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Abstract

We present a simple query-algorithm for learning arbitrary functions of k halfspaces un-
der any product distribution on the Boolean hypercube. Our algorithms learn any function
of k halfspaces to within accuracy ε in time O((nk/ε)k+1) under any product distribu-
tion on {0, 1}n using read-once branching programs as a hypothesis.. This gives the first
poly(n, 1/ε) algorithm for learning even the intersection of 2 halfspaces under the uniform
distribution on {0, 1}n; previously known algorithms had an exponential dependence either
on the accuracy parameter ε or the dimension n.

To prove this result, we identify a new structural property of Boolean functions that
yields learnability with queries: that of having a small prefix cover.
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1. Introduction

The problem of learning functions of a few halfspaces is one of the most well-studied prob-
lems in computational learning. It includes as a special case the problem of learning in-
tersections of halfspaces aka convex sets. There is a large body of work in computational
learning dedicated to this problem (Baum, 1990; Blum and Kannan, 1997; Vempala, 1997,
2010b; Klivans et al., 2004; Kalai et al., 2008; Klivans et al., 2008, 2009; Harsha et al.,
2010; Vempala, 2010a). The problem of PAC-learning under arbitrary distributions seems
intractable, hence researchers have studied learnability various natural distributions such
as the Gaussian distribution on Rn, log-concave distributions on Rn, and the uniform dis-
tribution on {0, 1}n.

Currently the best known algorithm for learning intersections of k halfspaces in Gaus-
sian space is due to Vempala (2010a), whose running time is bounded by poly(n, 1/ε, k) +
nmin((k/ε)k, klog k/ε

4
). This improves on a result by Klivans et al. (2008) which achieves a

running time of O(nlog k/ε
4
) (even for agnostic learning) and earlier work by Vempala (1997,

2010b) which achieved a running time of O((nk/ε)k) (under any log-concave distribution).
In summary, for constant k, we have algorithms with a running time of poly(n, 1/ε).

In the setting of the uniform distribution on Boolean hypercube, the known results are
much weaker. The best previously known algorithm for learning intersection (or arbitrary
functions) of k halfspaces under the uniform distribution on the Boolean hypercube is due
to Klivans et al. (2004). They showed that the low-degree algorithm of Linial, Mansour
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and Nisan (Linial et al., 1993) can learn arbitrary functions of k halfspaces to accuracy
ε in time O(nk

2/ε2). Their bound is polynomial for any fixed ε but becomes trivial for
ε = 1/

√
n. Harsha et al. (2010) give an algorithm that can learn the intersection of k

ε-regular halfspaces in time O(npoly(log k,1/ε)) (we refer the reader to Harsha et al. (2010)
for the definition of regularity). It is conjectured that a similar bound should hold for
intersections of arbitrary halfspaces (Klivans et al., 2004; O’Donnell, 2012). If so, this
would yield a similar running time for the intersections of k arbitrary halfspaces.

The aforementioned results for the Boolean hypercube use polynomial approximations
for functions of halfspaces. The exponential dependence on ε is unavoidable via this ap-
proach. A different algorithm for learning function of k halfspaces based on query learning of
automata was presented in Klivans et al. (2004), its has a running time of poly(n2

k
,W 2k , 1/ε)

where W is a bound on the weight of all halfspaces. It is known that there exist halfspaces
for which W needs to be exponential in n. Thus, while the dependence on ε is polynomial,
the dependence on n could be exponential.

Thus, even for the intersection of two halfspaces on the hypercube under the uniform
distribution with membership queries, there were no algorithms known with a running
time of poly(n, 1/ε). For polynomially small error, there was no sub-exponential algorithm
known.

1.1. Our Results

We present a query learning algorithm for learning functions of k halfspaces with queries
whose running time is polynomial in n and ε for constant k.

Theorem 1 (Learning Functions of Halfspaces) The concept class of arbitrary Boolean
functions of k halfspaces can be PAC learned with membership queries under the uniform
distribution {0, 1}n to accuracy ε in time Õ((16nk/ε)k+1).

We give a simple combinatorial algorithm which outputs a read-once branching program
(ROBP) as its hypothesis. Analogous statements hold for any product distribution. Our
work builds on classical results on learning branching programs using queries (Angluin,
1987; Beimel et al., 2000) and more recent work on approximating halfspaces using ROBPs
(Meka and Zuckerman, 2010; Gopalan et al., 2011b); we next discuss the relation between
our work and these results.

Learning branching programs is a classic area of study in computational learning the-
ory. It is well-known that learning even width-five, polynomial-size branching programs
is intractable under plausible cryptographic assumptions (Barrington, 1989; Kearns and
Valiant, 1994). As a result, researchers have considered the possibility of learning natural
subclasses of branching programs. One of the most common restrictions is to assume that
the branching program is read-once; that is, no variable of the input is examined more
than once on any traversal of the program. Additionally it is common to assume that the
ordering of the variables is known to the learner apriori. The seminal work of Angluin (An-
gluin, 1987) on learning finite automata from membership and equivalence queries yields
an efficient algorithm for learning read-once branching programs (ROBPs), as ROBPs can
be viewed as special cases of polynomial-size finite automata.
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Using Angluin’s algorithm, Klivans et al. (2004) derive a query learning algorithm for
halfspaces whose running time depends on the size of the smallest ROBP for that halfspace
(they use the weight W of the halfspace to bound this size). However this size can be
exponential in n. The size can be reduced to polynomial in n if one is willing to settle for
approximations. This was shown in recent work on pseudorandom generators for halfspaces
by Meka and Zuckerman (2010), who prove that every halfspace can be ε-approximated
by an ROBP whose size is poly(n, 1/ε). Their result also implies the existence of small
ROBPs for approximating arbitrary functions of k halfspaces. Thus, a learning algorithm
for ROBPs that can tolerate small amounts of noise (to handle the approximation error)
will directly yield better learning algorithms for functions of halfspaces.

Unfortunately, it is unclear how to analyze the performance of existing automata-based
methods for learning in the presence of noise. At a very high level, these algorithms use
membership queries to reconstruct the transitions among underlying states. If one of these
queries returns a noisy label, the reconstructed automaton may have incorrect transitions,
and its error with respect to the true concept may be large. Indeed, we do not know how
to solve the problem of learning ROBPs with noise, and as we point out in Section 4, such
a result will have several interesting consequences.

Instead, we identify a new structural property of Boolean functions that yields learnabil-
ity with queries: that of having a small prefix cover. Given a function f : {0, 1}n → {0, 1},
every prefix x ∈ {0, 1}i induces a function fx : {0, 1}n−i → {0, 1} given by fx(z) = f(x ◦ z).
We say that a function f is (ε,W )-prefix coverable if for every length i ∈ {1, . . . , n}, there is
a set of at most W special prefixes x1, . . . , xW so that for every other x ∈ {0, 1}i, fx is ε-close
to fxj . We say that a function has small prefix covers if we can take W = poly(n, 1/ε).

Having a small width ROBP easily implies the existance of small prefix covers. We show
that the existance of a small prefix covers implies that the function can be approximated by
an ROBP. This inclusion comes as a corollary of our main algorithm which learns concepts
with small prefix covers using a small ROBP as hypothesis. It is worth noting that both the
inclusions above are proper; thus having a small prefix cover is a stronger requirement than
being approximated by an ROBP, but weaker then being computed exactly by an ROBP.

We prove the following result for learning functions with small prefix covers.

Theorem 2 (Learning Prefix-Coverable Functions) There is a membership query al-
gorithm which when given oracle access to a (ε,W )-prefix coverable function f , outputs a
hypothesis which is a W -ROBP M such that d(M,f) ≤ 4nε. The algorithm runs in time
poly(n,W, 1/ε).

Our algorithm is a natural modification of Angluin’s algorithm for learning finite au-
tomata (Angluin, 1987). From this, we obtain our result for functions of halfspaces by
showing that they have small prefix covers. The novel ingredient in this work is the notion
of prefix covers, which seems to be the right relaxation of being computed exactly by a
small-width branching program.

1.2. Other Related Work

Many researchers in computational learning theory have studied the problem of learning
functions computable by read-once branching programs (for a discussion see Bshouty et al.
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(1998)). Positive results were known only for restricted classes of ROBPs, such as width-2
ROBPs (Ergün et al., 1995; Bshouty et al., 1998) (these algorithms use queries and succeed
in the distribution-free model of learning) and do not apply in our setting.

Approximations of halfspaces by ROBPs have recently been used in work on pseudo-
randomness and derandomization. Meka and Zuckerman show that halfspaces can in fact
be “sandwiched” between two small width ROBPs (Meka and Zuckerman, 2010). They
use this to construct the first pseudorandom generators for halfspaces whose seed-length
depends logarithmically on the error parameter. Recent work by Gopalan et al. (2011b)
uses ROBPs to derive deterministic approximate counting algorithms for knapsack and
some related problems. To achieve this, they show that the approximating ROBPs can be
constructed algorithmically.

While our work is inspired by these works, the notion of prefix covers differs from the
notions of approximation by ROBPs that is used by those papers.

2. ROBPs, Halfspaces and Prefix Covers

We start by defining ROBPs which are the hypotheses class for our learning algorithms.

Definition 3 (Read-Once Branching Programs) A width W read-once branching pro-
gram M (W -ROBP for short) is a layered multi-graph with a layer for each 0 ≤ i ≤ n and
at most W vertices each layer.

• Let L(M, i) denote the vertices in layer i of M . L(M, 0) consists of a single vertex v0
and each vertex in L(M,n) is labeled with 0 (rejecting) or 1 (accepting).

• For 0 ≤ i ≤ n, a vertex v ∈ L(M, i) has two outgoing edges labeled {0, 1} and ending
at vertices in L(M, i+ 1). The edges correspond to the possible values for the variable
xi.

• For a string z, M(v, z) denotes the state reached by starting from v and following
edges labeled with z. For z ∈ {0, 1}n, let M(z) = 1 if M(v0, z) is an accepting state,
and M(z) = 0 otherwise. Thus we view M as both an ROBP and a Boolean function.

Note that the branching programs in the above definition are necessarily read-once,
hence we refer to them as read-once branching programs or ROBPs. Also, the ordering of
the variables x1, . . . , xn is important: there are Boolean functions that have small ROBPs
only under certain orderings of the variables. Henceforth, when we refer to a function having
small ROBPs, we mean the ordering x1, . . . , xn.

Definition 4 (Halfspaces) A halfspace h : {0, 1}n → {0, 1} is a Boolean function defined
by f(x) = 1 if

∑
i aixi ≤ b and 0 otherwise, where a ∈ Rn and b ∈ R.

Given a halfspace h, let W (h) = min(
∑n

i=1 |ai| + |b|) denote the minimum weight over
all possible ways of representing the halfspace. There is a natural W (h)-ROBP for any
halfspace h which keeps track of partial sums. But it is easy to construct halfspaces h
where W (h) is exponential in n, and where any branching program computing h must have
S = exp(n); the Greater Than function is one example. One could relax the requirement
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and ask for an ROBP that approximates the halfspace h. Meka and Zuckerman show that
every halfspace can be well approximated by a poly(n)-width ROBP (Meka and Zuckerman,
2010).

Let f : {0, 1}n → {0, 1} and let µn denote the uniform distribution over {0, 1}n. For
two functions f, g : {0, 1}n → {0, 1}, we define d(f, g) = Prx←µn [f(x) 6= g(x)].

Theorem 5 (Appropximating halfspaces by ROBPs) (Meka and Zuckerman, 2010)
For any halfspace h : {0, 1}n → {0, 1} and any ε > 0, there is an O(nε -ROBP M such that
d(h,M) ≤ ε.

A similar approximation result holds for arbitrary functions of k halfspaces. Thus if one
could design an agnostic learning algorithm for learning ROBPs (which can even tolerate
small amounts of noise), one could then use it for learning functions of k halfspaces. How-
ever, none of the known algorithms for ROBP learning appear to be robust to (even small
amounts of) adversarial noise.

2.1. Prefix-Coverable Functions

We introduce the notion of Prefix-Covers for a class of functions. This class includes all
functions that are computable by ROBPs but not all functions that can be approximated
by them. Crucially for us, it also includes arbitrary functions of k halfspaces. Our learning
results hold for all functions that have small Prefix Covers.

Let f : {0, 1}n → {0, 1} and let µi denote the uniform distribution over {0, 1}i. For each
prefix x ∈ {0, 1}i, we define the function fx : {0, 1}n−i → {0, 1} by fx(z) = f(x ◦ z) where
◦ denotes concatenation. Thus given two prefixes x, y ∈ {0, 1}i, d(fx, fy) = Prz←µn−i [f(x ◦
z) 6= f(y ◦ z)].

Definition 6 (Prefix Coverable Functions) A function f : {0, 1}n → {0, 1} is (ε,W )-
prefix coverable if there exist sets Si ⊆ {0, 1}i, i ∈ {1, . . . , n} with |Si| ≤ W such that for
every y ∈ {0, 1}i there exists an x ∈ Si such that d(fx, fy) ≤ ε. The sets S1, . . . , Sn are
called (ε,W )-prefix covers for f .

It is easy to see that functions computed by ROBPs have small prefix covers with ε = 0,
in fact these conditions are equivalent.

Lemma 7 A function f is computable by a W -ROBP iff f is (0,W )-prefix coverable.

Proof If f is computable by a W -ROBP M , we can get prefix covers for prefixes of length
i by picking one representative string for each state in L(M, i). The other direction is via
Angluin’s algorithm, or equivalently by using ε = 0 in Corollary 8 below.

If we allow ε > 0 in our prefix cover, we get a richer class of functions than small
width ROBPs. To see this, observe that while not all halfspaces have small ROBPs, every
halfspace is (ε, 2/ε)-prefix coverable by Lemma 10 for any ε > 0.

In the other direction, one could ask whether being (ε,W )-prefix coverable implies that
the function can be approximated by a small ROBP. We prove that this is indeed the case.
The proof is via our main learning algorithm (Theorem 13).

5



Gopalan Klivans Meka

Corollary 8 If f : {0, 1}n → {0, 1} is (ε,W )-prefix coverable, there exists a W -ROBP M
such that d(M,f) ≤ 4nε.

This statement does not have a converse. Approximation by a W -ROBP does not
guarantee small prefix covers.

Lemma 9 There exists a function f such that d(f, g) ≤ 1/n for some function g which
is computable by a width 2 ROBP, but such that f is not (0.1,W )-prefix coverable for
W = poly(n).

Proof Let f be the Parity function on n bits if ∨logni=1 xi and a random function otherwise. It
is clear that f is 1/n far from the Parity function which is computable by a width 2 ROBP.
However any easy counting argument shows that random functions do not have small prefix
covers, hence f does not have small prefix covers either.

2.2. Prefix Covers for functions of Halfspaces

We now show that functions of halfspaces have small prefix covers. We first consider the
case of one halfspace. Our proof of this claim is similar to the argument used in Meka and
Zuckerman (2010) to show that one can approximate halfspaces by ROBPs, we explain the
intuition below:

Consider a halfspace

f ≡ 1{
∑
i≤n

aixi ≤ b}.

If we set x1, . . . , xi, we get a halfspace of the form

f ≡ 1{
∑
i<j≤n

ajxj ≤ b′}.

Thus different prefixes result in halfspaces which differ only in the constant term. Thus
by picking prefixes that correspond to well-spaced values for b′, we can cover all possible
prefixes.

Lemma 10 (Prefix Covers for halfspaces) For every ε > 0, every halfspace is (ε, 2/ε)-
prefix coverable.

Proof Fix ε > 0 and a halfspace

f ≡ 1{
∑
i≤n

aixi ≤ b}.

For each i ≤ n, we will show that there exist a cover Si, |Si| ≤ 2/ε for prefixes of length i.
If we fix a prefix x ∈ {0, 1}i, and let v(x) =

∑
j≤i ajxj then we get the function

fx(z) ≡ 1{
∑
i<j≤n

ajzj ≤ b− v(x)}.
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It follows that if v(x) ≥ v(x′), then f−1x (1) ⊆ f−1x′ (1). In other words, as v(x) gets larger,
the set of suffixes z that are accepted become smaller.

Let p(x) = Prz∈µn−i [fx(z) = 1]. Then p(x) is a decreasing function of v(x). Now
arrange all prefixes in {0, 1}i in decreasing order with respect to p(x), call this ordering
x[1], . . . , x[2i]. Each time p(x) drops by ε, we pick a new prefix and add it to Si. Formally,
we start by adding x1 = x[1] to Si. Assuming we have added x1, . . . , xj , we next add a
string xj+1 which maximizes p(x) over all strings x ∈ {0, 1}i such that p(x) < p(xj) − ε.
Assume the resulting set is Si = {x1, . . . , xk}.

It is clear that k ≤ d1/εe ≤ 2/ε strings, since every time we add a string to S, p(x)
drops by at least ε and it lies in the range [0, 1]. We claim that Si = {x1, . . . , xk} forms
a cover for prefixes of length i. Indeed, for any y ∈ {0, 1}i, assuming y 6∈ Si, there exists
xj ∈ Si such that p(xj) ≥ p(y) ≥ p(xj) − ε. Further, it follows that f−1y (1) ⊆ f−1xj (1) and
hence d(fxj , fy) ≤ ε. This completes the proof.

It is easy to deduce a similar claim for functions of halfspaces using the following lemma
which shows that the property of having small prefix covers is preserved under composition.

Lemma 11 Let f1, . . . , fk : {0, 1}n → {0, 1} be (ε,W )-prefix coverable and g : {0, 1}k →
{0, 1}. Then h : {0, 1}n → {0, 1} defined by h(x) = g(f1(x), . . . , fk(x)) is (2kε,W k)-prefix
coverable.

Proof For j ≤ k, let S1
j , . . . , S

n
j be (ε,W )-prefix covers for f j . Fix i ≤ n and form a set of

prefixes T i ⊆ {0, 1}i as follows: for every (x1, . . . , xk) ∈ Si1 × . . .× Sik let

U(x1, . . . , xk) = {z ∈ {0, 1}i : d(f jxj , f
j
z ) ≤ ε, ∀j ≤ k}.

If U(x1, . . . , xk) is not empty, add a single element of U to T i.
By construction, |T i| ≤W k. Further, for every y ∈ {0, 1}i, there exists (x1, . . . , xk) such

that y ∈ U(x1, . . . , xk). Let u be the element of U(x1, . . . , xk) added to T . Observe that
for two inputs x, y if h(x) 6= h(y), there must be some i such that f i(x) 6= f i(y). Hence by
a union bound,

d(hy, hu) ≤
∑
j

d(f jy , f
j
u) ≤ 2kε.

By combining these two Lemmas, we get small prefix covers for functions of k halfspaces.

Corollary 12 Every function of k halfspaces is (ε, (4k/ε)k)-prefix coverable.

3. Learning Prefix-Coverable Functions via ROBPs

The algorithm learns a prefix coverable f , given query access to f , by constructing a ROBP
M that approximates f . The ROBP M has n layers numbered 0 through n. The set of
vertices in layer i is denoted by L(M, i). Each vertex x ∈ L(M, i) corresponds to a string
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Main Algorithm. Input n, ε,W .

Let L(M, 0) contain the null string, while L(M, i) are empty sets for i ∈ {1, . . . , n}.
For i = 1, . . . , n:

For each x ∈ L(M, i− 1) and b ∈ {0, 1},
Check if there is y ∈ L(M, i) such that d(fx◦b, fy) ≤ 3ε.

If so, add an edge labeled b from x to y.
If not, add x ◦ b to L(M, i), add an edge labeled b from x to x ◦ b.

If |L(M, i)| > W , then output FAIL and halt.

x ∈ {0, 1}i. L(M, 0) consist of a single start state, identified with the null string ϕ. By
abuse of notation, we will think of M both as a branching program and a Boolean function.

In line 4 of our algorithm, to check if there is a vertex y that is ε-close to x ◦ b, we pick
R random suffixes z ∈ {0, 1}n−i and check if f(x ◦ b ◦ z) = f(y ◦ z). By the Chernoff bound,
if R = O(log(nW 2/δ)/ε), then the probability that our estimate of d(fx◦b, fy) is off by more
than an additive ε is at most δ/2nW 2. Since each layer has at most W vertices in total, we
estimate at most 2nW 2 such quantities. Hence the probability that the error is more than
ε in any of our estimates is at most δ.

Theorem 13 (Correctness of the Main Algorithm) For ε, δ > 0, given oracle access
to a (ε,W )-prefix coverable function f , the above algorithm runs in time O(nW log(nW/δ)/ε)
and constructs a W -ROBP M such that d(M,f) ≤ 4nε with probability at least 1− δ.

By a simple Chernoff bound, by setting L = O(log(nW 2/δ)/ε) to be sufficiently large
we can assume that all the estimates made by the algorithm in line (4) are within ε, which
happens with probability 1− δ. The proof of Theorem 13 follows from two lemmas.

Lemma 14 The algorithm never outputs FAIL.

Proof Let S1, . . . , Sn be (ε,W )-prefix covers for f . For each x ∈ Si, consider the ball

B(x) = {y ∈ {0, 1}i : d(fy, fx) ≤ ε}.

By definition, they cover all of {0, 1}i. We claim that L(M, i) cannot have two distinct ver-
tices y, y′ ∈ {0, 1}i in layer i that belong to the same ball B(x). For, if y, y′ lie in the same
ball, d(fy, fy′) ≤ 2ε. Since the sampling error is at most ε, our estimate for d(fy, fy′) would
be at most 3ε, thus we would not add both of them to L(M, i). Hence |L(M, i)| ≤ |Si| ≤W .

Lemma 15 We have Prµ[M(x) 6= f(x)] ≤ 4nε.

Proof By induction on n−i, we will show that for every x ∈ L(M, i) , d(Mx, fx) ≤ 4(n−i)ε.
This implies that when i = 0, d(M,f) ≤ 4nε as desired.

For i = n there is nothing to prove. Suppose the statement is true for all vertices in
L(M, i + 1). Consider a vertex x ∈ L(M, i). Let y0, y1 ∈ L(M, i + 1) be it’s neighbors in
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M . Then, by our assumption on sampling errors, for b ∈ {0, 1}, d(fx◦b, fyb) ≤ 4ε. By the
induction hypothesis, we know that d(fyb ,Myb) ≤ 4(n− i− 1)ε. Putting these together, we
get

d(fx,Mx) =
1

2

∑
b∈{0,1}

d(fx◦b,Myb)

≤ 1

2

∑
b∈{0,1}

(d(fx◦b, fyb) + d(fyb ,Myb)) (by triangle inequality)

≤ 4ε+ 4(n− i− 1)ε = 4ε(n− i).

Theorem 13 now follows as the probability of sampling error is at most δ.
To derive Theorem 1, for learning functions of k halfspaces to accuracy ε0, we apply

Theorem 13 with parameters

ε =
ε0
4n
,W =

(
4k

ε

)k
=

(
16nk

ε0

)k
.

where the setting of W comes from Corollary 12.
We can get similar results for learning under any explicitly given small-space source in

the sense of Kamp et al. (2006). In particular, we can learn functions of halfspaces under
p-biased and symmetric distributions. We refer the reader to Gopalan et al. (2011a) for
details.

4. Conclusions

Our algorithm for learning functions of halfspaces exploits the connection between halfspaces
and ROBPs. It would be interesting if this connection could lead to improved algorithms for
agnostically learning halfspaces. In particular, the problem of agnostically learning poly(n)-
ROBPs with membership queries is open. A (query) algorithm for this problem will give a
(query) algorithm for agnostically learning halfspaces.

The best known algorithm for agnostically learning a halfspace under the uniform distri-
bution on {0, 1}n due to Kalai et al. (2008) runs in time O(n1/ε

2
). Their paper also shows

that a poly(n, 1/ε) algorithm for agnostically learning halfspaces from random examples
alone will result in a poly(n) time algorithm for the notorious noisy parity problem. This
seems to suggest that such an algorithm is perhaps unlikely, but it leaves open the possi-
bility of a poly(n, 1/ε) algorithm that uses membership queries. ROBP-based algorithms
seem to be the only tool we currently have to exploit membership queries in the context of
halfspace learning.
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