Text Classification Using Stochastic Keyword Generation

Cong Li
Ji-Rong Wen
Hang Li

[-CONGL@MICROSOFT.COM
JRWEN@MICROSOFT.COM
HANGLI@MICROSOFT.COM

Microsoft Research Asia, SF Sigma Center, No.49 Zhichun Road, Haidian, Beijing, China, 100080

Abstract

This paper considers improving the performance
of text classification, when summaries of the
texts, as well as the texts themselves, are
available during learning. Summaries can be
more accurately classified than texts, so the
question is how to effectively use the summaries
in learning. This paper proposes a new method
for addressing the problem, using a technique
referred to as ‘stochastic keyword generation’
(SKG). In the proposed method, the SKG model
is trained using the texts and their associated
summaries. In classification, a text is first
mapped, with SKG, into a vector of probability
values, each of which corresponds to a keyword.
Text classification is then conducted on the
mapped vector. This method has been applied to
email classification for an automated help desk.
Experimental results indicate that the proposed
method based on SKG significantly outperforms
other methods.

1. Introduction

We consider the problem of improving the performance
of text classification, when other types of data are
available during learning. Specifically, we consider the
case in which the classified texts have summaries. We
assume here that summaries can be more accurately
classified than texts. The question is how we combine the
use of classified texts and the use of summaries in
learning. (Note that we assume that summaries are not
available in classification.)

An example of this kind of text classification is the email
classification at a help desk. For example, the help desk at
Microsoft receives email messages from customers
describing software errors. The goal is to automatically
classify the messages into a number of predefined
categories. The email messages are difficult to classify
because customers often use different terms to describe
the same problem. However, at the help desk, summaries

to the messages made by engineers are available in
addition to the manually classified email messages. The
summaries are often more indicative to the categories.

We address the problem in this paper and propose a new
method based on a technique which we refer to as
‘stochastic keyword generation’ (SKG for short). To the
best of our knowledge, this problem has not been studied
previously.

In SKG, we employ a probabilistic model to represent the
relationship between the words in different texts and the
keywords in the summaries of those texts. During the
learning phase, we create an SKG model using texts and
their summaries as training data. For a newly given text,
we generate a list of keywords from the text using the
SKG model. Each of the generated keywords has a
probability value.

In text classification based on SKG, we first use texts and
their summaries to train an SKG model. We then employ
the obtained SKG model to map each of the classified
texts into a probability vector. Next we use the obtained
vectors and the corresponding classes to construct a
classifier.

Our method maps each training example into a probability
vector before constructing a classifier. This can be viewed
as a sort of preprocessing, different from the traditional
feature selection and feature transformation.

We conducted experiments on email classification at a
help desk and found that our method based on SKG
significantly outperforms other methods.

The approach presented in this paper may be extended to
other classification problems in similar settings, by
generalizing stochastic keyword generation into stochastic
feature generation.

The rest of the paper is organized as follows. In Section 2
we describe related work and in Section 3 we describe our
method of text classification using SKG. Next, we present
our experimental results in Section 4. Finally, we make
concluding remarks in Section 5.

Proceedings of the Twentieth International Conference on Machine Learning (ICML-2003), Washington DC, 2003.

2. Related Work

Text classification (or text categorization) is the process
of automatically assigning texts into a number of
predefined categories. Many methods for text
classification based on supervised learning have been
proposed. They include methods using regression models
(e.g., Fuhr et al. 1991), naive Bayesian classifiers (e.g.,
Lewis & Ringuette 1994), nearest neighbor classifiers
(e.g., Yang 1994), neural networks (e.g., Wiener et al.
1995), support vector machines (e.g., Joachims 1998),
boosting (e.g., Schapire & Singer 2000), symbolic rules
(e.g., Li & Yamanishi 2002), and the perceptron
algorithm with margins (e.g., Li et al. 2002). Among these
methods, the so-called margin classifiers, including
support vector machines, boosting, and perceptrons, are
reported to perform the best for many data sets. All of the
methods above use only classified texts in training.

Feature selection and transformation are important
preprocessing steps for text classification (Liu & Motoda
1998). Feature selection is the process of removing
irrelevant features in order to enhance the efficiency of
training and classification. The commonly used measures
for feature selection include document frequency,
information gain, mutual information, xz-test score, and
term strength (Yang & Pederson 1997). Feature
transformation is the process of mapping examples from
the original feature space to a higher dimensional space in
order to improve the classification ability of a classifier.
For instance, the back-propagation algorithm (Rumelhart
et al. 1986) automatically maps examples to a higher
dimensional space represented by the hidden layer in a
multilayer neural network. The support vector machine
learning algorithm (Vapnik 1995) also attempts to use a
kernel function to map examples from the original feature
space to a higher dimensional space. Feature selection and
feature transformation actually automatically construct
new feature spaces.

Many problems in machine translation, information
retrieval and text summarization can be formalized as one,
based on a mapping between two spaces. The central
issue of statistical machine translation is to construct a
probabilistic model between the spaces of two languages.
For example, Brown et al. (1993) proposed a series of
statistical translation models for sentence translation. The
essence of the models is to perform probabilistic mapping
between the linguistic data in two languages. In
information retrieval, many statistical methods (e.g.,
Berger & Lafferty 1999) have been proposed for
effectively finding the mapping relationship between
terms in the space of user queries and terms in the space
of documents. This is because a major difficulty for
document retrieval is that in many cases, terms in user
queries and terms in documents do not match very well.
In statistics-based summarization, for example, Knight

When getting emails 1 get a notice that an email has
been received but when I try to view the message it is
blank. I have also tried to run the repair program off the
install disk but that it did not take care of the problem.

(@)

receive emails; some emails have no subject and
message body

(b)

Figure 1: A example of a text and its summary: (a) the text (b)
the summary

and Marcu (2000) proposed using texts and the associated

abstracts as data to conduct text summarization. Again,

mapping between data in two spaces (texts and summaries)
is a central issue.

3. Text Classification
Keyword Generation

Using Stochastic

3.1 Problem Setting

Suppose that we are to conduct text classification based
on supervised learning. As usual, we have a number of
classified texts and we can construct a classifier using
these classified texts. Our new assumption is that in
addition to the classified texts, we also have summaries
associated to the texts (i.e., each of them has a summary).
Furthermore, the summaries can be more accurately
classified than the texts. Our question, then, is how we
can use the summaries to improve the performance of text
classification. Note that we assume that future texts to be
classified do not have summaries.

As one example, we consider the case of email message
classification at the help desk of Microsoft. The help desk
receives emails from customers that describe software
errors that the customers have encountered. Figure 1 (a)
shows an example message. The engineers at the help
desk assign labels to the messages, indicating the
categories of the errors and the solutions, after they help
resolve the problems. Thus, the email messages are hand-
classified into categories. The categories include ‘Cannot
Open Word File’, ‘Empty Outlook Message’, etc. The
category of the message in Figure 1 (a) is ‘Empty Outlook
Message’. Usually, the engineers also add summaries to
the messages. Figure 1 (b) shows the summary of the
message in Figure 1 (a). We see that the customer’s

description is not as technical as the engineer’s
description. It is often the case that customers’
descriptions vary depending on the person, while

engineers’ descriptions are much more consistent. Our
goal here is to automatically classify new email messages,
using both the classified messages and the summaries of
the messages as training data. As indicated in Figure 1,

Table 1: Comparison between the conventional problem and
the new problem on text classification

Conventional New

Classifier X —>9Y X -9
Training {(Xlayl)a'”a(xlay/)}
Data (I)
Test Data {(x}, ;). (X, ¥} {(x;,y), -, (x.,¥])}

summaries are more indicative, and thus should be more
useful in classification.

Let us describe the problem more formally. Let
X ={0,1}" denote a space of features and v a set of
classes. Given a word list, let x=(x,,x,,--,x,)€ X
denote the value of a feature vector representing a text, in
which the i-th element indicates the occurrence or non-
occurrence of the i-th word of the word list in the text. Let
y €Y denote a class representing a category of texts. Let

X=(X,,X,,---,X,) denote a random variable on X,
and Y arandom variable on v .

Let §={0,1}" denote another space of features. Given a

keyword list, let s =(s,,s,,:-+,s,) € S denote the value of
a feature vector representing a summary, in which the i-th
element indicates the occurrence or non-occurrence of the
i-th keyword of the keyword list in the summary. Let

S=(S,,S,,,S,) denote a random variable on § .

The conventional text classification problem can be
described as follows. Given a set of classified texts

L, ={(x,,»),(x,,¥,),---,(X,,¥,)} as training data, a
supervised learning algorithm A creates a classifier
h, = A(L,) which is a function from X to & . Given a

set of unclassified texts as test data, we use the classifier
to classify them. The performance of the classifier can be
measured in terms of the generalization error
Epxplh, (X)=T].

In this paper, we employ linear classifiers which can be
represented as

h,(x) =argmax[Y w''x +b,],
ver g ’

x)

iy

where w’ represents the weight supporting y with the
occurrence of the i-th word of the word list in the text, and

b, represents the prior weight supporting y . Naive

When getting emails I
get a notice that an email

has been received but emails 0.75
when I try to view the . receive 0.68
message it is blank. I Séochastéc subject 0.45
have also tried to run the eywor body 0.45

repair program off the Generation

install disk but that it did
not take care of the
problem.

Figure 2: An example of stochastic keyword generation

Bayesian classifiers, perceptrons, and linear support
vector machines are linear classifiers.

In our new classification problem, we use as training data,
not Ol’lly L)(= {(Xpyl)a (Xzayz):"'a(xlayl)} 5 but also

{(x,,8,)),(x,,8,),"--,(X,,8,)} which is a set of the
texts and their associated summaries. We assume
that the summaries can be more accurately
classified than the texts themselves. More

precisely, E,y,[h,X)=Y]>E

EP(S_}')[
conducting classification on summaries, defined in a
similar way as classification on texts.

[A,(S)#Y] , where

h,(S)#Y] denotes the generalization error of

P(S.Y)

Table 1 shows a comparison between the conventional
text classification problem and the new text classification
problem.

The question is whether we can construct a high
performance classifier in our new problem setting.

3.2 Stochastic Keyword Generation

We consider the problem of automatically generating
keywords for a given text. We propose a new approach to
address this problem, which we call ‘stochastic keyword
generation’ (SKG).

We assume that we have a number of texts, each having a
summary. In addition, we have a list of keywords. One
way to create the keyword list, which we employ in this
paper, is to collect all the content words (non-stopwords)
in the summaries and view them as keywords.

Thus, for each keyword, we can determine whether it
occurs in the summary of a given text. For each keyword,
we can create a binary classifier which judges how likely
the keyword occurs (or does not occur) in the summary of
a text, using the texts and the associated summaries. If we
have m keywords then we can create m such classifiers.

Given a new text, we can use the classifiers to calculate
the likelihood values of the keywords and output those
keywords and their likelihood values. We call this process
SKG. Figure 2 shows an example of SKG. Note that

0 ={PS|X)}

S

Training Data
{(Xpyl)a”'a(xjay])}

Training Data

{(Xpyl)a"'a(xlay/)}
{(Xl’sl)’“"(xl7sl)}

Test Data Test Data
{(Xiayll)aa(x’ray:)} {(X;ayl’)aa(x:-ay,’-)}

(a) (b)

Figure 3: Differences between (a) the conventional approach
and (b) our approach

although the word ‘body’ does not appear in the text, it
can still be generated as a keyword.

More formally, given a data set containing texts and their
summaries {(x,,s,),(X,,s,),--,(X,,s,)} , we can construct

---,8.). For

example, we can create a naive Bayesian classifier for
each keyword. Given a new text x , we can use
the naive Bayesian classifiers to calculate the
conditional probabilities of the keywords:
(P(S, =1]x),P(S, =1|x),---,P(S, =1|x)) . Note that we
use the naive Bayesian classifiers as a density estimator
here for assigning keyword probabilities, not for
classification.

a classifier for each of the keywords (S,,S,,

Hereafter, we will use @ to denote the space of
conditional probability values of keywords, and
0(x) =(0,(x),0,(x),---,0,(x)) a vector in @ ,
where 6, (x)=P(S, =1[x) (j=1--,m) . We call it

‘stochastic keyword generation model’.

We note that SKG can be used for both keyword
generation and for other applications like text
classification, as will be made clear below.

3.3 Algorithm

We propose to employ SKG in the text classification
problem described in Section 3.1. Figure 3 illustrates the
differences between the conventional approach (a) and
our approach (b).

lnput:{(Xlﬂyl)ﬂ(xzsyz)a”'ﬂ(xiayi)}
and {(x,,s,),(X,,s,)," ", (X,,s,)}

l. Train SKG model 0(x) using
{(X1’s1)7(xzasz)7'"s(xlssl)}

2. Map {x,,X,,--,X,} into {0(x,),0(x,),---,0(x,)}

Train classifier 4, using
Le = {(e(Xl), yl)a (e(xz)a yz)a) (e(xl)ﬂ y/)} :

(Let w'” denote (Wi, we), -, wi™))
Select a confidence threshold 7 and a learning
speed 7
for each (y € ¥) w”(0) «-0,5,(0) < 0
1 0,R = max|6(x,)
repeat
for i=12,---,1
for each (ye v)
if y=y, then z <1
else z < —1
if z(0(x,)- wfvs) (O)+b,(1)) <7 then
wi(t+1) < w0 +720(x,)
b, «b

t<t+1
end if
end for
end for
until no updates made within the for loops

+nzR?

1+l

Output: classifier
he (8(x)) = arg max[w” -0(x)+b,]

VeY

Figure 4: Learning algorithm

Figure 4 delineates three steps of the algorithm..

(I) Given the set of texts and their
summaries {(x,,s,),(x,,s,),"*-,(X,,8,)} , it constructs
an SKG model 6(x)=(6,(x),6,(x),---,0,(x)) . We
employ the naive Bayesian classifiers for creating the
SKG model in this paper.

(2) Map the set of classified texts {x,,x,,---,X,} into a
set of probability vectors {8(x,),0(x,),---,0(x,)} using
the constructed SKG model.

(3) Construct a classifier with the probability
vectors and the associated classes

{(0(x,),¥,),(0(x,),¥,),-+-,(0(x,),y,)} . A classifier here

is represented as A, (0(x)) = arg max[i w6, (x)+b,].

iy i
¥y i=1

In this paper, we employed the perceptron algorithm with
margins (PAM) to train a perceptron classifier. Figure 4
shows the details of its training process. We also used the
linear support vector machine (SVM) as a classifier.

In text classification, given a new text x € X', our method
first creates its corresponding 6(x), and then uses the

classifier 4, (0(x)) to classify the text.

Note that in our method, stochastic keyword generation
turns out to be a preprocessing step for text classification.

4. Experimental Results

4.1 Email Classification

We conducted experiments on email auto-classification at
the help desk of Microsoft.

We used email messages with summaries to train
stochastic keyword models as described in Section 3.2,
and used the obtained stochastic keyword models and
classified email messages to train classifiers as described
in Section 3.3. Next, we used the obtained classifiers to
classify other email messages.

There were 2,517 email messages belonging to 52
categories. The largest category contained more than 800
email messages, while the smallest category contained
only 10. The average length of a message was about 80
words, and there were about 10,000 unique words in the
email messages. All of the 2,517 messages were assigned
summaries. The average length of a summary was 14
words, and there were about 1,500 unique words in the
summaries. We removed stopwords (we defined 459
stopwords) from both the texts and summaries, but did not
perform stemming on them.

We randomly split the data into five parts and conducted
5-fold cross validation. In each trial of the cross validation,
we used the training examples for the construction of both
SKG models and classifiers, and we discarded the
summaries of the test examples. All of the experimental
results reported below are those averaged over the five
trials.

In each trial, we collected all the words whose total
frequencies were larger than 2 from the summaries of the
training examples and created a set of keywords
S,j=12m. There were on average 510 keywords in

the five trials. For each keyword S, we selected from the

email messages 20 words having the largest information
gain values (cf. Yang & Pederson 1997). We denote the
set of words related to S, as .X',. There were on average

about 2,400 words in the set of the selected words

x=Ux,.

j=1
In each trial, we constructed an SKG model with the texts
and summaries in the training examples. For a given text
x, we calculated the conditional probability of each
keyword S, given the text x, using only the

corresponding set of words X, . This is because we found

that this kind of ‘feature selection’ helps to improve
performance. (We set | X, |=20 based on a preliminary

experimental result using a random 3:1 split of the
training data prior to the first trial of the cross validation.
See Section 4.2 for details on further experiments.).

We classified the test data using our method, namely
classification based on SKG. When the classifier is
trained with the perceptron algorithm with margins, we
denote the method as ‘SKG (PAM)’. When the classifier
is the support vector machine, we denote the method as
‘SKG (SVM)’. For PAM, we used a tool that we
developed ourselves. For SVM, we used a tool developed
by Platt (1998), which was also used in (Dumais et al.
1998) for text classification.

For comparison, we also tested other methods.

First, we used only email messages to train classifiers.
(That is to say, we did not use the summaries). As
classifiers, we employed SVM and PAM. Our use of
SVM was exactly the same as that in (Dumais et al. 1998).
That is, for each class, we conducted binary classification
in which we selected 300 features based on information
gain. PAM was also run on the same feature set. We
denote the methods as ‘Text (SVM)’ and ‘Text (PAM)’
respectively.

Second, we also used all the words in the texts as features
when using SVM and PAM. We denote them as ‘Text
(all)(SVM)’ and ‘Text (all)(PAM)’ respectively.

Third, we used only summaries to train SVM and PAM
classifiers. Next, we used them to classify email messages.
The methods are denoted as ‘Sum (SVM)’ and ‘Sum
(PAM)’ respectively.

Fourth, we merged each email message with its associated
summary and viewed the merged results as peudo-texts to
train classifiers. Again, we employed SVM and PAM. We
denote the methods as ‘Text+Sum (SVM)’ and
‘Text+Sum (PAM)’ respectively.

Fifth, we treated the keywords extracted from the
summaries as features of the email messages and
conducted training and classification with the email
messages on the basis of the features. This can be viewed
as feature selection for text classification using summaries.

Table 2: Experimental results of email classification

Top 1 Top 3
Method Accuracy (%) Accuracy (%)
Prior 34.1 47.8
Text (PAM) 58.7 73.7
Text (all)(PAM) 58.3 73.5
Sum (PAM) 50.0 69.1
Text+Sum (PAM) 56.2 70.4
Text (KW)(PAM) 58.2 73.1
Text-X (PAM) 58.3 73.8
SKG (PAM) 63.6 78.9
Text (SVM) 57.3 76.7
Text (all)(SVM) 56.7 76.9
Sum (SVM) 474 71.2
Text+Sum (SVM) 55.5 73.7
Text (KW)(SVM) 54.6 75.4
Text-X (SVM) 57.6 77.0
SKG (SVM) 61.5 81.5

We also employed SVM and PAM as classifiers. We
denote the methods as ‘Text (KW)(SVM)’ and ‘Text
(KW)(PAM)’ respectively.

Sixth, we used PAM and SVM only on X , the set of
words used for creating the stochastic keywords
generation models. We denote them as ‘Text-X (PAM)’
and ‘Text-X (SVM)’ respectively.

We also tested the baseline method, denoted as ‘Prior’, in
which we always chose the most frequently occurring
classes.

Table 2 shows the results in terms of top 1 accuracy and
top 3 accuracy.

From Table 2, we see that SKG (PAM) and SKG (SVM)
significantly outperform their corresponding methods that
do not use SKG. The results of the sign test (cf., Yang &
Liu 1999) show that the improvements are statistically
significant (p-value < 0.005).

The experimental results of Text (PAM), Text (all)(PAM)
Text (SVM), and Text (all)(SVM) indicate that feature
selection based on information gain do not affect the
performances very much.

The performances of Sum (PAM) and Sum (SVM) are not
as good as those of Text (PAM) and Text (SVM),
suggesting that a classifier trained from the space of
summaries cannot work well in the space of email
messages. This is because the word usage in the email
messages are quite different from the word usage in the

Table 3: Performance of SKG (PAM) when using different
numbers of features | X, | to model the conditional probability
of each keyword S,

|X | Top 1 Top 3
/ Accuracy (%) Accuracy (%)
10 61.5 78.3
20 63.6 78.9
30 63.3 79.3
40 62.3 78.5
50 61.2 77.8

summaries. For the same reason, Text (KW)(PAM) and
Text (KW)(SVM) do not perform well either.

The performances of Text+Sum (PAM) and Text+Sum
(SVM) are not better than those of Text (PAM) and Text
(SVM), suggesting that simply merging texts with their
summaries for training cannot help improve performance.

The performances of Text-X (PAM) and Text-X (SVM)
are inferior to those of SKG (PAM) and SKG (SVM),
indicating that the better performances of SKG were not
due to the use of the selected feature set X .

4.2 Discussions

We investigated the effects of using different numbers of
words (features) from email messages in the construction
of the SKG models. Table 3 shows the performances of
SKG (PAM) in different settings. We see that all the
results are better than those of non-SKG methods in Table
2, and among them the results achieve the best when
| X, =20 and | X, |=30. The results indicate that 20 to

30 words (features) will usually suffice to identify a
keyword.

We also investigated the performance of deterministic
keyword generation, in which we mapped examples from
X to § instead of X to @ in training and testing. More
precisely, we first used the email messages and their
summaries to train the naive Bayesian classifiers, as we
did before. However, we did not use the naive Bayesian
classifiers for probability assignment, but used them for
classification. For each text, we used the classifiers to
generate a 1-0 vector. The value was one, if the
corresponding keyword has a probability value larger than
0.5, and zero otherwise. Next, we converted all of the
classified texts into 1-0 vectors and used them for the
construction of classifiers. We employed PAM and SVM
as before. The experimental results, denoted as ‘DKG
(PAM)’ and ‘DKG (SVM)’ respectively, are shown in
Table 4. We see that DKG (PAM) slightly improves upon
Text (PAM). However, the result from the sign test is not
statistically significant. SKG (PAM) performs much

Table 4: Results of email classification with deterministic

keyword generation (results with stochastic keyword
generation are also listed)

Method Achr(;r;)} (%) Achr(;r;; (%)
DKG (PAM) 59.8 73.9

SKG (PAM) 63.6 78.9

DKG (SVM) 57.6 76.9

SKG (SVM) 61.5 81.5

Table 5: Results of classification on summaries (results of
classification on email messages are also listed)

Method ACCIE;‘Z; %) ACCIEL‘ZS %)
Text (PAM) 58.7 73.7
Sum-Sum (PAM) 87.0 96.8
Text (SVM) 573 76.7
Sum-Sum (SVM) 86.9 97.2

better than DKG (PAM), suggesting that the mapping of
examples from X to @ is more effective. The results
with SVM have similar tendencies. Thus it is safe to say
that probabilistic assignment of keywords is more reliable
than deterministic assignment of keywords for text
classification.

Table 5 shows the performances of classification on
summaries (i.e., we used the summaries for both training
and classification), which we denoted as Sum-Sum (PAM)
and Sum-Sum (SVM). The results indicate that the
summaries made by the engineers can be more accurately
classified than the texts written by the customers. This has
verified that our assumption (summaries can be more
accurately classified than texts) holds for the data in the
experiments.

Figure 5 gives an example from the category ‘Empty
Outlook Message’, which was incorrectly classified by
Text (PAM) and Text (SVM), but was correctly classified
by SKG (PAM) and SKG (SVM). The customer described
the problem as ‘it is blank’. In contrast, the engineer
described the problem as ‘no subject and message body’.
It appears that the email messages written by a large
group of customers tend to use varying and redundant
expressions, while the summaries written by a small
group of engineers tend to use uniform and concise
expressions. This is the reason that summaries can be
more accurately classified than texts. Figure 5(c) shows
the result of the top four keywords and their probability
values based on stochastic keyword generation. We see
that SKG can ‘recover’ the summaries quite well. As a
result, SKG can indeed effectively utilize the summary

When getting emails I get a notice that an email has
been received but when I try to view the message it is
blank. I have also tried to run the repair program off the
install disk but that it did not take care of the problem.

(a)

receive emails; some emails have no subject and
message body

(b)
1
0.9
0.8 | _
> 0.7
= 0.6
2 0.5 .
S 0.4 —
I
=0.3 F
0.2 [—
0.1 |
0
subject body emails receive
keyword
©

Figure 5: An example of classification (a) the email message
(b) the summary (c) top 4 keywords and their probability
values

information for improving the performances of text
classification.

5. Conclusions and Future Work

This paper has presented a new text classification method
using stochastic keyword generation for preprocessing
when summaries of texts are available during learning.
Stochastic keyword generation is the technique of
generating keywords from a text on the basis of
conditional probability models. The models are trained
based on supervised learning, with texts and their
summaries as training data. In text classification based on
SKG, a text is first mapped, with SKG, into a vector of
probability values, each of which corresponds to a
keyword. Text classification is then conducted on the
mapped probability vector. Experimental results indicate
that the performance of the new method in the email
classification task for an automated help desk is
significantly better than those of the baseline methods.

We note that SKG is not a technique limited only to text
classification. It is potentially useful in other text
processing, such as text summarization and text clustering.

We also note that the classification problem we have
raised in this paper is not limited to the classification of

texts. Our approach may be applicable to other
classification problems if we generalize stochastic
keyword generation to stochastic feature generation.

There are several issues remaining for future work. First,
theoretical analysis on the SKG method can be performed.
Second, experiments with different settings can be
conducted. For example, we assume that the texts which
have summaries and the texts which have been classified
belong to the same data set. In principle, the SKG method
can be applied even when they do not.

Acknowledgements

We thank Yunbo Cao and the anonymous reviewers for
their valuable comments on the earlier versions of this
paper. We acknowledge Susan Dumais and John Platt for
making the SVM tools available to us. We thank Ben
Wellington and Tim Paek for checking the English of this

paper.

References

Berger, A. & Lafferty, J. (1999). Information Retrieval as
Statistical Translation. In Proceedings of the Twenty-
Second Annual International ACM SIGIR Conference
on Research and Development in Information Retrieval,
pp. 222-229.

Brown, P. F., Della Pietra, S. A., Della Pietra, V. J., &
Mercer, R. L. (1993). The Mathematics of Statistical
Machine Translation: Parameter Estimation.
Computational Linguistics, vol. 19, no. 2, pp. 263-312.

Dumais, S., Platt, J., Heckerman, D., & Sahami, M.
(1998). Inductive Learning Algorithms and
Representations for Text Classification. In Proceedings
of the Seventh ACM International Conference on
Information and Knowledge Management, pp. 148-155.

Fuhr, N., Hartmanna, S., Lustig, G., Schwantner, M., &
Tzeras, K. (1991). Air/X — A Rule-based Multi-stage
Indexing System for Large Subject Fields. In
Proceedings of the Third International Conference on
“Recherche d’Information Assistee par Ordinateur”, pp.
606-623.

Joachims, T. (1998). Text Categorization with Support
Vector Machines: Learning with Many Relevant
Features. In Proceedings of the Tenth European
Conference on Machine Learning, pp. 137-142.

Knight, K. & Marcu, D. (2000). Statistics-Based
Summarization - Step One: Sentence Compression. In
Proceedings of the Seventeenth National Conference on
Artificial Intelligence and Twelfth Conference on on
Innovative Applications of Artificial Intelligence, pp.
703-710.

Krauth, W. & Mezard, M. (1987). Learning Algorithms
with Optimal Stability in Neural Networks. Journal of

Physics A - Mathematical General, vol. 20, no. 11, pp.
745-752.

Lewis, D. D. & Ringuette, M. (1994). A Comparison of
Two Learning Algorithms for Text Categorization. In
Proceedings of the Third Annual Symposium on
Document Analysis and Information Retrieval, pp. 81-
93.

Li, H. & Yamanishi, K. (2002). Text Classification Using
ESC-based Stochastic Decision Lists. Information
Processing and Management, vol. 38, no. 3, pp. 343-
361.

Li, Y., Zaragoza, H., Herbrich, R., Shawe-Taylor, J., &
Kandola, J. (2002). The Perceptron Algorithm with
Uneven Margin. In Proceedings of the Nineteenth
International Conference on Machine Learning, pp.
379-386.

Liu, H. & Motoda, H. (1998). Feature Transformation and
Subset Selection. IEEE Intelligent System, vol. 13, no. 2,
pp. 26-28.

Platt, J. (1998). Fast Training of Support Vector Machines
Using Sequential Minimal Optimization. In Scholkopf,
B., Burges, C., & Smola, A. (Eds.), Advances in Kernel
Methods - Support Vector Learning, pp. 185-208, MIT
Press.

Rumelhart, D. E., Hinton, G. E., & Williams, R. J. (1986).
Learning Internal Representations by Error Propagation.
In Rumelhart, D. E. & McClelland, J. L. (Eds.), Parallel
Distributed Processing: Explorations in the
Microstructure of Cognition, vol. 1, pp. 318-362, MIT
Press.

Schapire, R. & Singer, Y. (2000). BoosTexter: A
Boosting-based System for Text Categorization.
Machine Learning, vol. 39, no. 2/3, pp. 135—168.

Vapnik, V. (1995). The Nature of Statistical Learning
Theory, Springer Verlag.

Wiener, E., Pedersen, J. O., & Weigend, A. S. (1995). A
Neural Network Approach to Topic Spotting. In
Proceedings of the Fourth Annual Symposium on
Document Analysis and Information Retrieval, pp. 317-
322.

Yang, Y. (1994) Expert Network: Effective and Efficient
Learning from Human Decisions in Text Categorization
and Retrieval. In Proceedings of the Seventeenth Annual
International ACM SIGIR Conference on Research and
Development in Information Retrieval, pp. 13-22.

Yang, Y. & Pedereson, J. O. (1997). A Comparative
Study on Feature Selection in Text Categorization. In
Proceedings of the Fourteenth International Conference
on Machine Learning, pp. 412-420.

Yang, Y. & Liu, X. (1999). A Re-examination of Text
Categorization Methods. In Proceedings of the Twenty-
Second Annual International ACM SIGIR Conference
on Research and Development in Information Retrieval,
pp. 42-49.

