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ABSTRACT

We describe a new approach, called Strider, to Change and Configuration Management and
Support (CCMS). Strider is a black-box approach: without relying on specifications, it uses state
differencing to identify potential causes of differing program behaviors, uses state tracing to
identify actual, run-time state dependencies, and uses statistical behavior modeling for noise
filtering. Strider is a state-based approach: instead of linking vague, high-level descriptions and
symptoms to relevant actions, it models management and support problems in terms of individual,
named pieces of low-level configuration state and provides precise mappings to user-friendly
information through a computer genomics database. We use troubleshooting of configuration
failures to demonstrate that the Strider approach reduces problem complexity by several orders of
magnitude, making root cause analysis possible.

Introduction

Change and Configuration Management (CCM)
refers to the task of monitoring configuration changes
and maintaining systems in healthy configuration
states. Change and Configuration Support (CCS)
refers to the task of performing troubleshooting and
repairs to bring systems back to healthy configuration
states, after configuration failures have occurred.

CCMS of computer platforms with large install
bases and large numbers of available third-party soft-
ware packages have proved to be daunting tasks
[LC01]. The large number of possible configurations
and the lack of fully specified ‘‘golden states’’ [TH98]
have made the problem appear to be intractable.

In particular, configuration problems caused by
data sharing through persistent stores present a great
challenge. Such shared stores may serve many pur-
poses: they may contain system-wide resources that
are naturally shared by all applications (e.g., the file
system); they may allow applications installed at dif-
ferent times to discover and integrate with each other
to provide a richer user experience; they may allow
users to install new applications to customize default
handlers or appearances of existing applications; they
may allow individual applications to register with sys-
tem services to reuse base functionalities; or they may
allow individual components to register with host
applications that provide an extensibility mechanism
(e.g., toolbars in browsers).

Ideally, a white-box approach could greatly sim-
plify the task: the developers of every OS component
and every application would accurately and fully specify
the set of configuration data that their programs use, the
health invariants that subsets of these configuration data

must satisfy, and the dependencies among the OS com-
ponents and applications. Such information could then
be used to compose machine-wide dependency informa-
tion and golden configuration states.

In practice, studies have shown that [SC01, HD02]
it is very difficult to declare and maintain accurate and
conflict-free cross-application dependencies for every
machine with a unique configuration. The problem is
exacerbated by software upgrades/patches that create
‘‘ f o r w a r d dependencies’’ and by installation scripts that
can perform tasks that have system-wide effects but are
not captured by declared dependencies [HD02].

This motivates the need of black-box techniques
to allow management and support of existing legacy
applications, and to provide a smooth migration path
to the ideal future of accurately and fully-specified
systems. In this paper, we describe a new approach,
called Strider, to achieve that goal. At the core of
Strider is a computer genomics database that can
accommodate specifications based on white-box
knowledge as well as those derived from black-box
experiments and discovery using state differencing (or
diffing) and tracing techniques.

The main contributions of Strider are as follows,
which also serve as the outline of the paper. First, we
identify three Strider principles as the key to handling
complexity in CCMS: State-Based Analysis, Attack the
Mess with the Mass, and Complexity-Noise Filtering.
Applying these principles allows us to decompose
seemingly intractable CCMS problems into sub-prob-
lems, each of which is solved by a Strider component.
Second, we introduce Strider processes as conceptual
uses of various combinations of the Strider components
to solve different problems, including troubleshooting,
configuration certification, and change audit.
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Third, we describe the Strider toolkit that imple-
ments the Strider components. Finally, we present the
Strider troubleshooter that strings together compo-
nents from the toolkit to implement the troubleshoot-
ing process. We evaluate the performance of the trou-
bleshooter and discuss its limitations. To simplify our
presentation, we will focus our discussion on a partic-
ular type of important configuration data – the Win-
dows Registry [SR00], which provides hierarchical
persistent storage for named, typed entries. The princi-
ples and techniques are generally applicable to other
types of configuration stores and other platforms; we
will discuss such applications at the end of the paper.

The Strider Principles

We begin by describing the three Strider princi-
ples, and use troubleshooting of configuration failures
(i.e., errors resulting from mis-configuration) as the
primary example to illustrate problem decomposition.

State-Based Analysis
A configuration failure occurs when a program

modifies a piece of configuration data and, some time
later, that same program or another program reads that
modification and experiences a persistent failure that
cannot be repaired by application restart or machine
reboot. The failure can exhibit symptoms in the form
of a program crash, program hang, error dialog box, or
simply not delivering user-expected service.

Computer users (or support engineers) typically
perform symptom-based analysis to troubleshoot con-
figuration problems. Based on their knowledge and
past experiences with similar problems, the users try
to search the Web or a support-article database using
search strings constructed in an ad-hoc way in an
attempt to describe the symptoms. Such search is
highly imprecise and often results in a large number of
irrelevant articles. Furthermore, there is no guarantee
that the repair actions suggested in these articles
would actually modify the configuration data relevant
to the failure in question.

In Strider, we propose state-based analysis as the
primary approach to troubleshooting. Given a configu-
ration failure, we represent it as a high dimensional
state vector of all configuration data. For example,
Windows XP machines typically have around 200,000
Registry entries; a configuration failure due to a faulty
entry can be represented as a 200,000-dimensional
vector that contains the entry. The main challenge is to
narrow down the problem to that entry.

To reduce the dimensionality to the level that can
be handled by humans, we develop mechanical tech-
niques to exclude those entries that are irrelevant to
the current failure, and develop statistical techniques
to filter out those entries that are relevant but less
likely to be the root cause. Once we narrow down the
potential candidates to a small subset, we perform a
precise lookup in a computer genomics database for

each entry in the subset to identify potential fixes.
Optionally, we can use the imprecise symptom
descriptions at this later stage to help rank the impor-
tance of the candidates by matching the descriptions
against information retrieved from the database.

Given the name of a Registry entry, the genomics
database answers the following two questions:

1. What is the function of this entry? This pro-
vides any higher-level information that can help
users understand the function of the entry. It
may associate the entry with the application(s)
or OS component(s) that are mainly responsible
for updating it and therefore can potentially be
used to correct problems caused by the entry. It
may also identify the entry as ‘‘noise’’ from the
viewpoint of configuration management
because the entry is unlikely to cause configu-
ration failures. (Labeling and filtering of noise
will be discussed in more detail when we intro-
duce the third Strider principle.)

2. Are there known problems associated with this
entry? This quickly points to support articles on
known problems caused by the entry, if any.
Such information is useful for troubleshooting,
but it can also be applied to correct Registry
problems before they cause application failures.

The computer genomics database can be populated
today through troubleshooting experiences and black-
box experiments (e.g., we have recorded the Registry
access traces of most of the Windows XP configura-
tion actions), as well as through application-provided
specifications in the future.

Attack the Mess With the Mass

Applying the first principle allows us to decom-
pose the problem into three parts: mechanical, statistical,
and database. We now develop the second principle to
provide further decomposition of the mechanical part.

Every Windows XP machine starts with approxi-
mately 77,000 Registry entries from the CD installa-
tion process. The majority of users are given the free-
dom and flexibility to grow the Registry any way they
want by configuring their machines differently and
installing different sets of applications. Such freedom
and flexibility helped create a large install base, but
also created ‘‘the mess’’ – every machine has a unique
configuration and applications on each machine can
interact in a unique way. For example, the default han-
dlers for file extensions or the behavior of an extensi-
ble browser may depend on the particular combination
of software components installed on a system. When a
configuration failure occurs, the lack of a golden state
vector particular to the unique configuration at hand
typically presents a major obstacle to troubleshooting.

In Strider, we make the observation that full-size,
absolutely golden state vectors may not be necessary
for CCMS problems. When a program fails due to a
configuration problem on a particular machine at a
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particular time, it suffices to find a state vector either
from another machine or from the past on the same
machine, where the program is/was working. In the
space domain, ‘‘the mass’’ (i.e., the large install base)
offers a high probability that one can find a healthy
machine for cross-machine analysis. In the time
domain, periodic state snapshot feature such as Win-
dows XP System Restore [SR] can often provide a
good state vector from the past for cross-time analysis.
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Figure 1: Strider process for troubleshooting.

Given a good state vector and a bad state vector,
the mechanical part of Strider operates as follows. First,
it performs a state diffing operation on the two vectors
to obtain a sub-vector consisting of only the differ-
ences, which must capture the root cause for the differ-
ence in program behavior. Second, it asks the user to re-
execute the failed program action and performs state
tracing to record a sub-vector consisting of only those
configuration data that are actually used as input to the
current failed execution. Finally, it intersects the two
sub-vectors to identify those that are potential root-
cause candidates for the current failure. (An illustration
of these three components is shown in Figure 1). Pre-
liminary results from our experiments show that, since
the diffing sub-vector and the tracing sub-vector are
mostly orthogonal, the number of candidates in the
intersection is often several orders of magnitude smaller
than the full vector describing the bad state.

Once we have decomposed the mechanical part
of Strider into state diffing, state tracing, and state
intersection, we can utilize various combinations to
further take advantage of the mass. For example, if a
good state vector is available both from the past on the
same machine and from one or more other machines,
we can use multiple state diffing sub-vectors in the
intersection to further reduce the size of the candidate

set. Similarly, if the same application failure occurs on
multiple machines, the state diffing and tracing sub-
vectors from all these machines can be intersected
together to further narrow down the candidate set.
Even in situations where no state diffing sub-vector is
available, intersecting multiple traces may help elimi-
nate non-deterministic parts of execution traces due to
other system activities and irrelevant to the determin-
istic application failure that is the troubleshooting tar-
get. A caveat is warranted here: in order for these
more elaborate combinations to succeed, the root
cause of the configuration failure must be a single
entry or a fixed set of entries that differ between every
sick/healthy pair. Fortunately, our experience has been
that such root causes are indeed responsible for many
configuration failures.

State diffing and state tracing distinguish
Strider ’s black-box approach from the white-box
approach: instead of relying on a full specification of
absolutely golden state provided by software develop-
ers, we use state tracing to scope essentially a ‘‘partial
specification’’ of the portion of configuration state
actually accessed by the code path taken by the failed
program execution, and use state diffing to take
advantage of the ‘‘good states relevant to this failure’’
available in state snapshots from the past and/or from
other machines where the program does not fail.

Complexity-Noise Filtering
An immediate concern about the mechanical part

of Strider is that a large class of Registry entries are both
updated and read frequently, which means that they will
appear in both the diffing and tracing sub-vectors.
Because of this, they will also appear in the intersection
with high probability, and thus they will consistently
inflate the size of the final candidate set. Timestamps,
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usage counts, caches, seeds for random number genera-
tors, window positions, and MRU (Most Recently
Used)-related information are such examples.

In Strider, we make the observation that such
‘‘high-frequency’’ entries should be considered ‘‘oper-
ational states’’ instead of the ‘‘configuration states’’
that we are mostly interested in for troubleshooting
configuration failures. If a machine has been healthy
in the presence of these high-frequency updates, then
when a configuration failure occurs, these operational
data are less likely to be the root cause. In contrast,
configuration data that have not changed often in the
machine’s history but have changed recently since the
application was last known to be working are more
likely to be the root cause. This leads to the concept of
state ranking based on Inverse Change Frequency
(ICF): we assign each candidate in the intersection a
score that inversely depends on its change frequency,
and prioritize the troubleshooting effort according to
the score ranking; optionally, entries with scores
below a threshold can be filtered out as noise and
ignored. More sophisticated statistical analysis tech-
niques that additionally take into account abnormal
data content [G53, CG91] should further improve
troubleshooting effectiveness.

The same observation can be applied to cross-
machine analysis. Clearly, there are classes of Registry
entries that always contain different data on different
machines; for example, the data may be a function of
computer names, user names, user security IDs, Glob-
ally Unique IDs (GUIDs), hardware IDs, IP addresses,
etc. These entries constitute the ‘‘natural biological
diversity’’ among machines and are less likely to be
root causes of configuration failures. These differ-
ences are much like the human genes that are simply
responsible for the natural diversity in human appear-
ances and that are not thought to be the cause of any
genetic disease even though they frequently appear as
genetic differences between sick and healthy people.

In summary, the state-based approach starts with a
large and complex problem: the Registry contains many
entries, many of them changing. Fortunately, when we
apply the complexity-noise filtering principle, these
sources of complexity tend to filter themselves out,
allowing us to focus on the fewer and simpler Registry
entries that are most likely to be significant. This again
distinguishes Strider’s black-box approach from the
white-box approach: instead of relying on a specifica-
tion of operational data versus configuration data, we
use behavior monitoring and statistical modeling to
derive this distinction. Similar statistical techniques can
also be used to predict potential failures by analyzing a
large number of state vectors and flagging those that
deviate from the ‘‘normal majority’’ as problematic ones
that require special attention.

We note that, for any Registry entry that Strider
filters out as noise, one can always construct a

counterexample in which the entry is in fact the root
cause; such a trade-off between false negatives and
false positives is inherent in any statistical techniques.
Our empirical results so far have indicated that noise
filtering is essential for dealing with complexities and
it allows successful troubleshooting of a large class of
failures. We will discuss the limitations of noise filter-
ing in more detail in a later section.

The Strider Processes

Applying the three Strider principles allows a
decomposition of the troubleshooting problem into
five Strider components: state diffing, state tracing,
state intersection, state ranking, and the computer
genomics database. In this paper, we use the term
‘‘Strider process’’ to refer to a conceptual use of some
or all of the Strider components as building blocks in a
specific way for a specific type of CCMS problem.

Figure 1 illustrates the Strider process for trou-
bleshooting. In the narrow-down phase, the state diff-
ing result and the failed application trace are inter-
sected to produce a candidate set, which is then ranked
and filtered by the state ranking module. As more and
more troubleshooter reports are gathered, entries that
are known to cause failures can be emphasized and
entries that have repeatedly appeared in the reports as
false positives can be de-emphasized.

In the solution-query phase, a genomics database
lookup is performed for each entry in the candidate set,
to yield one or more of the following three types of
information: (1) support articles that describe known
fixes of problems related to the entry; (2) user interface
for performing configuration actions that can potentially
correct the data content of the entry; and (3) information
about the application that owns this entry.

We next describe two other Strider processes for
different CCMS problems to demonstrate the flexibility
provided by Strider’s componentized approach. The
‘‘ c o n f i g u r a t i o n certification’’ process addresses an
important CCMS scenario. In this scenario, we would
like to answer the question of whether an operational
machine still conforms to a certified configuration and
so is eligible for product support service. The Strider
process would involve state diffing between the opera-
tional machine and a certified machine, followed by
noise filtering of known entries unrelated to certifica-
tion. State ranking with an adjustable threshold could
provide a trade-off between the time spent in determin-
ing the conformance and the time wasted in providing
support for non-conforming machines falsely deter-
mined to be in conformance. The genomics database
could store information regarding commonly installed,
unsupported hardware or software to speed up the deter-
mination of non-conformance.

Next we describe the ‘‘change audit’’ process. In
the scenario targeted by this process, we would like to
answer questions in the form of ‘‘what has changed on

168 2003 LISA XVII – October 26-31, 2003 – San Diego, CA



Wa n g , et al. STRIDER: A Black-box, State-based Approach . . .

my machine since last week?’’ This Strider process
would involve always-on state tracing of all write oper-
ations with always-on noise filtering to control the size
of the audit file. (State tracing captures the additional
information of which process in what context made the
changes, information which is typically not available
from state diffing.) State ranking would distinguish
significant configuration changes from the lesser ones.
The genomics database would store mapping informa-
tion that translates groups of changes into higher-level,
user-friendly descriptions for better presentation.

The Strider Toolkit

We have implemented the full functionality of
the first three Strider components in the Strider toolkit.
A limited form of the state ranking component and
part of the computer genomics database are also
included in the toolkit.

The state diffing tool by default takes two System
Restore checkpoints as input and produces an XML file
containing Registry entries that exist in both checkpoints
but have different data as well as those that exist in only
one of the checkpoints. System Restore is a standard fea-
ture on Windows XP machines. It automatically saves a
checkpoint of the Registry, selected files, and other con-
figuration stores approximately every 24 hours. The
number of available checkpoints depends on the maxi-
mum amount of disk space allocated for System Restore,
which is set to 12% of each hard drive by default.

The tool also supports diffing of only selected
Registry hives. For example, if a configuration failure
occurs under one user account but does not occur
under another user account on the same machine, then
the root cause cannot reside in machine-wide Registry
hives. Diffing only the per-user hives of the two users
takes less time and reduces the number of false posi-
tives in the report.

The state tracing tool is implemented as a kernel-
mode driver that, by default, intercepts and records
every Registry call made by any application or OS com-
ponent. It supports Include and Exclude filters for log-
ging only those trace lines that contain or do not con-
tain, respectively, specific sub-strings. It also supports
efficient logging of only certain call types; for example,
it can perform always-on logging of only write-related
call types to provide a comprehensive change audit.

The state intersection tool uses a generic tree
data structure to maintain a set of hierarchical names.
It can take multiple state diffing files and/or multiple
state tracing files as input. Each state entry in each of
the input files is inserted into the tree and marked by
the ID of its source file. Entries that are marked by the
IDs of all input files are reported in the intersection
result. As we extend the functionality of the state diff-
ing and tracing tools beyond Registry to include other
configuration stores such as files, application-specific
XML configuration files, etc., the same data structure
can be used to compute the intersection.

Ideally, on each machine running the Strider tool,
the state ranking component should compute the ICF
scores based on a customized ‘‘change frequency dic-
tionary’’ for the local machine because each machine
is configured and used in a different way and so the
change behavior of configuration state may be differ-
ent. Building such a customized dictionary at trou-
bleshooting time would not be feasible because it
would involve invoking the state diffing operation on
every pair of consecutive checkpoints, which could
take several hours (with five minutes per pair in
today’s implementation).

Currently, we include a ‘‘static dictionary’’ in the
Strider executable and use the static scores in the dictio-
nary for all state ranking operations. The dictionary was
built from analyzing the change frequencies on the main
desktop machine of one of the authors. Our trou-
bleshooting experience so far has indicated that such a
dictionary appears to be effective in ranking commonly
updated Registry entries, but may miss many applica-
tion- or machine-specific changes. We plan to replace it
with another one built from multiple machines to
increase its coverage and make it more representative.
In the long run, we would like to have an always-on
Wi n d o w s service running on every machine, continu-
ously updating a local, customized dictionary.

As an optimization, well-known Registry entries
and sub-hierarchies that change very frequently and/or
repeatedly appear as false positives in troubleshooting
reports are filtered out in a keyword-based noise filter-
ing step inserted right before the intersection; it is
invoked after the intersection code reads an entry from
an input file and before it inserts the entry into the tree
structure. A second threshold-based noise filtering
step is invoked after the intersection: it grays out
entries with ICF scores below the (conservative)
default threshold, which corresponds to a change fre-
quency of 10% in the static dictionary. In addition to
the ICF ranking, order ranking is also applied to
assign more weight to entries that appear earlier in the
trace, based on the intuition that later part of the trace
may simply be a result of execution divergence caused
by a bad value of an earlier entry.

Currently, part of the state-to-app/action mapping
information of the genomics database is built into the
executable. In a one-time experiment, we performed
all commonly used Windows XP configuration actions
and recorded their corresponding Registry update
operations using the tracing tool. The reverse map-
pings can then be used to provide state-to-action map-
pings at troubleshooting time. As more state-to-app
mapping information is obtained through experiments
and actual troubleshooting experience, we plan to
build a Web service for entering and querying such
information. The same Web service will also be used
to implement the support article lookup part of the
genomics database, which is currently compiled as a
list on a Web page with pointers into a trouble-ticket
database and a support article database.
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Experimental Results

Clearly, the Strider approach would not work if
the following worst case were the norm: a large per-
centage of the Registry entries change every day and a
large percentage of them are used by every application
action, resulting in a large candidate set that no human
could reasonably handle.

We present empirical results in this section to
show that the above worst case is not the norm. We first
present measurements of Registry change frequencies
from five machines to study the typical size of the state
diffing set. Then we present results from troubleshoot-
ing experiments to evaluate the effectiveness of addi-
tional state tracing, intersection, and ranking.

Machine % Operational % Remaining
Number of

Registry Values
Days

Observed
% Never
Changed

1 139,458 84 95.3% 2.6% 2.1%
2 213,574 84 90.4% 1.9% 7.7%
3 232,890 84 89.6% 5.6% 4.8%
4 237,622 77 79.3% 1.2% 19.5
5 200,812 84 86.8% 1.9% 11.3%

Figure 2: Registry change statistics.

We use the ten cases listed below in our experi-
ments. They were all real-world failures that troubled
some users. To allow parameterized experiments, we
reproduced these failures on machines in our group and
ran Strider to produce the results. We used configuration
user interface (e.g, Control Panel applets) to inject the
failures whenever possible, and used direct editing of
the Registry for the remaining cases. All the chosen
machines were desktop machines used by their owners
on a daily basis. This is important because they would
exhibit ‘‘regular ’’ Registry change behaviors; using test
machines from our lab (that have little installation/con-
figuration activity) would have produced better but
invalid results. We also study the sensitivity of the
results with respect to the choice of machines to inject
the failures. Preliminary results from cross-machine
troubleshooting are also discussed.

1. Systems Restore: no available checkpoints are dis-
played because the calendar control object cannot
be started due to a missing Registry entry.

2. JPG: right-clicking on a JPG image and choos-
ing the Send To → Mail Recipient option no
longer offer the resize option dialog box due to a
missing Registry entry.

3. Outlook: user is always asked upon exiting
Outlook whether she wants to permanently
delete all emails in the Deleted Items folder,
due to a hard-to-find setting.

4. Printing: printing to a duplex-named printer
always produces single-sided printing, due to a
hard-to-find setting.

5. IE Passwords: Internet Explorer (IE) browser no
longer offers to automatically save passwords; the
option to re-enable the feature is difficult to find.

6. Media Player: Windows Media Player ‘‘Open
URL’’ function would fail if the EnableAuto-
dial Registry entry is changed from 0 to 1 on a
corporate desktop.

7. IM: MSN Instant Messenger (IM) would signif-
icantly slow down if the firewall client is dis-
abled on a corporate desktop.

8. IE Proxy: IE on a machine with a corporate
proxy setting would fail when the machine is
connected to a home network.

9. IE Offline: IE ‘‘Work Offline’’ option may be
automatically turned on without user knowl-
edge; user would then be presented with a
cached offline page instead of the default start
page when launching IE.

10. Taskbar: IE windows would be unexpectedly
grouped under the Windows Explorer taskbar
group, due to the addition of a Registry entry.

Registry Change Behavior
The common perception of the Windows Registry

is that it contains an enormous amount of undocumented
configuration information that is accessed frequently by
various applications and OS components. To our knowl-
edge, the study that we present in this section is the first
quantitative study of Registry change behavior. In addi-
tion to providing insights for the troubleshooting prob-
lem, the study should serve as a useful guide for the
general CCM community as well.

We studied the Registry from two perspectives.
First, we looked at the aggregate change behavior of
the Registry over a long period of time, ranging from
77 to 84 days. (These numbers are roughly determined
by the number of available System Restore check-
points per machine.) Next, we looked at the daily
behavior of the Registry over the same observational
period. We expect that Strider troubleshooting will
most frequently be applied to a good checkpoint and a
bad checkpoint that are close together in time, and
therefore we expect the daily behavior of the Registry
to be a good guide to the performance of the state diff-
ing part of the Strider toolkit.

The machines in our study consisted of four
developer workstations and one knowledge worker’s
machine, each of them in daily use. Figure 2 shows
the Registry change statistics we observed across the
five machines over the entirety of the observational
periods. We present the number of Registry values at
the end of the period for each machine – these vary
from just under 140,000 to almost 240,000.
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Figure 3a: Machine #1’s Registry changes over time.
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Figure 3b: Machine #2’s Registry changes over time.
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Figure 3c: Machine #3’s Registry changes over time.

1

10

100

1000

10000

100000

1000000

77 Days

N
u

m
b

e
r

o
f

R
e
g

is
tr

y
V

a
lu

e
s

Figure 3d: Machine #4’s Registry changes over time.
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Figure 3e: Machine #5’s Registry changes over time.

Figure 3: Registry daily changes with and without
noise filtering.

On four of the five machines (#1, #2, #3 and #5),
only 4.7%-13.2% of the Registry ever changed. Apply-
ing the noise filtering techniques (i.e., keyword-based
filtering and change-frequency threshold-based filter-
ing by excluding any Registry entry that changed more
than 10 times during the period) to these machines
yielded that the number of Registry changes that were
classified as non-operational and so potentially config-
uration-related ranged from 2.1% to 11.3%.

On machine #4, 20.7% of the Registry changed.
Looking at this machine’s history in more detail, we
found that the majority of the changes were due to a
single large installation: on this one day, 16% of the
Registry changed. If we exclude this single large
installation when calculating the Registry change per-
centage, we find that the changes drop to around 4%
of the total Registry size.

This number suggests that if we needed to trou-
bleshoot this machine, state diffing of any pair of
checkpoints on the same side of the large installation
(i.e., either both before or both after) would likely
result in a number of potentially significant entries
that is comparable to the number found by state diff-
ing on one of the machines with a small change per-
centage over the entire period. If the state diffing
period must cover the large installation, then we need
to rely on the intersection component to reduce the
complexity, which will be discussed shortly.

Now we turn our attention to the daily behavior
of the Registry. Figure 3 illustrates the daily behavior
across all five machines. Because checkpoints may be
taken for multiple reasons (by the users manually, by
System Restore-aware installers prior to installations,
or by System Restore service periodically), we were
careful to ensure that we only included one checkpoint
per 24-hour bucket in our analysis. Therefore the diff
sizes shown in Figure 3 correspond to a gap of slightly
more than 24 hours on average. The spike in machine
#4’s diff size due to the single large installation (men-
tioned in the previous paragraph) is clearly visible
near the beginning of the observational period.

Across all five machines, the median number of
changing Registry values on any given day is 302.
After applying the Strider noise filtering, the median
number drops to only 29. This demonstrates the addi-
tional power of noise filtering when applied to
changes between checkpoints taken on consecutive
days. This has the following simple explanation:
although the percentage of operational Registry entries
as shown in Figure 2 may seem low (between 1% and
6%), these entries changed frequently and so appeared
much more often in daily diff results. Noise filtering
effectively identifies these entries, which comprise a
large portion of any daily diff, as unlikely to reflect
significant configuration changes.
Same-machine, Cross-time Troubleshooting
Troubleshooting Effectiveness

Figure 4 (a) and (b) present our experimental
results on the effectiveness of Strider troubleshooting
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for the 10 cases, all with checkpoints that are approxi-
mately seven days apart. Along the horizontal axis,
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Figure 4a: Cases #1 to #5.
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Figure 4b: Cases #6 to #10.

Figure 4: Same-machine, cross-time troubleshooting
effectiveness.

JPG (case 2) IM (case 7)
System Restore

(case 1)
Media Player

(case 6)

3 days 1 3 days 1 3 days 1 3 days 1
7 1 7 1 7 1 7  1
14 1 14 1 14 1 14 1

Machine #1

3 days 2 3 days 1 3 days 1 3 days 1
7 2 7 1 7 1 7  1
14 2 14 1 14 1 14 1

Machine #2

3 days 2 3 days 1 3 days 2 3 days 3
7 2 7 1 7 2 7  3
14 2 14 1 14 2 14 3

Machine #3

3 days 2 3 days 1 3 days 1 3 days N/A
7 2 7 1 7 1 7 N/A
14 2 14 1 14 1 14 N/A

Machine #4

3 days 2 3 days 1 3 days 1 3 days 1
7 2 7 1 7 1 7  1
14 2 14 1 14 2 14 1

Machine #5

Figure 5: Sensitivity analysis of same-machine, cross-time troubleshooting (numbers are final root-cause ranks).

‘‘Registry Size’’ is the average number of Registry
values of the two checkpoints; ‘‘Diff’’ is the number
of Registry values in the state diffing result; ‘‘Intersec-
tion’’ is the total number of Registry values appearing
in the report, which consist of all the entries in the
intersection of keyword-filtered diff and trace; ‘‘ICF’’
excludes those entries in the report whose ICF scores

are below the default threshold; ‘‘Rank’’ is the order
ranking of the root cause in the ICF-filtered list.

The effect of each step in the Strider trou-
bleshooting process is evident from the Figures. Typi-
cally, state diffing reduces the dimensionality by two
orders of magnitude (from 200,000 to roughly around
2,000) and diff-trace intersection reduces it by another
two orders of magnitude (from 2,000 to below 20).
Even in the three cases where state diffing could pro-
vide only one-order-of-magnitude reduction because
the 7-day period covered some significant installation
events, the intersection still effectively brought down
the number of candidates to below 20.

The ICF threshold-based noise filtering provided
additional help for the three cases with more than 10
entries in the intersection (in Figure 4 (b)): it reduced
the numbers from 17, 15, and 13 to 14, 11, and 7,
respectively. The final ranking summarizes the overall
effectiveness of Strider troubleshooting: the actual
root cause was identified as the number 1 candidate in
6 of the 10 cases, as number 2 in two cases, and as
number 3 in one case. The root-cause rank for the IE
Proxy case was 14, which would require more manual
analysis effort to filter out the false positives. We are
currently investigating ways to group together relevant
final entries to aid manual analysis.

Sensitivity Analysis

We performed additional experiments to study
the sensitivity of the troubleshooting results to varia-
tion in the machine being examined and the time inter-
val of the diff. We let the time between the good
checkpoint and the bad checkpoint vary between 3, 7,
or 14 days. We varied the machine under considera-
tion across all five machines in our study, and we
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examined four cases: System Restore (case 1), JPG
(case 2), Media Player (case 6), and IM (case 7). The
final ranking results are presented in Figure 5.

We found the Strider troubleshooter to be robust
to both factors being studied, although varying the fac-
tors did have some impact. In three of the four cases,
the choice of machine affected the root-cause ranking,
although the final rank remains number 3 or better in
every case. In the case of machine #5 with case 6, we
found that varying the offset in time from 7 to 14 days
caused the root-cause rank to drop from 1 to 2.
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Figure 6a: Cases #1 to #5.
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Figure 6b: Cases #6 to #10.

Figure 6: Preliminary results of cross-machine troubleshooting effectiveness.

Cross-machine Troubleshooting
Although the current version of the Strider

toolkit is primarily targeted at same-machine, cross-
time troubleshooting, we have conducted some pre-
liminary experiments and found that it can be useful
for cross-machine troubleshooting as well. We used
the same 10 cases, but with checkpoints from two dif-
ferent machines: the configuration failure was intro-
duced into one machine to make the target program
action fail, while the same action succeeded on the
other one.

Figure 6 shows the results. First, we observe that
the current state diffing tool is less effective in the
cross-machine scenario; it reduced the number of
entries by about two thirds, in contract with the two
orders of magnitude in the same-machine case. There

are at least two factors that contributed to this: (1) dif-
ferent machines can simply have very different sets of
installed programs; (2) the ‘‘same’’ Registry entries
can appear to be different on different machines
because their names contain machine-specific infor-
mation. We are currently investigating a set of map-
ping rules to eliminate the latter.

Fortunately, the intersection operation remained
effective and reduced the number to below 100 in all
cases. The ICF noise filtering is only slightly useful
for half of the cases because the static dictionary built
from cross-time diffing analysis may not be suitable
for the cross-machine scenario. We expect that a sepa-
rate dictionary based on cross-machine diffing analy-
sis of each Registry entry among a large number of
checkpoints would improve the filtering.

The final step of applying the order-ranking
heuristics was still mostly effective: in eight of the 10
cases, the root cause ranked number 10 or better. But
for the IM case and the IE Proxy case, the root cause
ranked 36 and 33, respectively.

Discussions and Future Work

In this section, we discuss additional issues and
factors that can potentially impact the effectiveness of
Strider troubleshooting and were not covered by our
performance evaluations presented in the previous
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section. We also discuss several types of problems for
which the current version of Strider cannot success-
fully provide diagnosis, and we outline our future
work directed at addressing these problems. In gen-
eral, the challenge is to ensure that the mechanical
operations capture the root cause, to understand the
limitations of our current noise filtering techniques,
and then to further exploit the mass to facilitate the
final step of root cause analysis.
Capturing The Root Cause

In most cases, it is fairly clear which applica-
tion’s execution should be traced. For example, in the
Media Player case, we traced wmplayer.exe; in the IM
case, we traced msmsgs.exe. Per-process traces were
used for all the cases except for the ‘‘Taskbar ’’ case, in
which traces for both iexplore.exe (IE) and
explorer.exe (Windows Explorer) were included
because it was difficult to determine from the symp-
tom which one was the offending application.

Although they usually achieve good root-cause
ranking, per-process traces capture only ‘‘direct
dependencies’’ (i.e., Registry accesses made by the
target process) and may miss the root cause contained
in ‘‘indirect dependencies.’’ For example, in a case
where a pop-up stopper designed to stop pop-up ads
interfered with the normal operations of a Web site,
the root-cause Registry entry was accessed from a sep-
arate process, rather than from the browser process
itself. We plan to enhance Strider with process depen-
dency tracking so that it can capture indirect depen-
dencies without resorting to using all-process traces.

In addition to indirect dependencies, ‘‘asyn-
chronous dependencies’’ pose another challenge.
Strider implicitly assumes that the root-cause entry
must be accessed synchronously during the user-
selected time interval for state tracing. However, it is
possible that the traced application had read the root-
cause entry before the tracing was started. For exam-
ple, while in most of the 10 cases the application
actions that the user should trace were well-defined
and did contain the root causes, the remaining cases
required tracing of application launching as well as the
application action that led to the observed failure.

To study the effect of less-experienced Strider
users always using the longer traces (i.e., since appli-
cation launch) to avoid missing the root cause, we per-
formed further experiments by replacing the action-
only traces with the longer traces in Cases 1, 3, 4, 5,
and 6. This would drop the root-cause ranking from
(2, 1, 1, 1, 2) to (3, 12, 1, 9, 17), respectively, which is
still acceptable but may require significantly more
troubleshooting effort depending on whether the addi-
tional false positives are easy to filter manually. Our
long-term direction is to develop efficient, always-on
tracing and logging to relieve users of the responsibil-
ity to specify when to start and stop tracing.

Similarly, users may specify incorrect good states
due to either incorrect memory or latencies between

state corruption and application failure. This would
cause the state diffing results and thus the intersection to
miss the root cause. A near-term solution is to encour-
age users to be conservative in selecting good states.
Our long-term direction is to develop statistical tech-
niques that automatically analyze multiple good and bad
checkpoints to relieve users of the burden.

Limitations of Noise Filtering
As discussed previously, statistical techniques

such as Inverse Change Frequency ranking for filter-
ing out false positives naturally introduce the possibil-
ity of false negatives. Although it is difficult to pro-
vide conclusive arguments that noise filtering does not
introduce significant false negatives without a large
number of failure cases, our experience has shown that
it works well in practice and has allowed successful
root cause analyses of tens of cases.

We now describe several types of problems that
could potentially defeat Strider’s current noise filter-
ing strategy. Our plan is to refine the filtering rules as
we encounter false negatives, and revisit the design if
we gain concrete evidence that a significant number of
real-world root causes actually fall into the false-nega-
tive category.

• Usage counters: for example, the behavior of a
trial software package may change when its
usage count exceeds a certain threshold.

• Window positions: for example, a corrupted
entry that is supposed to remember the last
position of an application window may cause
display problems.

• MRU and cache-related information: for
example, ‘‘last server connected’’ may be the
root cause of a client application failure; ‘‘last
file opened’’ may cause a document processing
program to fail upon launch; a cached Web
page may cause undesirable behavior in a
browser.

• Per-session data: some application data may
be updated on a per-session basis and have
dependencies on the current environment; fail-
ures may occur when a user tries to restore such
per-session data. Current Strider noise filtering
would have mistakenly filtered out such data.

• Data coupling: a single Registry entry may con-
tain both operational data and configuration data.
For example, we have encountered a case where
Wo r d was used as the default email editor for
Outlook and a certain document navigation
option could not be turned off. The option was,
unfortunately, controlled by some Registry
entries containing binary blobs of data, and these
binary blobs apparently contained operational
data as well and so had low ICF scores. These
entries were incorrectly filtered out as noise orig-
inally (i.e., grayed out in the report), but later
determined to contain the root cause through fur-
ther investigation. Once a false negative is
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discovered, the change frequency dictionary built
in to the Strider executable is updated to assign
the entry a very high score, reflecting the fact
that the entry has been identified as the root
cause of an actual configuration failure.

Exploiting the Mass
The four orders of magnitude in dimensionality

reduction typically achieved by the mechanical steps
of Strider was a significant starting point for us to han-
dle the complexity of Registry problems. However, we
have encountered cases in which ICF noise filtering
and order ranking failed to offer the final reduction of
another order of magnitude and the users were left
with tens of candidates to investigate. In some cross-
machine cases, the final reports still contained hun-
dreds of candidates and root cause analysis remained
very difficult.

We plan to address this challenge by further
exploiting the mass. We are collecting a large number
of Registry snapshots in our ‘‘GeneBank’’ and plan to
generalize the diff-based techniques to statistical anal-
yses across multiple snapshots. In particular, root-
cause candidates containing data that clearly deviate
from the ‘‘normal majority’’ will be ranked higher. We
are also enhancing the tracing and noise-filtering tech-
niques to enable always-on logging and analysis on a
large number of machines for building and reporting
known-good behavioral models.

Beyond the Windows Registry

Although we have focused on troubleshooting
Wi n d o w s Registry-related problems, the Strider tech-
niques are generally applicable to any shared, persistent
configuration store on any operating system platform.

We are currently extending the Strider imple-
mentation to provide troubleshooting of configuration
problems due to changes in files and directories/fold-
ers. The implementation will utilize the file-change
log information from System Restore to detect which
files have been changed, use a filter driver to trace
which files are being accessed as part of an application
action, reuse the tree structure for computing the inter-
section, use file change frequency for state ranking,
and rely on information from the genomics database to
identify directories containing temporary files as
known noise, to provide mappings of which files
belong to which applications or OS components, and
to point to support articles documenting known prob-
lems with certain files.

Similar techniques can also be applied to Unix
machines. Unix configuration generally appears in
files under /etc/. For example, user account informa-
tion is in /etc/passwd, the IP address of the DNS
server is in /etc/resolv.conf, and the many parameters
for the X server are typically in /etc/X11/. Although
many configuration files are used by a single program
or OS facility, quite a few well-known configuration

files are shared by multiple programs and so are sub-
ject to similar configuration problems as those in the
Window Registry.

The most notable example is /etc/mailcap, which
contains a system-wide mapping from MIME types to
commands for handling them. Any software that dis-
plays or edits a particular type of MIME file may want
to install entries in the mailcap file, so that other pro-
grams can use it to display or edit that file type. There-
fore, applications that can handle common file types
could write conflicting entries into the mailcap config-
uration file.

Another example is /etc/inetd.conf. Rather than
having a separate daemon for each type of connection
(for example, finger, telnet, rlogin, rsh, smtp, ftp) lis-
tening on its own port for incoming connections, the
meta-daemon inetd listens on all the ports and starts an
instance of the appropriate daemon on demand as each
connection comes in. Each of the individual daemons
is required to add an entry to inetd.conf when it is
installed and remove that entry upon uninstallation. If
two daemons use the same port, their entries in
inetd.conf may conflict [HD02].

In addition, ill-written Unix applications may
modify the environment variables in a user’s .cshrc
configuration file for their own operations. Such prac-
tices may result in conflicts in environment variables.
When these conflicts result in faulty application exe-
cutions, users typically resort to application reinstalla-
tion to repair the problem. Strider troubleshooting can
help identify the root cause to potentially provide a
less disruptive repair and avoid future occurrences of
the same problem.

Related Work

The body of work related to systems manage-
ment through specification is quite large [B95,
RPM97, CG99, O00, KE02, TRI]. The general
approach is to provide languages and tools to allow
developers or system administrators to specify ‘‘rules’’
of proper system behavior and configuration for moni-
toring, and ‘‘actions’’ to correct any detected lack of
compliance with a given rule to enable the system to
converge with the specified requirements. Strider
complements the specification-based approach by
adopting a black-box approach to discover unspecified
rules of proper system operation and gradually build
up a genomics database of known-good requirements
and known-bad issues.

Gossips [GWO01] provides an extensible,
object-oriented framework for monitoring distributed
systems in an IT-environment. Each gossips process
running on a participating client gathers and analyzes
system state-related data, and reports any interesting
state-changes to a central server. Although Gossips
also maintains a knowledge base of known problems
indexed by state-related information, the ‘‘states’’
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refer to the condition of a system or service (such as
working/broken), which are quite different from the
lower-level, more precise ‘‘configuration data’’ states
in the Strider genomics database.

In a recent position paper, Redstone, et al.
[RSB03] described a vision of an automated problem
diagnosis system that automatically captures aspects
of a computer’s state, behavior, and symptoms neces-
sary to characterize the problem, and matches such
information against problem reports stored in a struc-
tured database. In the Strider project, we have focused
on developing actual root cause analysis technologies
for configuration failures by using state diff and trace
information to characterize them. Symptom descrip-
tions are used as secondary information and are still
provided by the user because many Registry-related
‘‘problems’’ can only be defined against user expecta-
tion. An earlier version of Strider provided automatic
search of support database for high-ranking root-cause
candidates [WVS03]; but we have observed that such
an approach can only be effective after a large number
of support articles are written in a structured, machine-
readable format and stored in the genomics database.

The concept of problem identification as deviant
behavior from a ‘‘normal majority’’ by applying statis-
tical techniques to a large number of samples has
emerged in several areas in recent years. Engler, et al.
[ECH+01] described techniques that automatically
extract correctness rules from the source code itself
(rather than the programmers) and flag deviations, and
that use statistical ranking to prioritize the inspection
effort. Liblit, et al. [LAZ+03] proposed a sampling
infrastructure for gathering information about a large
number of actual program executions experienced by a
user community, based on which predicate guessing
and elimination are used to isolate deterministic bugs
and statistical modeling is used to isolate nondeter-
ministic errors by identifying correlation between
behaviors and failures.

Apap, et al. [AHH+02] presented a host-based
intrusion detection system that builds a model of nor-
mal Registry behavior through training and showed
that anomaly detection against the model can identify
malicious activities with relatively high accuracy and
low false positive rate. The PinPoint root cause analy-
sis framework [CKF+02] applies data clustering anal-
ysis to a large number of multi-tier request-response
traces tagged with perceived success/failure status to
determine the subset of components that are most
likely to be the cause of failures.

Summary

We have proposed the Strider state-based
approach to change and configuration management
and support, and built and evaluated a system based
on this approach. The approach allows a decomposi-
tion of complex problems into five Strider components

that can be used as building blocks in various scenar-
ios. In the context of our primary example, trou-
bleshooting of configuration failures, we have demon-
strated that combining the black-box techniques of
state differencing, tracing, intersection, and ranking
can effectively narrow down the list of root-cause can-
didates for many real-world cases. As we continue to
build up the computer genomics database, where we
provide precise mappings from configuration state
items to their known functions and/or problems, more
knowledge will be captured in a structured format,
enabling even more effective root cause analysis. Our
future work includes providing differencing and trac-
ing of more types of configuration state to increase
coverage, collecting a large number of state snapshots
and program traces to enable advanced statistical anal-
ysis and reduce Strider’s dependence on manual steps,
and evolving the current Strider toolkit for trou-
bleshooting into a systems management framework
for self-monitoring and self-healing.
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