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Abstract—This paper presents a new spectral modeling method
for statistical parametric speech synthesis. In the conventional
methods, high-level spectral parameters, such as mel-cepstra or
line spectral pairs, are adopted as the features for hidden Markov
model (HMM) based parametric speech synthesis. Our proposed
method described in this paper improves the conventional method
in two ways. First, distributions of low-level, un-transformed
spectral envelopes (extracted by the STRAIGHT vocoder) are
used as the parameters for synthesis. Second, instead of using
single Gaussian distribution, we adopt the graphical models
with multiple hidden variables, including restricted Boltzmann
machines (RBM) and deep belief networks (DBN), to represent
the distribution of the low-level spectral envelopes at each HMM
state. At the synthesis time, the spectral envelopes are predicted
from the RBM-HMMs or the DBN-HMMs of the input sentence
following the maximum output probability parameter generation
criterion with the constraints of the dynamic features. A Gaussian
approximation is applied to the marginal distribution of the
visible stochastic variables in the RBM or DBN at each HMM
state in order to achieve a closed-form solution to the parameter
generation problem. Our experimental results show that both
RBM-HMM and DBN-HMM are able to generate spectral enve-
lope parameter sequences better than the conventional Gaussian-
HMM with superior generalization capabilities and that DBN-
HMM and RBM-HMM perform similarly due possibly to the use
of Gaussian approximation. As a result, our proposed method
can significantly alleviate the over-smoothing effect and improve
the naturalness of the conventional HMM-based speech synthesis
system using mel-cepstra.

Index Terms—Speech synthesis, hidden Markov model, re-
stricted Boltzmann machine, deep belief network, spectral en-
velope

I. INTRODUCTION

HE hidden Markov model (HMM)-based parametric
speech synthesis method has become a mainstream
speech synthesis method in recent years [2], [3]. In this
method, the spectrum, FO and segment durations are mod-
eled simultaneously within a unified HMM framework [2].
At synthesis time, these parameters are predicted so as to
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maximize their output probabilities from the HMM of the
input sentence. The constraints of the dynamic features are
considered during parameter generation in order to guarantee
the smoothness of the generated spectral and FO trajectories
[4]. Finally, the predicted parameters are sent to a speech
synthesizer to reconstruct the speech waveforms. This method
is able to synthesize highly intelligible and smooth speech
sounds [5], [6]. However, the quality of the synthetic speech
is degraded due to three main factors: limitations of the
parametric synthesizer itself, inadequacy of acoustic modeling
used in the synthesizer, and the over-smoothing effect of
parameter generation [7].

Many improved approaches have been proposed to over-
come the disadvantages of these three factors. In terms of the
speech synthesizer, STRAIGHT [8], as a high-performance
speech vocoder, has been widely used in current HMM-based
speech synthesis systems. It follows the source-filter model
of speech production. In order to represent the excitation
and vocal tract characteristics separately, FO and a smooth
spectral envelope without periodicity interference are extracted
at each frame. Then, mel-cepstra [5] or line spectral pairs
[6] can be derived from the spectral envelopes of training
data for the following HMM modeling. During synthesis, the
generated spectral parameters are used either to reconstruct
speech waveforms directly or to recover the spectral envelopes
for further speech reconstruction by STRAIGHT.

Acoustic modeling is another key component of the HMM-
based parametric speech synthesis. In the common spectral
modeling methods, the probability density functions (PDF) of
each HMM state is represented by a single Gaussian distri-
bution with diagonal covariance matrix and the distribution
parameters are estimated under the maximum likelihood (ML)
criterion [2]. Because the single Gaussian distributions are
used as the state PDFs, the outputs of maximum output
probability parameter generation tend to distribute near the
modes (also the means) of the Gaussians, which are estimated
by averaging observations with similar context descriptions in
the ML training. Although this averaging process improves the
robustness of parameter generation, the detailed characteristics
of the spectral parameters are lost. Therefore, the reconstructed
spectral envelopes are over-smoothed, which leads to a muffled
voice quality in the synthetic speech. The existing refine-
ments on acoustic modeling include increasing the number
of Gaussians for each HMM state [4], reformulating HMM as
a trajectory model [9], improving the model training criterion
by minimizing the generation error [10].
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In order to alleviate the over-smoothing effect, many im-
proved parameter generation methods have also been pro-
posed, such as modifying the parameter generation criterion by
integrating a global variance model [11] or minimizing model
divergences [12], post-filtering after parameter generation [6],
[13], using real speech parameters or segments to generate the
speech waveform [14], [15], or sampling trajectories from the
predictive distribution [16], [17], and so on.

In this paper, we propose a new spectral modeling method
which copes with the first two factors mentioned above.
First, the raw spectral envelopes extracted by the STRAIGHT
vocoder are utilized directly without further deriving spectral
parameters from them during feature extraction. Comparing
with the high-level' spectral parameters, such as mel-cepstra
or line spectral pairs, the low-level spectral envelopes are
more physically meaningful and more directly related with the
subjective perception on the speech quality. Thus, the influence
of spectral parameter extraction on the spectral modeling can
be avoided. Similar approach can be found in [18], where the
spectral envelopes derived from the harmonic amplitudes are
adopted to replace the mel-cepstra for HMM-based Arabic
speech synthesis and the naturalness improvement can be
achieved. Second, the graphical models with multiple hidden
layers, such as restricted Boltzmann machines (RBM) [19] and
deep belief networks (DBN) [20], are introduced to represent
the distribution of the spectral envelopes at each HMM state
instead of single Gaussian distribution. An RBM is a bipartite
undirected graphical model with a two-layer architecture and
a DBN contains more hidden layers, which can be estimated
using a stack of RBMs. Both of these two models are
better in describing the distribution of high-dimensional ob-
servations with cross-dimension correlations, i.e., the spectral
envelopes, than the single Gaussian distribution and Gaussian
mixture model (GMM). The acoustic modeling method which

describes the production, perception and distribution of speech

signals is always an important research topic in speech signal

processing [21]. In recent years, RBMs and DBNs have
been successfully applied to modeling speech signals, such
as spectrogram coding [22], speech recognition [23], [24], and
acoustic-articulatory inversion mapping [25], where they main-
ly act as the pre-training methods for a deep autoencoder or
a deep neural network (DNN). The architectures used in deep

learning as applied to speech processing have been motivated

by the multi-layered structures in both speech production

and perception involving phonological features, motor control,

articulatory dynamics, and acoustic and auditory parameters
[26], [27]. The approaches of applying RBMs, DBNs, and

other deep learning methods to the statistical parametric

speech synthesis have also been studied very recently [1],
[28]-[30]. In [28], a DNN-based statistical parametric speech

synthesis method is presented, which maps the input context

information towards the acoustic features using a neural

network with deep structures. In [29], a DNN which is

pre-trained by the DBN learning is adopted as a feature

'Here, the “level” refers to the steps of signal processing procedures
involved in the spectral feature extraction. The high-level spectral parameters
are commonly derived from the low-level ones by functional representation
and parameterization.

extractor for the Gaussian process based FO contour prediction.
Furthermore, RBMs and DBNs can be used as density models
instead of the DNN initialization methods for the speech
synthesis application. In [30], a single DBN model is trained
to represent the joint distribution between the tonal syllable ID
and the acoustic features. In [1], a set of RBMs are estimated
to describe the distributions of the spectral envelopes in the
context-dependent HMM states. In this paper, we extend our
previous work in [1] by incorporating the dynamic features
of spectral envelopes into the RBM modeling and developing
RBMs to DBNs which has more layers of hidden units.

This paper is organized as follows. In Section II, we will
briefly review the basic techniques of RBMs and DBNs. In
Section III, we will describe the details of our proposed
method. Section IV reports our experimental results. Section
V gives the conclusion and the discussion on our future work.

II. RESTRICTED BOLTZMANN MACHINES AND DEEP
BELIEF NETWORKS

A. Restricted Boltzmann machines

An RBM is a kind of bipartite undirected graphical model
(i.e. Markov random field) which is used to describe the
dependency among a set of random variables using a two-
layer architecture [19]. In this model, the visible stochastic
units v = [vy, ..., vy " are connected to the hidden stochastic
units & = [hy,...,hg]" as shown in Fig. 1.a), where V and
H are the numbers of units of the visible and hidden layers
respectively, and (-) T means the matrix transpose. Assuming
v € {0,1}V and h € {0,1} are both binary stochastic
variables, the energy function of the state {v,h} is defined
as

1% H vV H
E(V,h) = 72041'1]1‘ 7ijhj —ZZwijvihj, (1)
i=1 j=1 i=1 j=1
where w;; represents the symmetric interaction between wv;
and hj, a; and b; are bias terms. The model parameters are
composed of @ = [ay,...,ay]", b = [by,....,bg]", and W =
{wi;}v x . The joint distribution over the visible and hidden
units is defined as

P(v,h) :%exp (—=E(v,h)), 2)

Z=) Y exp(-E(v,h)) 3)
v h

is the partition function which can be estimated using the
annealed importance sampling (AIS) method [31]. Therefore,
the probability density function over the visible vector v can
be calculated as

PW)= 2 Y exp(~E k). @
h

where

Given a training set, the RBM model parameters {a,b, W}
can be estimated by maximum likelihood learning using the
contrastive divergence (CD) algorithm [32].

RBM can also be applied to model the distribution of
real-valued data (e.g. the speech parameters) by adopting its
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Fig. 1. The graphical model representations for a) an RBM and b) a three-
hidden-layer DBN.

Gaussian-Bernoulli form, which means v € RV are real-valued
and h € {0,1}* are binary. Thus, the energy function of the
state {v,h} is defined as

14 2 H vV H
E(V,h) = Z (1}22_0_;1) — ijhj — Zzwijhj%’
i=1 j=1 i=1j=1 (5)
2

where the variance parameters o; are commonly fixed to a
predetermined value instead of learning from the training data
[33].

B. Deep belief networks

A deep belief network (DBN) is a probabilistic generative
model which is composed of many layers of hidden units [20].
The graphical model representation for a three-hidden-layer
DBN is shown in Fig. 1.b). In this model, each layer captures
the correlations among the activities of hidden features in
the layer below. The top two layers of the DBN form an
undirected bipartite graph. The lower layers form a directed
graph with a top-down direction to generate the visible units.
Mathematically, the joint distribution over the visible and all
hidden units can be written as

P(v,h', ... .h")
= P(v|n")P(h'|h?)--- P(h"*|R"~ ") P(R" " 1"), (6)

where h' = [hl, ..., hﬁql]—r is the hidden stochastic vector of the
l-th hidden layer, H; is the dimensionality of k', and L is the
number of hidden layers. The joint distribution P(h*~* h")
is represented by an RBM as (2) with the weight matrix W%
and the bias vectors a” and b”. P(v|h') and P(h'~'|n'),1 €
{2,3,...,L — 1} are represented by sigmoid belief networks
[34]. Each sigmoid belief network is described by a weight
matrix W' and a bias vector a'. Assuming v are real-valued
and hl,l € {1,2,..., L} are binary, the dependency between v
and k' in the sigmoid belief network is described by

Ph') = N(v; W'Th! +4', %) (7)

where N (+) denotes a Gaussian distribution; ¥ = diag{o?}
and turns to an identity matrix when o2 are fixed to 1 during

model training. For [ € {2,3,...,L — 1}, the dependency
between two adjacent hidden layers is represented by

P(hi™ = 1"y = g(al + > wi;ht) )

J
where g(z) = 1/(1+exp(—=z)) is the sigmoid function. For an
L-hidden-layer DBN, its model parameters are composed of
{a', W', ...,a"~', WE=L al " WE}. Further, the marginal
distribution of the visible variables for a DBN can be written

as
P)=> - Ph', . k") )
0t 2

Given the training samples of the visible units, it is difficult
to estimate the model parameters of a DBN directly under
the maximum likelihood criterion due to the complex model
structure with multiple hidden layers. Therefore, a greedy
learning algorithm has been proposed and popularly applied
to train the DBN in a layer-by-layer manner [20]. A stack
of RBMs are used in this algorithm. Firstly, it estimates the
parameters {a',b', W'} of the first layer RBM to model the
visible training data. Then, it freezes the parameters {a', W'}
of the first layer and draws samples from P(h'[v) to train the

next layer RBM {a?,b%, W?}, where

P(hy =1lv) = g(b) + Y _w}jv;). (10)
This training procedure is conducted recursively until it reach-
es the top layer and gets {a’, bL, wk }. It has been proved that
this greedy learning algorithm can improve the lower bound
on the log-likelihood of the training samples by adding each
new hidden layer [20], [31]. Once the model parameters are
estimated, to calculate the log-probability that a DBN assigns
to training or test data by (9) directly is also computation-
ally intractable. A lower bound on the log-probability can
be estimated by combining the AIS-based partition function
estimation with approximate inference [31].

III. SPECTRAL ENVELOPE MODELING USING RBMS AND
DBNs

A. HMM-based parametric speech synthesis

At first, the conventional HMM-based parametric speech
synthesis method is briefly reviewed. It consists of a training
stage and a synthesis stage. During training, the FO and spec-
tral parameters are extracted from the waveforms contained
in the training set. Then a set of context-dependent HMMs
are estimated to maximize the likelihood function for the
training acoustic features. Here 0 = [o],0],...,05]" is
the observation feature sequence and 7" is the length of the
sequence. The observation feature vector o, € R3P for the ¢-th
frame typically consists of static acoustic parameters ¢; € R”
and their delta and acceleration components as

0; = [c;r,Ac;r, A%ﬂ—r, (11)
where D is the dimension of the static component; the
dynamic components are commonly calculated as

Acy = 0.5¢141 — 0.5¢¢—1 vVt e [2,T — 1],
Acy = Aco, Acr = Acr_q

(12)
13)
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and

(14)
5)

AQCt =Ct+1 — 2Ct +Ci—1 Vit € [Q,T — 1]7

A2%c; = A2%cy, A2cp = N%ep_y.

Therefore, the complete feature sequence o can be considered

to be a linear transform of the static feature sequence ¢ =
T .7 T

[c],¢9,...,¢cp]" as

0 = Mec, (16)

where M € R3TP*TD i determined by the delta and accel-
eration calculation functions in (12)-(15) [4]. A multi-space
probability distribution (MSD) [35] is applied to incorporate
a distribution for FO into the probabilistic framework of the
HMM considering that FO is only defined for voiced speech
frames. In order to deal with the data-sparsity problem of
the context-dependent model training with extensive context
features, a decision-tree-based model clustering technique that
uses a minimum description length (MDL) criterion [36] to
guide the tree construction is adopted after initial training
of the context-dependent HMMs. Next, a state alignment is
conducted using the trained HMMs to train context-dependent
state duration probabilities [2] for state duration prediction.
A single-mixture Gaussian distribution is used to model the
duration probability for each state. A decision-tree-based mod-
el clustering technique is similarly applied to these duration
distributions.

At the synthesis stage, the maximum output probability
parameter generation algorithm is used to generate acoustic pa-
rameters [4]. The result of front-end linguistic analysis on the
input text is used to determine the sentence HMM . The state
sequence ¢ = {q1,¢2,...,qr} is predicted using the trained
state duration probabilities [2]. Then, the sequence of speech
features are predicted by maximizing P(o | A, ¢). Considering
the constraints between static and dynamic features as in (16),
the parameter generation criterion can be rewritten as

¢* =argmax P(Mc | \,q), (17
c

where ¢* is the generated static feature sequence. If the
emission distribution of each HMM state is represented by a
single Gaussian distribution, the closed-form solution to (17)
can be derived. By setting

OP(Mc | q,)\) ~0, (18)
dc
we obtain

¢t = (MU ‘M) MU my, (19)
where my = [, ..., ]" and U, = diag(Z,,, ..., 5,;,)
are the mean vector and covariance matrix of the sentence as
decided by the state sequence ¢ [4].

B. Spectral envelope modeling and generation using RBM and
DBN

In this paper, we improve the conventional spectral mod-
eling method in the HMM-based parametric speech synthesis
from two aspects. First, the raw spectral envelopes extracted
by the STRAIGHT vocoder are modeled directly without
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Fig. 2. Flowchart of our proposed method. The modules in solid lines

represent the procedures of the conventional HMM-based speech synthesis
using high-level spectral parameters, where “CD-HMM?” stands for “Context-
Dependent HMM”. The modules in dash lines describe the add-on procedures
of our proposed method for modeling the spectral envelopes using RBMs or
DBNs.

further deriving high-level spectral parameters. Second, the
RBM and DBN models are adopted to replace the single
Gaussian distribution at each HMM state. In order to simplify
the model training with high-dimensional spectral features, the
decision trees for model clustering and the state alignment
results are assumed to be given when the spectral envelopes are
modeled. Thus, we can focus on comparing the performance
of different models on the clustered model estimation. In
current implementation, the conventional context-dependent
model training using high-level spectral parameters and single
Gaussian state PDFs is conducted at first to achieve the model
clustering and state alignment results.

The flowchart of our proposed method is shown in Fig.
2. During the acoustic feature extraction using STRAIGHT
vocoder, the original linear frequency spectral envelopes’ are
stored besides the spectral parameters. The context-dependent
HMMs for conventional spectral parameters and FQ features
are firstly estimated according to the method introduced in
Section III.A. A single Gaussian distribution is used to model
the spectral parameters at each HMM state. Next, a state
alignment to the acoustic features is performed. The state
boundaries are used to gather the spectral envelopes for each
clustered context-dependent state. Similar to the high-level
spectral parameters, the feature vector of the spectral envelope
at each frame consists of static, velocity, and acceleration
components as (11)-(15). Then, an RBM or a DBN is esti-

>The mel-frequency spectral envelopes can also be used here to represent
the speech perception properties. In this paper, we adopt the linear frequency
spectral envelope because it is the most original description of the vocal
tract characters without any prior knowledge and assumption on the spectral
parameterization and speech perception.
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mated under the maximum likelihood criterion for each state
according to the methods introduced in Section II. The model
estimation of the RBMs or the DBNs is conducted only once
using the fixed state boundaries. Finally, the context-dependent
RBM-HMMs or DBN-HMMs can be constructed for modeling
the spectral envelopes.

At synthesis time, the same criterion in (17) is followed to
generate the spectral envelopes. The optimal sequence of spec-
tral envelopes are estimated by maximizing the output prob-
ability from the RBM-HMM or the DBN-HMM of the input
sentence. When single Gaussian distributions are adopted as
the state PDFs, there is a closed-form solution as shown in (19)
to this maximum output probability parameter generation with
the constraints of dynamic features once the state sequence
has been determined [4]. However, the marginal distribution
defined in (4) for an RBM or in (9) for a DBN is much more
complex than a single Gaussian, which makes the closed-form
solution impractical. Therefore, a Gaussian approximation is
applied before parameter generation to simply the problem.
For each HMM state, a Gaussian distribution A (v; u, X) is
constructed, where v is the spectral envelope feature vector
containing static, velocity, and acceleration components;

p = argmax log P(v) (20)

is the mode estimated for each RBM or DBN and P(v)
is defined as (4) or (9); X is a diagonal covariance matrix
estimated by calculating the sample covariances given the
training samples of the state. These Gaussian distributions
are used to replace the RBMs or the DBNs as the state
PDFs at synthesis time. Therefore, the conventional parameter
generation algorithm with the constraints of dynamic features
can be followed to predict the spectral envelopes by solving a
group of linear equations (19). By incorporating the dynamic
features of the spectral envelopes during model training and
parameter generation, temporally smooth spectral trajectories
can be generated at synthesis time. The detailed algorithms of
the mode estimation in (20) for an RBM and a DBN model
will be introduced in the following subsections.

C. Estimating RBM mode

Here, we consider the RBM of the Gaussian-Bernoulli form
because the spectral envelope features are real-valued. Given
the estimated model parameters {a,b, W} of an RBM, the
probability density function (4) over the visible vector v can

be further calculated as®

= % ;exp (—E(v,h))

+ b h+ vTWh>

H
I DC exp(bihy+vTw;hy)
is no closed-form solution to solve (20) for an RBM, the

v
5y ( y e
=1
= —exp (
Jj=1h;€{0,1}
(vi —a)*\ T T
Z 5 H (1+exp(b; +v'wj))),
j=1
gradient descent algorithm is adopted here, i.e.,
Olog P(v)

1%
i=1
1
= —e —_
ZP\ 7
=1
2D

where w; denotes the j-th column of matrix W. Because there

ptD) =) 4 o , (22)

v

where ¢ denotes the number of iteration; « is the step size;

y=yp(i)

8logP() exp(bj +vw;)
Oy (v—a Jrz1—&—epr +vTw

w;. (23)
i)

Thus, the estimated mode of the RBM model is determined
by a non-linear transform of the model parameters {a,b, W}.
In contrast to the single Gaussian distribution, this mode is no
longer the Gaussian mean which is estimated by averaging the
corresponding training vectors under the maximum likelihood
criterion.

Because the likelihood of an RBM is multimodal, the
gradient descent optimization in (22) only leads to a local
maximum and the result is sensitive to the initialization of »(©).
In order to find a representative v(*), we firstly calculate the
means of the conditional distributions P(k|v) for all training
vectors v. These means are averaged and made binary using a
fixed threshold of 0.5 to get hO, Then, the initial v(?) for the
iteratively updating in (22) is set as the mean of P(v|h(%).

D. Estimating DBN mode
Estimating the mode of a DBN model is more complex than

dealing with an RBM. The marginal distribution of the visible
variables in (9) can be rewritten as

Z Zthl h")
:ZP v|h1
hl

where P(v|h') is described in (7) and P(h') can be calculated

by applying
ZP hl 1|hl )

3The variance parameters Uf in (5) are fixed to 1 to simplify the notation.

(24)

(25)

P(R'™) (26)
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recursively for each [ from L — 1 to 2. The conditional
distribution P(h'~'|h') is represented by (8) and P(h*~')
is the marginal distribution (4) of the RBM representing the
top two hidden layers. Similar to the RBM mode estimation,
the gradient descent algorithm can be applied here to optimize
(25) once the values of P(hl) are determined for all possible
h'. However, this will lead to an exponential complexity with
respect to the number of hidden units at each hidden layer due
to the summation in (25) and (26). Thus, such optimization
becomes impractical unless the number of hidden units is
reasonably small.

In order to get a practical solution to the DBN mode
estimation, an approximation is made to (24) in this paper.
The summation over all possible values of the hidden units is
simplified by considering only the optimal hidden vectors at
each layer, i.e.

P(y) ~ P(v,h"*, ... .h""), (27)
where
{h"~" h"*} = argmax log P(h*~! ") (28)
(hL=1 ALY
and for each [ € {L —1,...,3,2}
B = argr}fllgi(log P(h'~R). (29)

The joint distribution P(h*~* k") in (28) is modeled by
a Bernoulli-Bernoulli RBM according to the definition of
DBN in Section I.B. Because h”~' and k' are both binary
stochastic vectors, the iterated conditional modes (ICM) [37]
algorithm is adopted to solve (28). This algorithm determines
the configuration that maximizes the joint probability of a
Markov random field by iteratively maximizing the probability
of each variable conditioned on the rest. Applying the ICM
algorithm here, we just update A by maximizing P(h”|h"~")
and update 2" ™! by maximizing P(h*~*|h") iteratively. Both
of the two conditional distributions are multivariate Bernoulli
distribution without cross-dimension correlation [20]. The
optimal configuration at each step can be determined simply
by applying a threshold of 0.5 for each binary unit. The initial
Y1 of the iteratively updating is set to be the R~ which
is obtained by solving (28) for the DBN with L — 1 hidden
layers.

For each [ from L — 1 to 2, (29) can be solved recur-
sively according to the conditional distribution in (8). After
{h'*,...,h"*} are determined, the mode of the DBN can be
estimated by substituting (27) into (20). Considering P(v\hl)
is a Gaussian distribution as (7), we have

p ~ arg max log P(v,h'* ... h"")
v
= arg max log P(v|h'*)
v

=W'Th" +a'. (30)

1V. EXPERIMENTS
A. Experimental conditions

A 1-hour Chinese speech database produced by a profes-
sional female speaker was used in our experiments. It consisted

-
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Fig. 3. The cumulative probability curve for the number of frames belonging
to each context-dependent state. The arrows indicate the numbers of frames
of the three example states used for the analysis in Section IV.B and Fig. 4.

of 1,000 sentences together with the segmental and prosodic
labels. 800 sentences were selected randomly for training and
the remaining 200 sentences were used as a test set. The
waveforms were recorded in 16kHz/16bit format.

When constructing the baseline system, 41-order mel-
cepstra (including O-th coefficient for frame power) were
derived from the spectral envelope by STRAIGHT analysis
at Sms frame shift. The FO and spectral features consisted of
static, velocity, and acceleration components. A 5-state left-to-
right HMM structure with no skips was adopted to train the
context-dependent phone models. The covariance matrix of the
single Gaussian distribution at each HMM state was set to be
diagonal. After the decision-tree-based model clustering, we
got 1,612 context-dependent states in total for the mel-cepstral
stream. The model parameters of these states were estimated
by maximum likelihood training.

In the spectral envelope modeling, the FFT length of the
STRAIGHT analysis was set to 1024 which led to 513 x 3 =
1539 visible units in the RBMs and DBNs corresponding to
the spectral amplitudes within the frequency range of [0, 7]
together with their dynamic components. After the HMMs
for the mel-cepstra and FO features were trained, a state
alignment was conducted on the training set and the test set
to assign the frames to each state for the spectral envelope
modeling and testing. The cumulative probability curve for
the number of frames belonging to each context-dependent
state is illustrated in Fig. 3. From this figure, we can see that
the numbers of training samples vary a lot among different
states. For each context-dependent state, the logarithmized
spectral amplitudes at each frequency point were normalized to
zero mean and unit variance. CD learning with 1-step Gibbs
sampling (CD1) was adopted for the RBM training and the
learning rate was 0.0001. The batch size was set to 10 and 200
epochs were executed for estimating each RBM. The DBNs
were estimated following the greedy layer-by-layer training
algorithm introduced in Section II.B.
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Fig. 4. The average log-probabilities on the training and test sets when modeling (a) the mel-cepstra and (b) the spectral envelopes of state A (left column),
state B (middle column), and state C (right column) using different models. The number of training samples belonging to these three selected states are

indicated in Fig. 3.

B. Comparison between GMM and RBM as state PDF's

At first we compared the performance of the GMM and
the RBM in modeling the distribution of mel-cepstra and
spectral envelopes for an HMM state. Three representative
states were selected for this experiment, which have 270, 650,
1530 training frames and 60, 130, 410 test frames respectively.
As shown in Fig. 3, the numbers of training frames of these
three states correspond to the 0.1, 0.5, and 0.9 cumulative
probabilities which are calculated over the numbers of the
training frames of all the 1,612 context-dependent states.
GMMs and RBMs were trained under the maximum likelihood
criterion to model these three states. The covariance matrices
in the GMMs were set to be diagonal and the number of
Gaussian mixtures varied from 1 to 64. The number of hidden
units in the RBMs varied from 1 to 1,000. The average
log-probabilities on the training and test sets for different
models and states are shown in Fig. 4 for the mel-cepstra and
the spectral envelopes respectively. Examining the difference
between the training and test log-probabilities for both the mel-
cepstra and the spectral envelopes, we see that the GMMs have
a clear tendency of over-fitting with the increasing of model
complexity. This over-fitting effect becomes less significant
when a larger training set is available. On the other hand, the
RBM shows consistently good generalization ability with the
increasing of the number of hidden units. This can be attribute
to utilizing the binary hidden units which create a information
bottleneck and act as an effective regularizer during model
training.

The differences between the test log-probabilities of the best
GMM or RBM models and the single Gaussian distributions
for the three states are listed in Table I. From Fig. 4 and Table

I, we can see that the model accuracy improvements obtained
by using the density models that are more complex than
a single Gaussian distribution are relatively small when the
mel-cepstra are used for spectral modeling. Once the spectral
envelopes are used, such improvements become much more
significant for both the GMM and RBM models. Besides,
the RBM also gives much higher log-probability to the test
data than the GMM when modeling the spectral envelopes.
These results can be attributed to that the mel-cepstral analysis
is a kind of decorrelation processing to the spectrums. A
GMM with multiple components is able to describe the inter-
dimensional correlations of a multivariate distribution to some
extend even if the diagonal covariance matrices are used. An
RBM with H hidden units can be considered as a GMM with
2H structured mixture components according to (21). There-
fore, it is good at analyzing the latent patterns embedded in the
high-dimensional raw data with inter-dimensional correlations.
Fig. 5 shows the estimated weight matrices W in the RBMs
when modeling the spectral envelopes for the three states.
We can see that the weight matrices are somewhat sparse,
indicating each hidden unit tries to capture the characteristics
of the spectral envelope in some specific frequency bands. This
is similar to a frequency analysis for spectral envelopes which
makes use of the amplitudes of the critical frequency bands
context-dependently.

For the spectral envelope modeling, we can further improve
the model accuracy by training RBMs layer-by-layer and
constructing a DBN. The average log-probabilities on the
training and test sets when modeling the spectral envelopes
using an RBM and a two-hidden-layer DBN are compared in
Table II. Here, the lower bound estimation [31] to the log-
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TABLE 1
THE DIFFERENCES BETWEEN THE TEST LOG-PROBABILITIES OF THE BEST
GMM OR RBM MODELS AND THE SINGLE GAUSSIAN DISTRIBUTIONS
FOR THE THREE SELECTED STATES. THE NUMBERS IN THE BRACKETS
INDICATE THE NUMBERS OF GAUSSIAN MIXTURES FOR THE GMMS AND
THE NUMBERS OF HIDDEN UNITS THE RBMS WHICH LEAD TO THE
HIGHEST LOG-PROBABILITIES ON THE TEST SET.

mel-cepstra spectral envelope

State

GMM RBM GMM RBM
A 2.40(4) 9.32(200) 321.84(8) 421.67(1000)
B 4.80(8) 7.73(200) 221.66(8) 410.06(1000)
C 1.80(8)  3.14(1000) 237.07(32)  332.19(1000)
State A State B State C
8000 ————— T
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Fig. 5. Visualization of the estimated weight matrices W in the RBMs when
modeling the spectral envelopes for the three states. The number of hidden
units is 50 and only the first 513 rows of the weight matrices are drawn. Each
column in the gray-scale figures corresponds to the weights connecting one
hidden unit with the 513 visible units which compose the static component
of the spectral envelope feature vector.

probability of a DBN is adopted. From this table, we can
observe a monotonic increase of test log-probabilities by using
more hidden layers.

C. System construction

Seven systems were constructed whose performance we
compared in our experiments. The definitions of these systems
are explained in Table III. As shown in Table I, the model
accuracy improvement achieved by adopting the distributions
more complicated than the single Gaussian is not significant
when the mel-cepstra are used as spectral features. Therefore,
we focus on the performance of spectral envelope modeling

TABLE II
THE AVERAGE LOG-PROBABILITIES ON THE TRAINING AND TEST SETS
WHEN MODELING THE SPECTRAL ENVELOPES USING AN RBM OF 50
HIDDEN UNITS AND A TWO-HIDDEN-LAYER DBN OF 50 HIDDEN UNITS AT

EACH LAYER.
State ] RBM(50) DBN(SO—SO)
train test train test
A -1968.267  -2133.704 -1862.665  -2033.919
B -1930.347  -2025.088 -1852.420  -1943.159
C -1970.269  -2006.260 -1837.336  -1875.578

TABLE III
SUMMARY OF DIFFERENT SYSTEMS CONSTRUCTED IN THE EXPERIMENTS.

System Spectral Features State PDF
Baseline mel-cepstra single Gaussian
GMM(1) spectral envelope single Gaussian
GMM(8) spectral envelope GMM, 8 mixtures
RBM(10) spectral envelope RBM, 10 hidden units
RBM(50) spectral envelope RBM, 50 hidden units

DBN(50-50) spectral envelope Z-hidden-layer DBN,

50 hidden units each layer
3-hidden-layer DBN,

DBN(50-50-30) 50 hidden units each layer

spectral envelope

TABLE IV
AVERAGE LOG-PROBABILITIES OF THE SAMPLE MEANS AND THE
ESTIMATED MODES FOR THE FOUR RBM OR DBN BASED SYSTEMS.

System Sample Means  PDF Modes
RBM(10) -1652.1 -1488.0
RBM(50) -1847.2 -1534.2

DBN(50-50) -1604.5 -1430.2
DBN(50-50-50) -1648.5 -1432.3

using different forms of state PDFs in our experiments.
Considering the computational complexity of training state
PDFs for all context-dependent states, the maximum number
of hidden units in the RBM and DBN models were set to 50.
All these systems shared the same decision trees for model
clustering and the same state boundaries which were derived
from the Baseline system. The FO and duration models of the
seven systems were identical.

D. Mode estimation for the RBMs and DBNs

When constructing the RBM(10), RBM(50), DBN(50-50),
and DBN(50-50-50) systems, the mode of each RBM or
DBN trained for a context-dependent state was estimated for
Gaussian approximation following the methods introduced in
Section III.C and IIL.D. For each system, the average log-
probabilities of the estimated modes and the sample means
were calculated. The results are listed in Table IV. From this
table, we see that the estimated modes have much higher log-
probabilities than the sample means known to have the highest
probability for a single Gaussian distribution. This means
that when the RBMs or the DBNs are adopted to represent
the state PDFs, the feature vector with the highest output
probability is not the sample means anymore. This implies the
superiority of RBM and DBN over single Gaussian distribution
in alleviating the over-smoothing problem during parameter
generation under the maximum output probability criterion.

The spectral envelopes recovered from the modes of dif-
ferent systems for one HMM state* are illustrated in Fig.
6. Here, only the static components of the spectral envelope
feature vectors are drawn. The mode of the GMM(1) system
is just the Gaussian mean vector. The mode of the GMM(S)
system is approximated as the Gaussian mean of the mixture
with the highest mixture weight. Comparing GMM(8) with
GMM(1), we can see that using more Gaussian mixtures

4This state is not one of the three states used in Section IV.B.
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Fig. 6. The spectral envelopes recovered from the modes of different systems
for one HMM state.

can help alleviate the over-smoothing effect on the spectral
envelope. Besides, the estimated state mode of the RBM and
DBN based systems have sharper formant structures than the
GMM-based ones. Comparing RBM(50) with RBM(10), we
can see the advantages of using more hidden units in an
RBM. While the differences among the estimated modes of
the RBM(50), DBN(50-50), and DBN(50-50-50) systems are
less significant. We will investigate the performance of these
systems further by the following subjective evaluation.

E. Subjective evaluation

Because the mel-cepstrum extraction can be considered as a
kind of linear transform to the logarithmized spectral envelope,
the spectral envelope recovered from the mean of the mel-
cepstra in a state is very close to the one recovered from the
mean of the corresponding logarithmized spectral envelopes.
Therefore, the Baseline and the GMM(1) systems had very
similar synthetic results and the Baseline system was adopted
as a representative for these two systems in the subjective eval-
uation to simplify the test design. For the GMM(8) system, the
EM-based parameter generation algorithm [4] could be applied
to predict the spectral envelope trajectories by iteratively
updating. In order to get a closed-form solution, we made a
single Gaussian approximation to the GMM:s at synthesis time
by only using the Gaussian mixture with the highest mixture
weight at each HMM state.

The first subjective evaluation was to compare among the
Baseline, GMM(8), RBM(10), and RBM(50) systems. Fifteen
sentences out of the training database were selected and
synthesized using these four systems respectively.® Five groups
of preference tests were conducted and each one was to make
comparison between two of the four systems as shown in each
row of Table V. Each of the pairs of synthetic sentences were
evaluated in random order by five Chinese-native listeners.

5Some examples of the synthetic speech using the seven systems listed in
Table III can be found at http://staff.ustc.edu.cn/~zhling/DBNSyn/demo.html.

TABLE V
SUBJECTIVE PREFERENCE SCORES (%) AMONG SPEECH SYNTHESIZED
USING THE Baseline, GMM(8), RBM(10), AND RBM(50) SYSTEMS, WHERE
N/P DENOTES “NO PREFERENCE” AND p MEANS THE p-VALUE OF t-TEST
BETWEEN THESE TWO SYSTEMS.

Baseline  GMM(8)  RBM(10)  RBM(50) N/P p
18.67 48.00 - - 3333 0.0014
12.00 - 50.67 - 37.33 0.00
5.33 - - 70.67 24.00 0.00

- 16.00 - 69.33 14.67 0.00
— — 9.33 37.33 53.33 0.00
TABLE VI

SUBJECTIVE PREFERENCE SCORES (%) AMONG THE RBM(50),
DBN(50-50), AND DBN(50-50-50) SYSTEMS.

RBM(50) DBN(50-50) DBN(50-50-50)  N/P )
2533 1733 = 5733 02919
38.67 - 21.33 40.00  0.0520

The listeners were asked to identify which sentence in each
pair sounded more natural. Table V summarizes the preference
scores among these four systems and the p-values given by t-
test. From this table, we can see that introducing the density
models that are more complex than single Gaussian, such as
GMM and RBM, to model the spectral envelopes at each H-
MM state can achieve significantly better naturalness than the
single Gaussian distribution based methods. Compared with
the GMM(8) system, the RBM(50) system has much better
preference in naturalness. This demonstrates the superiority of
RBM over GMM in modeling the spectral envelope features.
A comparison between the spectral envelopes generated by
the Baseline system and the RBM(50) system is shown in Fig.
7. From this figure, we can observe the enhanced formant
structures after modeling the spectral envelopes using RBMs.
Besides, we can also find in Table V that the performance of
the RBM-based systems is influenced by the number of hidden
units used in the model definition when comparing RBM(10)
with RBM(50). These results are consistent with the formant
sharpness of the estimated modes for different systems shown
in Fig. 6.

In order to investigate the effect of extending RBM to DBN
with more hidden layers, another subjective evaluation was
conducted among the RBM(50), DBN(50-50), and DBN(50-
50-50) systems. Another fifteen sentences out of the training
database were used and two groups of preference tests were
conducted by five Chinese-native listeners. The results are
shown in Table VI. We can see that there is no significant dif-
ferences among these three systems at 0.05 significance level.
Although we can improve the model accuracy by introducing
more hidden layers as shown in Table II, the naturalness of
synthetic speech can not be improved correspondingly. One
possible reason is the approximation we make in (27) when
estimating the DBN mode.

F. Objective evaluation

Besides the subjective evaluation, we also calculated the
spectral distortions on the test set between the spectral en-
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Fig. 7. The spectrograms of a segment of synthetic speech using a) the

Baseline system and b) the RBM(50) system. These spectrograms are not
calculated by STFT analysis on the synthetic waveform. For the Baseline
system, the spectrogram is drawn based on the spectral envelopes recovered
from the generated mel-cepstra. For the RBM(50) system, the spectrogram is
drawn based on the generated spectral envelopes directly.

velopes generated by the systems listed in Table III and
the ones extracted from the natural recordings. The synthetic
spectral envelopes used the state boundaries of the natural
recordings to simplify the frame alignment. Then, the natural
and synthetic spectral envelopes at each frame were normal-
ized to the same power and the calculation of the spectral
distortion between them followed the method introduced in
[38]. For the Baseline system, the generated mel-cepstra were
converted to spectral envelopes before the calculation. The
average spectral distortions of all the systems are listed in
Table VII. We can see that the objective evaluation results
are inconsistent with the subjective preference scores shown
in Table V. For example, the RBM(50) system has significant
better naturalness than the Baseline system in the subjective
evaluation, while its average spectral distortion is the highest.
The reason is that the spectral distortion in [38] is a Euclidean
distance between two logarithmized spectral envelopes, which
treats each dimension of the spectral envelopes independently
and equally. However, the superiority of our proposed method
is to provide better representation of the cross-dimension
correlations for the spectral envelope modeling, which can not
be reflected by this spectral distortion measurement. Similar
inconsistency between subjective evaluation results and objec-
tive acoustic distortions for speech synthesis has been observed
in [12], [39].

V. CONCLUSION AND FUTURE WORK

We have proposed an RBM and DBN based spectral
envelope modeling method for statistical parametric speech
synthesis in this paper. The spectral envelopes extracted by
STRAIGHT vocoder are modeled by an RBM or a DBN for
each HMM state. At the synthesis time, the mode vectors
of the trained RBMs and DBNs are estimated and used in
place of the Gaussian means for parameter generation. Our
experimental results show the superiority of RBM and DBN
over Gaussian mixture model in describing the distribution

TABLE VII
AVERAGE SPECTRAL DISTORTIONS (SD) ON TEST SET BETWEEN THE
SPECTRAL ENVELOPES GENERATED BY THE SYSTEMS LISTED IN TABLE
III AND THE ONES EXTRACTED FROM THE NATURAL RECORDINGS.

system ave. SD (dB)

Baseline 3.85
GMM(1) 3.77
GMM(8) 3.86
RBM(10) 3.89
RBM(50) 4.11
DBN(50-50) 4.10
DBN(50-50-50) 4.10

of spectral envelopes as density models and in mitigating the
over-smoothing effect of the synthetic speech.

As we discussed in Section I, there are also some other
approaches that can significantly reduce the over-smoothing
and improve the quality of the synthetic speech, such as
the GV-based parameter generation [11] and the post-filtering
techniques [6], [13]. In this paper, we focus on the acoustic
modeling to tackle the over-smoothing problem. It worths to
investigate alternative parameter generation and post-filtering
algorithms that are appropriate for our proposed spectral
envelope modeling method in the future.

This paper only makes some preliminary exploration on
applying the ideas of deep learning into statistical parametric
speech synthesis. There are still several issues in the current
implementation that require further investigation. First, it is
worth examining the system performance when the number of
hidden units in the RBMs keeps increasing. As shown in Fig.
3, the training samples are distributed among many context-
dependent HMM states in a highly unbalanced manner. Thus,
it may be difficult to optimize the model complexity for all
states simultaneously. An alternative solution is to train the
joint distribution between the observations and the context
labels using a single network [20] which is estimated using all
training samples. Similar approach for the statistical paramet-
ric speech synthesis has been studied in [30], where the joint
distribution between the tonal syllable ID and the spectral and
excitation features is modeled using a multi-distribution DBN.
Second, increasing the number of hidden layers in the DBNs
didn’t achieve improvement in our subjective evaluation. A
better algorithm to estimate the mode of a DBN with less
approximation is necessary. We plan as our future work to
implement the Gaussian approximation according to (25) when
the number of hidden units is reasonably small and compare
its performance with our current implementation. Another
strategy is to adopt the sampling outputs rather than the
model modes during parameter generation. As better density
models, the RBM and DBN are more appropriate than the
GMM for generating acoustic features by sampling, which
may help make the synthetic speech less monotonic and
boring. Third, in the work presented in this paper, the decision
tress for model clustering are still constructed using mel-
cepstra and single Gaussian state PDF. To extend the RBM
and DBN modeling from PDF estimation for the clustered
states to model clustering for the fully context-dependent states
will also be a task of our future work. Besides the spectral
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envelopes used in this paper, it is also straightforward to

apply our proposed method to the modeling and generation

of other forms of speech parameters, such as the articulatory

features recorded by electromagnetic articulography (EMA)

for articulatory movement prediction [40], the joint distribution

between the acoustic features and the articulatory features for

articulatory control of HMM-based speech synthesis [41], and

the joint spectral distribution between the source and target

speakers for voice conversion [42].
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