21, 29, 34]. As an illustration, Figure 1 shows an
example trace and its reuse distances in (a), the local-
ity signature in (b), and the capacity miss rate of all
cache sizes in (c).
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Figure 1: Data access, reuse distance, locality
signature, and miss rate

The locality signature is represented by a histogram
< R,P >=< r1r2 . . . rn, p1p2 . . . pn >, where ri is a se-
ries of lengths and pi is the portion of reuse distances
whose length is ri. For a compact representation, we
let ri be ranges of base-2 logarithmic scale. A local-
ity signature corresponds a probability function p(r) in
statistics. For each range r, p(r) is the portion of reuse
distances whose length fall in r. If we pick a memory
access at random, with probability pi its reuse distance
is in interval ri.

The basic problem of locality modeling is to iden-
tify relevant factors to predict the locality signature,
from which we can predict the miss rate for cache of
all sizes. In a multi-threaded execution, we need to dis-
tinguish two types of single-thread locality. The first is
given by the reuse distances of its memory references
when they are not interleaved with the actions of other
threads. We call this case private reuse distance and
private locality (signature) since they correspond to run-
ning the thread using a private cache (without invali-
dation). The second is given by the reuse distances of
its memory references when they are interleaved in a
concurrent execution. We call this case shared reuse
distance and shared locality (signature). The problem
we address is to predict shared locality for each thread
for some combination of threads. The overall locality
is simply a sum of the shared locality from all partici-
pants.

3. OVERVIEW OF THE NEW MODEL
The new model collects per-thread statistics that in-

cludes five components. The first is the private locality
signature. The second is the reuse time map, which con-
verts a reuse distance to the reuse time window. The
third is footprint, which is the size of data access over
a time window. These first three are collected from
only the memory references of a single thread. The
next two, thread interleaving and data sharing, are es-
timated from the interleaved trace. These components
are composed to produce an estimate of the shared lo-
cality for each thread.

Figure 2 shows more quantitatively how a private
reuse distance d in thread A is converted to its shared
counterpart d′ when A is run with thread B. Roughly
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Figure 2: The steps of predicting the change in reuse distance d of thread A due to parallel execution with thread

B: (1) finds the reuse time window t of d using the reuse time map of A, (2) finding the coinciding time window t′ of

thread B, (3) finding the size of data f accessed in t′. If A, B share no data, d′ is d + f ; otherwise, d′ is computed using

the data-sharing model.

the process is as follows. First it finds the reuse time
window t of the reuse distance d using the reuse time
map of A. Second, it finds the coinciding time window
t′ of thread B, using the interleaving model. Third, it
finds the size of data f accessed in t′, using the footprint
of B. If the two threads share no data, the shared reuse
distance is d + f . When they share data, the shared
reuse distance d′ is computed using the data-sharing
model.

Figure 2 also indicates in parentheses the sections in
which the referenced terms and metrics are defined and
described. As suggested in the figure, these metrics are
probability functions related to each other by composi-
tion.

Of the five components, four (other than the locality
signature) are added to model a parallel environment.
Two of the four, the interleaving and the data shar-
ing components, are unique in this work for modeling
multi-threaded applications. The reuse-time map and
footprint map have been used by previous studies [8,35].
We will use a more precise representation for the former
and a different measurement method for the latter.

Limitations. The model is based on traces and de-
signed for off-line program characterization and perfor-
mance evaluation rather than on-line performance op-
timization. For performance valuation, the model pre-
dicts the miss rate. The effect of a miss can be precisely
calculated on in-order processors such as Larabee [33],
although the effect is less direct on out-of-order issue
processors. For program characterization, a single trace
contains limited information. It does not show how
the parallel behavior changes with another program in-
put. Neither does it show behavior variations due to
scheduling and other non-deterministic factors in a par-

allel environment. However, we believe that this model
is a useful first step. By extracting the characteris-
tics of data sharing and thread interleaving into an
abstract form, we can compare different executions by
their model parameters rather than their trace sequences.
An accurate modeling technique for a single trace can
enable further analysis of the effect of a program in-
put or a system environment. Similarly, it can support
phase analysis and show the behavior variation over
time. In all these cases, we have to identify the mini-
mal set of statistics necessary to characterize a multi-
threaded execution.

4. THREADS WITH NO SHARED DATA
In this section, we address the case where threads

access a shared cache but do not share data. We extend
prior work, which assumes uniform thread interleaving,
to account for general types of interleaving.

4.1 The Model Used in Previous Work
We use an example to introduce the previous model [8,

35] and its basic components. The left portion of Fig-
ure 3 shows the data access trace for two threads sepa-
rately. The right portion shows two types of thread in-
terleaving. One is uniform and the other is not. The pri-
vate reuse distance of the second access of b in Thread 1
changes from R1 = 4 to R′

1 = 9 when the two threads
have uniform interleaving. We have a different result
R′

1 = 8 with the non-uniform interleaving. Next we will
describe first how the uniform interleaving is modeled in
the previous work and then how the general interleaving
is modeled in this work.

The previous models used two metrics to compute
the shared reuse distance R′

1. The first is the time win-
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Figure 3: Shared reuse distance depends on thread interleaving

dow T (R1) in Thread 1, which we call the reuse time
of R1. Under the assumption of uniform interleaving,
the length of the coinciding time window in Thread 2
is computed as |T2| = N2

N1
|T1|, where N1 and N2 are the

length of the trace of the two threads. Thread 2’s ac-
cesses in T2 affect the shared reuse distance R′

1. The sec-
ond metric is the number of distinct data accessed in T2,
which we call the footprint of T2 and denote as F (T2).
The new reuse distance is |R′

1| = |R1|+ F (N2
N1

T (|R1|).
When there are k threads, the new reuse distance R′

1

of Thread i is the original R1 plus the footprint from
all other threads in the overlapping window, as shown
by the following equation.

|R′| = |R|+
∑

p=1...k,p6=i

Fp(
Np

Ni
Ti(|R|))

where Ti is the reuse time map of Thread i, and Fp is
the footprint map of Thread p (p 6= i). Ti is used to
compute the overlapping window of R in other threads,
and Fp show the footprint in a time window. Because of
uniform interleaving, the equation uses a constant ratio
to convert the length of the R time window in Thread
i to the length of time window in another thread. The
shared locality of Thread i is obtained by converting
all private reuse distances of i and then combining the
results.

While uniform interleaving is expected in situations
where independent applications run continuously in par-
allel, the assumption does not always hold for a threaded
execution, especially for one with asymmetrical threads
where some threads run occasionally but not constantly.
Next we explain the metrics we use in the basic conver-
sion and then describe the extension for general thread
interleaving.

4.2 Distributions, Maps, and Sampling
For efficiency reasons, we cannot individually repre-

sent reuse distances, time windows, footprints, and their
relations. Instead, we represent them collectively as sta-
tistical distributions and their mappings. The locality
signature < R,P > is a distribution, where R is a se-
ries of intervals, ri = [di, di+1), and P is a series of
probabilities pi. It says that pi portion of reuses have
distances between di and di+1. A randomly selected

reuse distance has probability pi to be between di and
di+1. From this we can compute estimates such as the
average reuse distance or the most probable reuse dis-
tance.

We represent a distribution with a w-wide histogram.
It uses logarithmic ranges for its bins, where each con-
secutive power-of-two range is divided into w bins of
equal size. For example, if M is the number of data
blocks used by an execution, the locality signature has
a total of w log M entries. Hence the histogram is log-
arithmic in size yet the precision can be tuned by con-
trolling w, which is 8 in our implementation. More dis-
cussion about the w-wide histogram can be found in the
Appendix.

The reuse time is represented by a distribution map,
which maps from an input distribution to an output dis-
tribution. The reuse-time map Ti converts from reuse
distance to the length of its time window. It is a matrix
whose first dimension (rows) consists of bins of reuse
distances and second dimension (columns) bins of time-
window sizes. Each cell pij is the probability that a
reuse distance in the ith distance bin has a time win-
dow of size in the jth window-size bin. The matrix can
be read by rows, which shows the distribution of time
window sizes for a reuse distance, or by columns (with
additional bookkeeping), which shows the distribution
of reuse distances for a time-window size.

The footprint is also represented by a distribution
map that maps from a time window size to a footprint.
It is a matrix with bins of time-window sizes in the first
dimension and bins of footprints in the second dimen-
sion. Each row shows the distribution of footprints for
a time-window size, and each column shows the distri-
bution of time-window sizes for a footprint.

A reader may detect certain redundancy in the two
maps. Since both reuse distance and footprint measure
the number of distinct data accessed in a time window,
why isn’t the footprint map simply the inverse of the
reuse-time map? This is due to the difference between
a reuse window and a time window. A reuse window
must access the same data at both ends, but a time
window can access different data. For a trace of length
n, numerically there are O(n) reuse windows but O(n2)
time windows. If one randomly selects a time window
in an execution, it is most likely not a reuse window.



Therefore we cannot use the inverse of the reuse time
map as the footprint map.

Throughout the paper we assume an application model
where a concurrent execution of multiple threads is
recorded in an interleaved trace. The private reuse dis-
tance and the size of its time window are measured by
extracting from the interleaved trace just the accesses
by one thread. The private footprint is measured by
random sampling of time windows and recording the
relation between the window size and the volume of
data accessed in the window.

4.3 General Thread Interleaving
The executions of different threads may not interleave

uniformly. This is often the case for client applications,
when threads perform different tasks. For server work-
loads, the relative rate of execution of parallel threads
may change from one phase to another. In both cases,
it is possible for a thread to execute only periodically.
To be general, the interleaving model needs to answer
two questions: when are threads are executed together,
and what are their relative rates of execution?

The interleaving between from thread i to j is a dis-
tribution map from the size of reuse time window in i
to the size of reuse time window in j. The key observa-
tion is that we care about the interleaving in all reuse
windows rather than all windows. We can use the same
record keeping as in reuse-distance measurement does.
During the analysis, as we traverse the interleaved exe-
cution trace, we maintain a record of the private execu-
tion counts, that is, the number of executed instructions
by one thread, at the points of the last access of each da-
tum. At each data access, we compute the instruction
count since the last access of the same datum. Since
we store the interleaving relation between each pair of
threads, the number of interleaving maps is quadratic
to the number of threads.

Let B be the number of bins in a time histogram. For
each thread t, the interleaving with other k− 1 threads
is represented by two B×(k−1) matrices: the probabil-
ity matrix and the ratio matrix. In both matrices, each
row is a reuse distance bin. The element (bi, tj) is the
probability of a reuse distance of length bi being con-
current with the execution of Thread tj . When they are
concurrent, the element (bi, tj) in the ratio matrix gives
the rate of execution of Thread tj relative to t in that
window. We denote the two matrices as Interleaveprob

t

and Interleaverate
t .

With general thread interleaving, the extended model
is shown in Figure 4. For each bin of private reuse dis-
tance, the algorithm computes all non-empty compan-
ion subsets. For example, if Thread t is run with u, v,
this step separates the times when t runs with just u,
with just v, and with u, v. For each companion set, it
invokes the data model (described in the next section)

as a subroutine to compute the new reuse distance. It
then computes the probability prob of the companion
subset and use it to weigh the new reuse distance. The
subroutine ComputeConcurrencyProb uses the stan-
dard inclusion/exclusion method and is omitted. The
subset enumeration includes the empty set, in which
case Thread t runs by itself.

Uniform interleaving is a special case of general in-
terleaving. In this case, there is one companion subset
including all other threads. Every number in the proba-
bility matrix is 1, and every column of the ratio matrix
has the same value. Other types of matrices represent
the general case. The model accounts for the full range
of possible interleaving.

One may question whether the two numbers, inter-
leaving probability and ratio, can be combined so the
relation is represented by one matrix rather than two.
For example for a reuse window size, if Thread j exe-
cutes with i 50% of the time and has an interleaving
ratio of one-to-one, then Thread j would execute the
same number of instructions in these windows if j exe-
cutes with i 100% of the time at a ratio of half-to-one.
However, the effect on reuse distance is actually very
different. 50% of i’s reuse distances are unchanged in
the first case but all reuse distances are changed in the
second case. Indeed, we have observed poor prediction
results when we tested a version of the model using this
idea.

The space cost of the interleaving model is quadratic
to the number of threads. We have considered two al-
ternative solutions. The first avoids the quadratic space
cost by using a global virtual time and computing the
relative rate of execution in each virtual time window.
However, it needs an additional map from the reference
count of each thread to its virtual time range. In ad-
dition, it needs to measure all windows rather than all
reuse windows. The second method measures the in-
terleaving probability for each thread subset at a cost
exponential to the number of threads. In comparison,
our interleaving model has the lowest analysis cost, and
the space cost in absolute terms is not large.

When threads do not share data, the concurrent cache
use effectively reduces the cache size available to each
thread. The model in this section computes this nega-
tive interference. The model shows that a reuse distance
is never shortened, which means that shared locality is
never better than private locality. When threads share
data, however, they may improve the cache performance
of one another. We consider the shared-data case next.

5. THREADS WITH SHARED DATA
In this section, we consider the case where multiple

threads access shared data in a shared cache. First,
we describe a model that estimates the amount of data
sharing between threads. Next, we show how data shar-



Inputs: (Thread t running with t1, t2, ..., tk−1)
the same first four inputs as in data sharing model (Figure 6)

Interleaveprob
t and Interleaverate

t : the interleaving probability and rate
Output

the shared locality signature of thread t, ReuseSigt′

Algorithm InterleaveShare (ReuseSigt, ReuseT imeMapt, FootprintMapt,t1,...,tk−1 , U,

Interleaveprob
t , Interleaverate

t )
foreach reuse distance bin ri = [d1, d2] that has pi portion total references
foreach subset S of (t1, ..., tk−1)
dist = GetSharedReuseDis(S ∪ {t}, ri, ReuseT imeMapt, FootprintMap, U, Interleaveratio

t ) /* Section 5.2 */

prob = GetConcurrencyProb(S, Interleaveprob
t )

add (dist′piprob) to ReuseSigt′

end foreach subset
end foreach distance bin

End algorithm

Figure 4: The locality model of threads with general interleaving

ing affects the miss rate in a shared cache (of any size).
Finally we briefly discuss how to model coherence misses
to extend this model to partitioned caches.

5.1 Composable Data Sharing Model
We divide the data accessed by a thread into three

components or types. The first is always shared data,
which is accessed by all threads. We denote its size by
x. This represents shared data that is always accessed
in the given scenario. Examples of this type are usually
global constants in an application such as the root node
of a B-tree or the front node of a shared list.

The second type is potentially shared data, which is a
pool of data that any threads can access. The size of the
shared pool is the same for all threads, which we denote
w. The probability of thread i accessing a datum in w is
mi (0 ≤ mi ≤ 1). This category represents shared data
that is not necessarily accessed by all threads, such as
the leaf nodes of shared tree structures. The last type
is the private data accessed by each thread. We denote
its size as pi for Thread i.

The complete data accessed by Thread i is ui, which
is the sum of the three components, ui = x + miw + pi.
We call our model the WXP model for its three compo-
nents. The combined sets of always shared, potentially
shared, and private data are called three universes. As
a basic property in our model, different data universes
have no overlap. Figure 5 illustrates the WXP model
with a two thread example. Note that while the ex-
ample shows WXP as sets for illustrative purposes, our
model only computes the size of these sets not their
contents.

This model is a deliberate approximation since for
efficiency it is not scalable to record the sharing in all
thread subsets. For a system of k threads, the model ap-
proximates these O(2k) relations with 2k+2 quantities:
two numbers per thread, pi and mi, and two numbers
for the system, x and w. In addition, it makes it possible
for one to investigate the impact of additional threads
by modeling their data sharing with these parameters,

pi and mi.
When analyzing multi-threaded applications, we dis-

covered that the data footprint and data sharing dif-
fered greatly between different threads. The WXP model
is designed to approximate asymmetrical threads and
their data sharing. The model does not constrain the
size of private data in a thread. Each can have any
size pi. If a group of threads share more data than an-
other group, the model will assign higher mis to the
first group.

Data sharing in an application may involve many
data structures accessed in different ways, and the shar-
ing may change at different time scales. WXP attempts
to capture the first order effects of variable data size and
data sharing by taking some average statistics over the
entire trace. There is naturally a limit to how much an
automatic technique can analyze a program. Our strat-
egy is to develop a minimal and intuitive model and
then test its fit with a range of applications.

The complication, even in this simple model, is that
none of the 2p+2 numbers can be directly measured. For
example, if a datum is accessed by all threads, it could
be part of x or always shared, but it could also be part of
w or potentially shared when it happens to be accessed
by all threads. Similarly, if a datum is accessed by only
one thread, it may be either w potentially shared or pi

private.
Instead of direct measurement, we derive the model

parameters through one-pass profiling of the interleaved
execution. We need enough observations to constrain
the calculation. For p threads, there are 2p − (p + 1)
sharing relations (subsets with at least two members).
Minimally we need p = 4 so the number of observations,
2p − (p + 1) = 9, is greater than the number of param-
eters 2p + 2 = 8. We next describe the derivation for
p ≥ 4.

First, we record the set of data blocks accessed by
each thread and compute the amount of data sharing
between all subsets of threads. Let n be the total data
size and p the number of threads, the computation cost
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Figure 5: Illustration of the data sharing model and the effect of intercepts

is O(n2p) and the space cost is O(n) for this step.
Assuming p = 4, we next compute the average size

of shared universe between 2, 3, and 4 threads. Let the
three numbers be ū2, ū3, and ū4. We then approximate
the average m̄ = mean(mi). Observe that from

ū2 ≈ x + m̄2w

ū3 ≈ x + m̄3w we compute m̄ = ū3−ū4

ū2−ū3

ū4 ≈ x + m̄4w
With m̄ we solve for x and w using any of the above two
now linear equations for ū2, ū3, and ū4. The choice does
not matter since a solution to any two is the solution
to all three. A higher p can be considered at this step
by taking the best approximation when the number of
equations is greater than the number of unknowns.

The last step is to compute the approximation of mi

and pi. Let ui,j denote the size of shared universe by
threads i and j. Then we have mi

mj
= ui,q

uj,q
for q 6= i, j.

To improve precision, we can approximate the ratio by
the average from all q. Once we have an estimate for
mj

m1
for all j 6= 1, we compute m1 = m̄p

1+
P

j

mj
m1

and then

mj = mj

m1
m1. Finally, we have pi = ui−miw−x, where

ui is the size of the data accessed by thread i.
The WXP model requires four or more threads in an

interleaved trace. With enough observations, it solves a
non-linear equation to derive the parameters that give
the best approximation to the observation. The model
can be applied to the whole trace or partial pieces. The
WXP is composable. Each thread is represented by
a set of numbers, and the behavior of a thread sub-
set is composed from per-thread numbers, without re-
analyzing the trace. One benefit of a composable model
is that we can “clone” a thread by giving a new thread
the same WXP parameters. In this way we can study
the behavior of hypothetical thread groups however large
they are.

5.2 Computing Shared Cache Miss Rate
We now describe how to consider data sharing when

predicting the miss rate of shared cache of all sizes.
Data sharing has two effects on a reuse distance. First,
the size of data accessed by multiple threads is not sim-
ply additive. Second, there is the chance of an intercept,
when a reuse distance in one thread is split into two
segments by an intervening access from another thread.
The two-thread example in Figure 5 shows both effects.
Datum i is accessed by both threads during the course
of reuse distance R2 and should not be double counted
in R′

2. Thread 2 accesses d in the middle of the time
window of R2, forming an intercept and dividing the
reuse distance into R′

2a and R′
2b.

The algorithm for the k-thread case is given in Fig-
ure 6, where Thread t is running with Threads t1, ..., tk−1.
The inputs to the model include the reuse-distance bin
r, the reuse-time map of Thread t, the footprint map,
the data sharing model, i.e. the WXP parameters, the
data size for all threads, and the interleaving ratio (Sec-
tion 4.3) between other threads and Thread t. Recall
that the thread interleaving probability is used in the
parent subroutine InterleaveShare shown in Figure 4.

The algorithm can be thought of having three stages.
The first stage computes the footprint for the (k − 1)
peer threads. It has three steps: finding the length of
the time window of r in Thread 1, finding the coin-
ciding time windows in peer threads, and finding the
footprint in these windows. Stage 2 computes the reuse
distance assuming no intercept. It has four statements:
decomposing r based on the WXP model, decomposing
footprints fti

based on the WXP model, computing the
size of shared data datashared, and adding it to the size
of private data to obtain the result, disno intercept.

The key step in Stage 2 is estimating the overlap in
shared-data access. From the WXP model, we have
separated the shared-data components in the reuse dis-



Inputs: (Thread t running with t1, t2, ..., tk−1)
r: a private reuse distance in Thread t
ReuseT imeMapt: the reuse time map of Thread t
FootprintMapt1,...,tk−1 : the footprint map of Threads t1, t2, ..., tk−1

Ut,t1,...,tk−1 : the WXP sharing model
Mt,t1,...,tk−1 : total data size of Threads t, t1, t2, ..., tk−1

Interleaverate
t : the interleaving ratio of Threads t with t1, t2, ..., tk−1

Output
r′: the modified reuse distance considering parallel execution and data sharing

Algorithm GetShareReuseDistance (r, ReuseT imeMapt, FootprintMapt1,...,tk−1 ,
Ut,t1,...,tk−1 , Mt,t1,...,tk−1 , Interleaverate

t )
the time window of r in Thread t is timet = ReuseT imeMapt(r)
the coinciding time window in Thread ti is timeti = timetInterleaverate

t→ti
, i = 1, ..., (k − 1)

the footprint of ti is fti = FootprintMapti (timeti ), i = 1, ..., (k − 1)

decompose r into < rx, rw, rp > such that rx + rw + rp = r and rx : rw : rp = Ux : Uw
t : Up

t
decompose each fti into < fx

ti
, fw

ti
, fp

ti
> similarly based on Ux, Uw

ti
, and Up

ti

datashared = GetUnionSize(rx, fx
t1

, ..., fx
tk

, rw, fw
t1

, ..., fw
tk

)

disno intercept = rp +
P

fp
ti

+ datashared

probintercept = rx

Mt
+ rw

Mt

disintercept =
disno intercept

k
return disno intercept(1− probintercept) + disinterceptprobintercept

End algorithm

Figure 6: Computing the effect of data and cache sharing on private reuse distance r in Thread t,
when t is run in parallel with k − 1 other threads.

tance r and each footprint fti
. Consider the X com-

ponents: rx from the reuse distance and fx
ti

from each
footprint. We need to estimate the size of the union of
these k data sets. Let the union size be sunion. We have

max(rx, fx
t1 , ..., f

x
tk−1

) ≤ sunion ≤ sum(rx, fx
t1 , ..., f

x
tk−1

)

The inequality shows that sunion is bounded below by
the size of the largest component and bounded above
the total size of all components. We call the lower
bound smax and the upper bound ssum.

We estimate sunion by taking the joint probability.
We take rx

Ux and fti

Ux as the probabilities. We com-
pute sunion as the union of their probabilities using the
inclusion-exclusion principle. Let p1, p2, ..., pk be the
probabilities. The union punion is

punion =
n∑

i=1

(−1)i−1
∑

all subset S of size i

∏
i∈S

pi

Then we have sunion = punionUx, where Ux is the size
of the X data in the WXP model.

As mentioned before Ux is cumulative sharing and
not necessarily the active sharing, especially in small
execution windows. We have experimented with differ-
ent methods of estimating the working set size. Since
different threads may execute a very different number
of instructions during a time window, it is unclear what
a common working set means. We therefore use the
sum of all components, ssum = sum(rx, fx

t1 , ..., f
x
tk−1

),
for smaller ranges of r. Instead of setting an arbitrary

threshold, we let the model dynamically pick from ssum

and sunion the one that is closest to mean(smax, ssum).
The shared portion of W data is computed in the same
way. The total shared data, datashared, is the sum
of the two. The reuse distance without an intercept,
disno intercept, is the sum of private data accessed by all
threads plus datashared, as computed in the last state-
ment in Stage 2.

When predicting for a large number of threads, we ap-
proximate the exponential-cost inclusion/exclusion com-
putation by first calculating the average probability and
then computing as if all threads have this probability.
The approximation may overestimate the amount of
data sharing (which can be shown using Jensen’s in-
equality), but the time cost is linear to the number of
threads rather than exponential.

Stage 3 of the algorithm computes the effect of inter-
cepts. The probability and the frequency of intercepts
depend on the overlap among shared-data components.
By experimenting with the inclusion-exclusion princi-
ple, we found that two primitive heuristics perform well:
the average probability of the intercept is the relative
size of shared data in Thread t, and the number of the
intercepts is the number of thread peers. The algorithm
uses the denominator k when computing disintercept be-
cause k− 1 threads mean k− 1 intercepts, which divide
a time window into k sections.

5.3 Extension to Partitioned Caches
We describe a simple extension for modeling coher-

ence misses that allows us to extend this model to com-



pre-processing time model size
locality signature (§ 4.2) O(t log log n) k log n

reuse time (§ 4.2) O(t log log n) k log t log n

footprint (§ 4.2) O(t log log n) k log t log n

data sharing (§ 5.1) (n2k + t) 2k + 2

interleaving (§ 4.3) O(t) k2 log n

prediction time space
no shared O(p2 log n) O(k log t

data (§ 4.3) log n)

with shared O(p22p log n) O(k log t

data (§ 5.2) (k + log n))

simulation O(t log n) O(t)

Table 1: The time complexity in data collection
and locality prediction and the size of model
data. The model stores statistics for log t win-
dow sizes, log n cache sizes, and 2p thread com-
binations.

pute locality for partitioned caches. If we assume that
each thread accesses a separate partitioned cache then
the only way for another thread to impact its local-
ity is by writing to a shared data item that results
in a cache invalidation (we ignore the impact of write
to read downgrades). This situation only impacts the
cache miss rate computation when the second thread
intercepts the reuse distance of the first thread (see
Figure 5), the intercept is a write access, and the reuse
distance was less than the cache size (otherwise the ac-
cess would have anyway counted as a capacity miss).
The number of coherence misses can be modeled by mul-
tiplying the intercept probability with the probability
that the corresponding access was a write. This write
probability is estimated from the interleaved trace. When
multiple threads share a partitioned cache, we first use
the shared cache, shared data model to estimate the
combined reuse distances for each partitioned cache and
then model coherence misses across these caches.

5.4 Time and Space Complexity
Table 1 summarizes the asymptotic cost of collect-

ing and storing the five model components and of using
them in miss-rate prediction. The symbols are t, the
length of the interleaved trace; n, the size of accessed
data; k, the number of threads in the training run; p,
and the number of threads for prediction. The table
shows the profiling cost, prediction cost, and for com-
parison purpose the cost of exhaustive simulation. The
cost of the reuse distance and footprint measurement is
based on a relative-precision algorithm [13].

6. EVALUATION
We first measure the accuracy of our model statistics

in reproducing the cache effect of a multi-threaded ex-

ecution and then use it to compose the cache effect for
different thread mixes without re-executing a program.

6.1 Methodology
For a trace of t data accesses to n data blocks in p

threads, our goal is to predict the miss rate for O(log n)
cache sizes and 2p thread combinations. Our model con-
sists of a number of components interacting with each
other, which makes it difficult to attribute and explain
individual effects and therefore raises the question that
a result may due more to chance or minor details than to
the reasoning we have used in constructing the model.

Our design strategy is to build the model entirely
from observed data in each trace with no thresholds or
constants specific for an application, a cache size, or
a thread combination. Each component of the model
exerts a systematic effect on the prediction for all pro-
grams, cache sizes, and thread combinations. The model
cannot be tuned for any single prediction scenario. To
evaluate, our strategy is to test the accuracy of as many
different predictions as possible. We include results
for many cache sizes not because these are practical in
cache design but because they provide additional tests
of the model. Accurate prediction in all scenarios would
provide assurance that the statistics in the model cap-
tures key locality characteristics of multi-threaded ap-
plications, at least the ones in our test set.

6.2 Benchmarks
We collected traces from four multi-threaded com-

mercial applications using an instruction-level tracing
tool [6]. The first trace is from a server application run-
ning on a quad-processor system. The other three are
a productivity, a multimedia, and a game application,
run on a dual-processor system. We call these traces
Server, Productivity, Multimedia, and Game. The dif-
ference in the machine platform will become significant
later when we see that the interleaving model is criti-
cal for dual-processor runs. The characteristics of the
traces are given in Table 2. Most traces have 50 mil-
lion memory accesses except for the server trace, which
is 30 times larger and has 1.7 billion memory accesses.
The miss rate results that follow are reuse miss rates
in that the cold-start or compulsory misses, which is
equal to the number of blocks used by a trace, are not
counted. A simple calculation from the data in the ta-
ble shows that the cold-start miss rates are below 0.2%
for all except Game, which is 0.4%.

The four traces have 4 to 22 threads. The last two
columns show the size of the largest single thread and
of the largest four threads. Productivity and Multimedia
have little
parallelism—a single thread accounts for over 90% and
97% of the actions. The extreme asymmetry provides
a good test for the interleaving model. Server has the



number of size of
traces accesses blocks threads top 1 top 4
Server 1.70B 989K 22 29.7% 99.5%

Productivity 40.0M 36.6K 4 90.2% 100%
Multimedia 50.0M 106K 7 97.0% 99.8%

Game 50.0M 190K 6 71.4% 99.8%

Table 2: Characteristics of the four multi-threaded execution traces

most balanced parallelism—the largest of the four ac-
counts for less than 30% of the total. We model the
top four threads, which account for at least 99.3% of a
trace. The unit of data is 64-byte blocks. We show re-
sults for data locality, which has the highest miss rate.
The same model can predict for instruction locality and
mixed instruction and data locality.

6.3 Model Validation
Figure 7 compares the measured and predicted lo-

cality of our test applications running four threads on
8 cache sizes from 32KB to 4MB. In each of the four
graphs, the curve “sim share” shows the miss rates mea-
sured through simulation of the interleaved trace. The
curve “sharing+interleaving models” shows the miss rates
predicted by our technique. The curve “no sharing, uni-
form interleaving” shows the prediction assuming no
data sharing and uniform interleaving. Finally as a ref-
erence, the curve “avg serial” shows the (weighted) av-
erage sequential locality of the four threads.

The first two applications, Server and Game, dis-
played in the upper two graphs in Figure 7, show signif-
icant effect of data sharing: concurrent execution (“sim
share”) increases the miss rate of individual threads
(“avg serial”), and the increase would be far more if
the threads do not share data and run independently
(“no sharing, uniform interleaving”). We have tested
the effect of data sharing and thread interleaving sepa-
rately. It turns out that the interleaving is mostly uni-
form, and the prediction is based mostly on the effect
of data sharing. The fact that the prediction closely
matches the measurement in all cache sizes indicates
the accuracy of our data sharing model, including the
derivation of the WXP parameters and the considera-
tion for intercepts.

The next two applications, Productivity and Multime-
dia, displayed in the lower two graphs in Figure 7, have
asymmetrical interleaving. The largest thread accounts
for 90% and 97% of all data accesses. The interleaving
model shows that the three smaller threads only run
occasionally rather than at all times, so the locality of
the concurrent execution is close to the average serial
locality. The assumption of uniform interleaving, how-
ever, leads to a prediction of a much higher miss rate,
as shown by the curve “no sharing, uniform interleav-
ing.” We have also observed similar mis-prediction if

we do not separately consider interleaving probability
and interleaving ratio (discussed in Section 4.3). This
effect of the interleaving model diminishes over large
execution windows. All methods predict the miss rate
correctly for cache sizes 128KB and up in Multimedia
and 512KB and up in Productivity. In other tests, we
found that data sharing has little visible effect on the
miss rate, and the prediction is based entirely on the
effect of interleaving.

The gap in Multimedia shows a property of distance-
based locality prediction. The model predicts for each
reuse-distance bin, while the miss rate is cumulated
from multiple bins. An error happened for reuse-distance
bin at 1MB, and the error is carried left through the
smaller cache sizes.

In the four test applications, Server has the longest
length and the largest amount of data and data sharing.
Figure 8 shows the same type of plots as in Figure 7
but for two-thread and three-thread executions. There
are a total of 11 different concurrent combinations, 6
2-thread sets, 4 3-thread sets, and 1 4-thread set. Since
it is impractical to compare 22 curves in a single figure,
we show a 2-thread set and a 3-thread set by taking the
two and the three threads that have the lowest thread
identifiers.

By processing the 1.7 billion memory access trace
once, the model is able to predict the miss rate of 11
different executions for 8 different cache sizes, a total of
88 different miss rates with models constructed over a
single pass of the access trace. In the 3-thread execu-
tion shown in Figure 8, the miss rate drops from 2.1%
in the 32KB cache to 0.016% in the 4MB cache. The
absolute error in prediction drops from 0.077% at 32KB
and 0.098% at 64KB to 0.0063% at 2MB. The relative
error increases from 3.4% at 32KB and 7.3% at 64KB
to 13% at 2MB. We observe similar results for other
concurrent executions of the Server threads.

The WXP model. The amount of data sharing is
estimated by the WXP model. Table 3 shows the size of
always shared, potentially shared, and private data for
the Server trace, which has the highest degree of sharing
among the four benchmarks. Over 9 thousand blocks
are estimated to be always shared, and each thread has
between 16% to 18% probability accessing a pool of
177 thousand blocks. The private data range between



Full server 4 threads data miss rate

cache size

m
is

s 
ra

te
 (%

)

32k 64k 128k 256k 512k 1m 2m 4m

0.
0

  1
.0

  2
.0

  3
.0 sim share

sharing+interleaving models
no sharing, uniform interleaving
avg serial

Game 4 threads data miss rate

cache size

m
is

s 
ra

te
 (%

)

32k 64k 128k 256k 512k 1m 2m 4m

  0
.0

  1
.0

  2
.0 sim share

sharing+interleaving models
no sharing, uniform interleaving
avg serial

Multimedia 4 threads data miss rate

cache size

m
is

s 
ra

te
 (%

)

32k 64k 128k 256k 512k 1m 2m 4m

  0
.0

  0
.2

  0
.4

sim share
sharing+interleaving models
no sharing, uniform interleaving
avg serial

Productivity 4 threads data miss rate

cache size

m
is

s 
ra

te
 (%

)

32k 64k 128k 256k 512k 1m 2m 4m

  0
.0

  1
.0

  2
.0

sim share
sharing+interleaving models
no sharing, uniform interleaving
avg serial

Figure 7: Measured and predicted locality for the largest four threads for a mix of server, desktop,
and game applications. The prediction shows the effect of data sharing in Server and Game in the
top two graphs and thread interleaving in Multimedia and Productivity in the bottom two graphs.

thread prob. private tot. tot.
X W id acc. mi pi data acc.

8 18.7% 56K 99K 494M
9K 177K 40 18.6% 57K 99K 486M

88 17.3% 67K 107K 207M
72 16.3% 62K 100K 505M

Table 3: The WXP model for Server threads

98 thousand to 106 thousand blocks. The effect of data
sharing is greater at larger thread counts, as shown in
Figure 8 by the growing gap between the simulated miss
rate and the prediction assuming no data sharing.

The cost of modeling. For the largest trace we an-
alyzed, a histogram contains less than 300 numbers and
a distribution map contains less than 80000 numbers.
The pre-processing takes less than six hours for the
longest trace and less than an hour for smaller traces
and only needs to be done once per trace. The predic-
tion time using a 2.2GHz Intel Core 2 Duo takes less

than 20 seconds for each thread combination up to four
threads and less than 10 minutes for 32 threads.

6.4 Predicting Scalability
With the composable model we can examine the scal-

ability of a concurrent program by adding threads with
similar characteristics to those we have already mod-
eled. In this section, we evaluate the concurrent execu-
tion of different thread counts from 8 to 32 by replicat-
ing the set of Server threads by factors from 2 to 8. The
predicted behavior of large concurrent runs can reveal
or verify trends in the effect of data sharing that are not
as visible in small scale executions. It can also predict
the resource demands for cache and memory bandwidth
for future systems.

We show two predictions: the positive effect of data
sharing in a shared cache and the negative effect of data
sharing in a partitioned cache.

Figure 9 shows the increase of the miss rate with the
number of threads for caches of size 512KB to 64MB.
The two graphs are miss rates with data sharing (on
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Figure 8: Measured and predicted locality for 2 and 3 threads of the Server application. The effect of
data sharing is greater in a larger number of threads. The 4-thread Server is shown in the upper-left
graph in Figure 7.

the left) and without data sharing (on the right), and
the benefit of data sharing is shown by the lower miss
rates on the left. Note that we simulated no sharing by
effectively tagging every access with a thread ID, so no
two threads share data. The average reduction in the
overall miss rate is 31%, 29%, 44%, 57%, and 50% for
2, 4, 8, 16, and 32 threads. The reduction is higher for
more threads and also for larger caches. The average
reduction is 28%, 32%, 40%, 49%, 70%, 74% and 82%
for the seven cache sizes from 512KB to 32MB.

These estimates may be optimistic because we com-
pute them using the average sharing rather than inclusion-
exclusion formula, as discussed in Section 5.2. However,
the error is small if the ratios are similar, which is the
case for the Server threads. We plan to study more ac-
curate approximation schemes but we believe that the
general trends shown in these results are correct.

The partitioned cache interacts with other caches
through coherence events. For a running thread, the
most disruptive effect of data sharing are invalidations.
We call the thread using the cache the resident thread
and other threads neighbor threads. If a neighbor thread
modifies a data block that is present in the resident’s
cache, the block will be removed and the next access
by the resident thread will be a miss, regardless of the
reuse distance.

In the next experiment we use the extension to the
data sharing model (Section 6.3) to estimate the likeli-
hood of data blocks that are modified by at least one
neighbor thread. This model has not been carefully
refined, and its prediction has not been exhaustively
verified. Nevertheless, the preliminary results already
demonstrate an interesting property of the coherence
misses.

Figure 10 shows the overall miss rate for one of the
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Figure 10: Projected miss rates, including the
coherence misses, of a short Server thread in a
partitioned cache

short Server threads, including the number of coher-
ence misses. The cache size ranges from 1KB to 8MB.
The curves are labeled by the total number of threads.
The “one thread” case is when there is only the solitary
resident. As we add 1, 3, and 7 neighbor threads, the
miss rate increases significantly. After that point, how-
ever, the increase nearly stops. An additional 8 and 24
neighbor threads have little effect on the miss rate of
the resident thread.

The cause can be explained in terms of data sharing.
The neighbor threads can invalidate shared data in the
resident’s cache, and the more neighbors threads there
are, the more likely a shared block is invalidated before
it is reused. At some point, all shared accesses of the
resident thread become cache misses because of heavy
invalidation, and the miss rate no longer increases.
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Figur e 8: Pr ojected locality of up to 32 Server threads
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Figur e 9: Pr ojected miss rates, including the coherence misses,
of a short Server thread in a partitioned cache

ently dependinghow and what dataare shared. Based on this ob-
servation, Dubnicki and LeBlanc designeda dynamic cache block
splitting and merging scheme[10] and Amza et al. designeddy-
namic page grouping scheme [3]. In these studies, the effect of
datasharingwas simulatedratherthanpredicted.

Agarwal et al. describedan analytical model in which the in-
terferencefrom other threadsare considered as the effect of their
memoryfootprints[1]. The modelusedtheaveragefootprint(which
they called working set) of a single window size and did not con-
sider datasharing. More recentmodelsare basedon reusedistance
and have beendiscussed previously in Section 3.6. They did not

consider the effect of data sharing. None of the models we are
aware of attemptedto predicttheperformanceof a larger scale sys-
tem.

For scientific applications,regulararray sectionanalysis (by many
researchers, see [2, 14]) has beenused to estimateand reorganize
the concurrentdataaccess for examples for reducingfalse sharing
by Eggers and Jeremiassen[18] on multiprocessors and for data
prefetchingand message aggregation on DSM by Lu et al. [20]
More generalforms of dependenceanalysis has beenusedto auto-
matically parallelize sequentialcodefor examplesin [5, 13, 16, 19].
While static analysis guaranteesthe absenceof conflicts under all
parallel executions, it does not directly estimatethe locality of a
concurrentexecution, which dependson factors outsidethe scope
of data dependencesuch as the degree of interleaving, the fre-
quency of data access, and the effect of read-readsharing. In ad-
dition, traditional dependencechecking cannot accurately model
pointer-basedprogramswhere data are dynamically allocatedand
indrectly accessed.

7. CONCLUSIONS
This paperpresentsa techniquefor analyzingthelocality of con-

current executions that share data. First, we show how to com-
puting reuse distance when the concurrent execution includes no
sharedaccesses,which can be usedto calculatethemiss rateof the
execution for a shared cache. Second, we presenta composable
per-thread data sharing model that is scalable and allows investi-
gating concurrentexecutions with a smaller or larger number of
similar threads. Third, we use our datasharing model to compute
reuse distancewhen the concurrentexecutionincludes shared ac-
cesses, which can be used to compute the execution’s cache miss
rate for a shared cache. Finally, we presentexperimental results
thatdemonstratetheaccuracy of our modelandshow thatit can be
usedto answerinterestingquestionsaboutapplicationlocality and
scalability.
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Figure 9: Projected locality of up to 32 Server threads

7. RELATED WORK

Distance-based models. For time-shared environ-
ments, Suh et al. showed how the reuse distance of one
process is lengthened by the footprints of others [35].
Chandra et al. were the first to demonstrate this type
of calculation for parallel processes running on multi-
processor systems [8], which is later extended to accu-
rately model the effect of cache conflicts [10]. In this
paper, we augment the models in [8, 35] (which is de-
scribed in more detail in Section 4.1) to consider data
sharing and thread interleaving, which are necessary to
predict locality of multi-threaded applications.

Performance of shared cache can be measured directly
either through hardware counter sampling [5] or by aug-
menting the notion of reuse distance [32]. The measure-
ment includes the effect of data sharing, intercepts, and
cache invalidation for a particular concurrent execution.
Instead of direct measurement, our approach tries to
model the effect from per-thread statistics. Because it
is composable, our technique can be used to infer how
data sharing changes in different thread combinations
without re-analyzing different executions.

Static analysis. For scientific applications, regular
array section analysis (by many researchers, see [2]) has
been used to characterize shared data access to reduce
false sharing on multiprocessors [23] and to improve
data prefetching and message aggregation on DSM [28].
More general forms of dependence analysis are used by
parallelizing compilers [7,20,22,26]. Static analysis does
not directly estimate the locality of active data usage,
which depends on factors outside the scope of data de-
pendence, such as the degree of interleaving, the fre-
quency of data access, and the effect of read-read shar-
ing. In addition, traditional dependence checking can-
not accurately model pointer-based programs such as
the applications considered in this paper.

Window-based models. Footprint models have been
developed for time-shared systems where processes are
switched at regular intervals or execution windows. They
are used to estimate the cache interference by the prob-
ability of one process evicting the cached data of an-
other process [1, 17, 36]. In these studies, the statistics
such as reuse time and footprint is for a single window
size rather than all window sizes as in distance-based
methods. A single window size is not always sufficient.
For example, the footprint of a large window may not
simply be the sum of the footprints of its sub-windows.
Previous models do not consider data sharing except by
Falsafi and Wood, who assumed that code was shared
but data was not [17].

Analytical models. The independent reference model
assumes a program with n pages, and each has an inde-
pendent access probability p that adds to 1. King de-
fined the model and showed that steady miss rate exists
for fully associative caches managed by LFU, LRU, and
FIFO replacement policies [25]. Later studies gave ap-
proximation methods for LRU and FIFO that are com-
putationally tractable [11, 16]. These methods, espe-
cially [11], can be viewed as composable models because
they show the combined miss rate from interleaved ac-
cess streams to different data. Recent techniques ana-
lyze the effect of cache replacement policies by proba-
bilistic prediction [19] and competitive analysis [31].

Task scheduling and cache partitioning. One way
to manage shared cache is to partition it among con-
current applications for fairness or performance. Cache
partitioning can be done by OS level support including
task scheduling [18] and page coloring [27]. The prob-
lem of optimal co-scheduling can be approximated using
machine learning techniques [24]. An earlier study ad-
dressed the resource partitioning problem at the main
memory level [37]. These techniques use highly efficient



on-line locality and performance models to dynamically
adjust the memory system when a program is execut-
ing. However, they target independent sequential appli-
cations rather than multi-threaded applications. As a
result, they do not consider the effect of data sharing or
irregular thread interleaving. A recent study focused on
constructive caching in three kernel benchmarks and de-
veloped a profiling step that used a two-dimensional dis-
tance histogram to estimate the (sequential) miss rate
of task sub-sequences to aid on-line task scheduling [9].

Other simulation-based analysis. In the context
of DSM, Bennett et al. classified data sharing as write-
once, write-many, producer-consumer, migratory, and
general read-write [4]. For cache-coherent systems, Eg-
gers and Katz defined write run, a sequence of write
references to a shared data block by a single thread, un-
interrupted by accesses from other threads [15]. These
models focused on the amount and the type of sharing
but not the timing of shared-data access and therefore
cannot be used to evaluate cache capacity miss rate,
which depends on data locality rather than on data ac-
cess frequency or data size. Neither model considered
cache size as a parameter. In comparison, we model
the aggregate locality using the reuse distance and the
probability of interleaving and intercepts.

In a system where shared data were explicitly de-
clared, Darema et al. found that among other aspects,
the portion of shared data was large, the fraction of ac-
cesses to shared data was small, and shared and private
data benefited from caching by a similar fashion [12].
Different sharing granularity affects performance differ-
ently depending how and what data are shared. Based
on this observation, Dubnicki and LeBlanc designed a
dynamic cache block splitting and merging scheme [14]
and Amza et al. designed dynamic page grouping scheme [3].
In these studies, the effect of data sharing was measured
for a given thread combination rather than predicted for
all thread combinations.

8. SUMMARY
In this paper we have shown that the cache behavior

of a multi-threaded application can be modeled using
a set of statistics collected over a one-pass analysis of
the interleaved execution trace. The chief components
include the interleaving probability, interleaving ratio,
WXP data sharing, and the model for intercepts. We
have tested the prediction for real multi-threaded ap-
plications and found that both data sharing and thread
interleaving are necessary in capturing the memory be-
havior of these applications.
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Appendix
A. RANGE-BASED CONVOLUTION

Given two threads and a time window of their ex-
ecution, the combined footprint is a joint distribution
from the two distributions of individual footprints. The
computation is known as convolution in the discrete
form. Convolution has many uses in statistics and dig-
ital processing. Common examples include computing
the product of two polynomials and its special case the
product of two large numbers.

Since we represent not the complete histogram but
the average over some intervals, the footprint is a piece-
wise, continuous linear function. We use the integral
form of the convolution. Let X and Y be two foot-
prints and pX(n) and pY (n), (n > 0), be the probability
of X and Y have a footprint of size n. The combined
footprint X + Y is defined by

dX+Y (n) =
∫ n

0

dX(x)dY (n− x)dx

The ranges, which are the bases, are in a logarithmic
scale, like scalar multiplication and unlike function con-
volution (which is in linear scale). The bases are added,
like function convolution and unlike scalar multiplica-
tion (where the bases are multiplied). In fact in the
exponent domain, scalar multiplication is equivalent to
function convolution, where logarithmic ranges become
linear logarithm ranges and multiplication becomes ad-
dition. Previous work we are aware of does not address
the problem of adding logarithmic ranges.

The essence of the problem lies in the combination
of two ranges. In particular, the footprint X has pX

probability in range RX , and the footprint Y has pY

probability in range RY . The combined footprint can
be represented as a third random variable Z, where Z
has at least the probability pXpY in RX + RY .

A.1 Combining Two Footprint Ranges
The sum of two footprints: the first has a probabil-

ity of p within the range [f1, f2], and the second has a
probability of q within the range [g1, g2]. Using elemen-
tary statistics, we define two random variables, X and
Y , to represent the two footprints. Assuming they are
uniformly distributed, then the density function of X is

dX(x) =

{
p

f2−f1
x ∈ [f1, f2]

0 otherwise
(1)

The desity function for Y is similar. The joint distri-
bution is Z = X+Y . It is easier to consider ranges from
0 and then add the initial offsets back. Let ∆f = f2−f1

and ∆g = g2−g1. We compute the joint distribution of
p in [0,∆f ] and q in [0,∆g] and re-state the results in
terms of the original ranges. Without loss of generality
we assume ∆g ≥ ∆f .

dX+Y (s) =
∫ ∞

−∞
dX(x)dY (s− x)dx (2)

which is

∫ s

0
dX(x)dY (s− x)dx = pqs

∆f∆g 0 ≤ s ≤ ∆f∫ ∆f

0
dX(x)dY (s− x)dx = pq

∆g ∆f ≤ s ≤ ∆g∫ ∆f+∆g

s
dX(x−∆g)dY (s− x + ∆g)

= pq(∆g+∆f−s)
∆f∆g ∆g ≤ s ≤ ∆f + ∆g

(3)
The joint distribution for the original ranges is

dX+Y (s) =


pq(s−f1−g1)

∆f∆g f1 + g1 ≤ s ≤ f2 + g1

pq
∆g f2 + g1 ≤ s ≤ f1 + g2
pq(f2+g2−f1−g1−s)

∆f∆g f1 + g2 ≤ s ≤ f2 + g2

(4)
We make a few observations. The density function in-
tegrates to the probability pq. It becomes symmetrical
if g2 − g1 = f2 − f1, and the length of the middle sub-
range becomes 0. When the lengths from two equal-size
ranges are added, the sum has a 0.5 probability in ei-
ther half of the combined range (although not a uniform
distribution). When the lengths from two different size
ranges are added, the sum approaches a uniform distri-
bution as the difference between the two ranges becomes
large.

B. K-WIDE HISTOGRAM
A histogram is an approximate representation of the

distribution of a set of values. If we view the exact
distribution as a curve, a k-bin histogram is an approx-
imation of the curve using k line segments. A V-optimal
k-bin histogram is one that has the minimal difference
with the original curve. It is straightforward to use



dynamic programming to find the V-optimal k-bin his-
togram for an n-element curve (or set) in O(n2k) time
and O(n) space. As an approximate representation, his-
tograms can used for curve data compression and sim-
plification. In fact, each level of a Haar wavelet is a
histograms with equal-size bins.

For the purpose of locality analysis, we have several
distinct requirements not considered in other uses.

First, when modeling the effect of parallel threads,
we have one set of values from each thread, and we
need to add them and compute the new histogram. The
number of values in a set is proportional to the length
of the execution. Since it is too costly to record the set
exactly, we need to use a histogram. The problem is
how to record the information in the histogram so that
we can estimate from these histograms the result of the
addition of the sets of values.

Second, when the values represent the data volume,
we care mostly about the comparison with power of two
sizes, which are the sizes of cache on modern machines.
For a data reuse, what mostly matters is whether the
reuse distance is less than the cache size and not how
much it is lower and higher than the cache size. This
is in sharp contrast with the requirements of V-optimal
histograms. Here the number of bins and their ranges
are fixed a priori and the distribution inside each bin
has almost no effect on the accuracy of the histogram,
at least when a single thread is concerned 1.

K-wide histogram is a refined version of a logarithmic
histogram. Each bin in a logarithmic histogram is di-
vided into k sub-bins of equal length. For example, the
bin [8, 15] includes four sub-bins [[8, 9], [10, 11], [12, 13],
[14, 15]] in a 4-wide histogram. For our purpose, we use
only integer boundaries for the range of a bin and do
not subdivide when the size of a range is 1. If we view
the contiguous bin ranges as points on the axis of pos-
itive numbers, the ranges of a logarithmic histogram
can be represented by a 1-bit floating-point number.
The ranges of a k-wide histogram are the points of a
k-bit floating-point number. We discuss the properties
of k-wide histograms in terms of the two requirements
mentioned before.

A k-wide histogram has the property that a k1-wide
histogram includes a k2-wide histogram when k1 ≥ k2.
Hence all k-wide histograms contain the basic logarith-
mic histogram, which is 1-wide histogram, required by
the second condition.

If we have n1 values in range [a1, b1] and n2 values in
range [a2, b2], their pairwise sum produces different sets
of values depending how the values in the two ranges

1For set-associative cache, if the reuse distance is close to
the cache size, the chance of it being a hit or miss depends on
cache conflicts. However, the impact is often negligible since
a high concentration at a particular distance is statistically
unlikely.

are paired. However, we are concerned with the range
of all possible sums, which is [a1+a2, b1+b2]. The tricky
problem is finding out the distribution of these values
in logarithmic-size bins that we care about. If the two
input bins are the same in two logarithmic histograms,
that is, a1 = a2 = 2t and b1 = b2 = 2t− 1, the resulting
range is [2t+1, 2t+2− 2], which is in [2t+1, 2t+2− 1], and
we have an accurate distribution. However, the accu-
racy become problematic when the two ranges differ.
We call it the problem of asymmetrical ranges.

As an example of the problem of asymmetrical ranges,
consider the two ranges [4, 7] and [1024, 2047]. The
sum lies in [1028, 2058] but it is unclear how many
values are still in range [1028, 2047] and how many in
[2048, 4097]. K-wide histogram alleviates the problem.
If we use 2-wide histograms, the input will be in four
ranges [4, 5], [6, 7], [1024, 1535],
[1536, 2047]. The value of the sum between the first
two ranges and the third range definitely lies between
[1024, 2047]. Although the distribution of the rest of
the sum is still uncertain, we can guarantee accuracy
for a subset of the values. The accuracy increases as
we use k-wide histograms with more sub-bins. We now
quantify the accuracy as a function of k.

To derive a closed-form result, we take the simple case
where the input distribution is uniform across different
bins and uniform within the same bin. It is different
from a uniform distribution, so we call it bin-wise uni-
form for logarithmic bins. The following proposition
shows the basic result.

Proposition 1. The accuracy of adding two k-wide
histograms is either 1 − k−1

k , 2k−1
2k , or 100% for each

pair of bins, assuming the input distribution is bin-wise
uniform.

Proof Sketch Let a and b be two logarithmic size
bins and a < b (the accuracy is 100% if a = b). The
range a+ b spans across the upper boundary of b. Only
one of the sub-bins of b, bi, actually span the bound-
ary. The portion of a that may cause bi to produce an
uncertain value is half of a if a is the immediate left
neighbor of b or the entire a otherwise. The accuracy
is 2k−1

2k in the first case and k−1
k in the second. end of

sketch
In most cases in our uses, the addition is between

same size bins or neighboring bins, so the accuracy is
closer to 100% and 2k−1

2k than to k−1
k .

Much of the literature in the use of histograms comes
from the area of databases. Query optimization in par-
ticular makes extensive use of histograms especially for
selection and join operations. Histograms are used by
the query optimizer to estimate the number of disk op-
erations of a select operator and the size of the output
of a join operator. A good estimate would enable the
database to select the operators and their order of oper-



ation so that the cost is minimized. Histograms are also
used to provide fast, approximate answers to queries of
large data sets. Most of these techniques use sampling

possibly through multiple passes, and some guarantee
a level of accuracy.


