

LLAMA: A Cache/Storage Subsystem for Modern Hardware

Justin Levandoski
Microsoft Research
One Microsoft Way

Redmond, WA 98052

justinle@microsoft.com

David Lomet
Microsoft Research
One Microsoft Way

Redmond, WA 98052

lomet@microsoft.com

Sudipta Sengupta
Microsoft Research
One Microsoft Way

Redmond, WA 98052

sudipta@microsoft.com

ABSTRACT
LLAMA is a subsystem designed for new hardware environments

that supports an API for page-oriented access methods, providing

both cache and storage management. Caching (CL) and storage

(SL) layers use a common mapping table that separates a page’s

logical and physical location. CL supports data updates and

management updates (e.g., for index re-organization) via latch-free

compare-and-swap atomic state changes on its mapping table. SL

uses the same mapping table to cope with page location changes

produced by log structuring on every page flush. To demonstrate

LLAMA’s suitability, we tailored our latch-free Bw-tree

implementation to use LLAMA. The Bw-tree is a B-tree style

index. Layered on LLAMA, it has higher performance and

scalability using real workloads compared with BerkeleyDB’s B-

tree, which is known for good performance.

1 INTRODUCTION

1.1 Modern Architectures
Modern computer platforms have changed sufficiently that it is

timely to re-architect database systems (DBMSs) to exploit them

[1, 10]. These DBMSs have not slowed down, but rather they are

missing significant opportunities to perform dramatically better.

Without re-architecting in a substantial way, these performance

opportunities will continue to elude them.

CPU changes include multi-core processors and main memory

latency that requires multiple levels of caching. Flash storage, and

hard disk vendor recognition that update-in-place compromises

capacity, have increased the use of log structuring. Cloud data

centers increase system scale and the use of commodity hardware

puts increased emphasis on high availability techniques.

Previous Deuteronomy work [15, 19] described how to provide

consistency (i.e. transactions) in a cloud setting. We focus here on

a Deuteronomy data component (DC) and how to maximize its

performance on modern hardware. A DC manages storage and

retrieval of data accessed via CRUD (create, read, update, delete)

[32] atomic operations. A DC is not distributed but rather is a local

mechanism that can be amalgamated into a distributed system via

software layers on top of it, e.g. a Deuteronomy transactional

component (TC) and/or a query engine.

We believe there are fundamental problems posed by current

hardware that impact all access methods: B-trees, hashing, multi-

attribute, temporal, etc. Further, these problems can be solved with

general mechanisms applicable to most access methods.

1. Good processor utilization and scaling with multi-core

processors via latch-free techniques.

2. Good performance with multi-level cache based memory

systems via delta updating that reduces cache invalidations.

3. Write limited storage in two senses: (1) limited performance

of random writes; (2) flash write limits; via log structuring.

The Bw-tree [16], an index resembling B-trees [4, 7], is an example

of a DC or key-value store that exploits these techniques. Indeed,

it is an instance of a paradigm for how to achieve latch-freedom and

log structuring more generally. In this paper, we describe a new

architecture where the latch-free and log-structure techniques of the

Bw-tree are implemented in a cache/storage subsystem capable of

supporting multiple access methods, in the same way that a

traditional cache/storage subsystem deals with latched access to

fixed size pages that are written back to disks as in-place updates.

Figure 1: Architectural Layering for LLAMA

1.2 Brief Description of LLAMA
LLAMA and its capabilities, described below, are the contributions

of our paper. While LLAMA’s “big picture” architecture is similar

to that of conventional systems, it introduces new techniques

throughout that make it uniquely suitable for new platforms.

Like conventional cache/storage layers, LLAMA supports a page

abstraction to support access method implementations. Further, a

Deuteronomy-style transactional component can be added on top.

This architectural layering is illustrated in Figure 1. A page is

accessed via a “mapping table” that maps page identifiers (PIDs) to

states, either in main memory cache or on secondary storage (see

Figure 2). Pages are read from secondary storage into a main

memory cache on demand, they can be flushed to secondary

storage, and they are updated to change page state while in the

cache. All page state changes (both data state and management

state) are provided as atomic operations.

Permission to make digital or hard copies of all or part of this work for personal

or classroom use is granted without fee provided that copies are not made or

distributed for profit or commercial advantage and that copies bear this notice
and the full citation on the first page. To copy otherwise, to republish, to post

on servers or to redistribute to lists, requires prior specific permission and/or a

fee. Articles from this volume were invited to present their results at The 39th

International Conference on Very Large Data Bases, August 26th - 30th 2013,

Riva del Garda, Trento, Italy.

Proceedings of the VLDB Endowment, Vol. 6, No. 10
Copyright 2013 VLDB Endowment 2150-8097/13/10... $ 10.00.

877

Figure 2: The mapping table in LLAMA

LLAMA, through its API, provides latch-free page updating via a

compare and swap (CAS) atomic operation on the mapping table.

This replaces the traditional latch that guards a page from

concurrent access by blocking threads. The CAS strategy increases

processor utilization and improves multi-core scaling.

In managing the cache, LLAMA can reclaim main memory by

dropping only previously flushed portions of pages from memory,

thus not requiring any I/O, even when swapping out “dirty” pages.

This means that LLAMA can control its buffer cache memory size

without input from its access method user. This is important as

LLAMA is unaware of transactions and write-ahead logging.

LLAMA uses log-structuring to manage secondary storage. This

provides the usual advantages of avoiding random writes, reducing

the number of writes via large multi-page buffers, and wear leveling

needed by flash memory. Further, LLAMA improves performance

compared with conventional log structuring with partial page

flushes and pages with no empty space- i.e. 100% utilization.

These reduce the number of I/Os and storage consumed per page

when a page is flushed, and hence reduces the write amplification

usually encountered when log-structuring is used. Further all

storage related operations are completely latch-free.

Finally, LLAMA supports a limited form of system transaction

[19]. System transactions are not user transactions, but rather

provide atomicity purely for the “private use” of the access method,

e.g., for index structure modifications (SMOs) [21]. The fact that

system transactions recorded separately from the transaction log

can be effective is one of the key insights of the Deuteronomy

approach to decomposing a database kernel.

1.3 Outline for Paper
The rest of the paper is organized as follows. We introduce the

operational interface (API) that an access method implementer sees

when using LLAMA and describe how it might be used in section

2. Section 3 describes the cache layer. The design of the log

structured storage layer is described in Section 4. Section 5

describes our system transaction mechanism and the measures we

take to provide atomicity. Section 6 discusses log structured storage

recovery from system crashes. We describe our performance

experiments and present their results in Section 7. Section 8

describes related work while section 9 provides a brief discussion

and some conclusions about the work.

2 LLAMA INTERFACE
The design goal of LLAMA is to be as general purpose as

possible. That sometimes turns into “be as low level” as possible.

But that is not our intent. Rather, for LLAMA to be general

purpose, it needs to know as little as possible about what an access

method does in using its facilities. Thus, LLAMA operations are

“primitive”, targeted at cache management and the updating of

pages. It has some additional facilities to support a primitive

transaction mechanism that is needed for SMOs (e.g. page splits

and merges).

There is nothing in the interface about LSNs, write-ahead logging

or checkpoints for transaction logs. There is no idempotence test

for user operations. Indeed, there is no transactional recovery in

this picture. That is handled by an access method using LLAMA.

We describe how the Bw-tree uses LLAMA in section 2.4. But first

we describe the operations that LLAMA supports.

2.1 Page Data Operations
An access method changes state in response to user operations. A

user may want to create (C), read (R), update (U), or delete (D) a

record (CRUD operations [31]). LLAMA does not directly support

these operations. Rather, the access method needs to implement

them as updates to the states of LLAMA pages.

There are also structure changes that are part of access method

operation. For example, a Bw-tree page split involves posting a

split delta to the original page O so that searchers know that a new

page now contains data for a sub range of the keys in O. These too

are handled as updates to a LLAMA page O.

LLAMA supports two forms of update, a delta update, and a

replacement update. An access method can choose to exploit these

forms of updates as it sees fit. For example, the Bw-tree will make

a series of delta updates and at some point decide to “consolidate”

and optimize the page by applying the delta updates to a base page.

It then uses a replacement update to create the new base page.

1. Update-D(PID, in-ptr, out-ptr, data): A delta update

prepends a delta describing a change to the prior state of the

page. For the Bw-tree, the “data” parameter to Update-D

includes at least <lsn, key, data> where the lsn enables

idempotence. The “in-ptr” points to the prior state of the page.

The “out-ptr” points to the new state of the page.

2. Update-R(PID, in-ptr, out-ptr, data): A replacement update

results in an entirely new state for the page. The prior state,

preserved when using an Update-D, is replaced by the “data”

parameter. Thus, the “data” parameter must contain the entire

state of the page with deltas “folded in”.

3. Read(PID, out-ptr): Read returns, via “out-ptr” the address

in main memory for the page. If the page is not in main

memory, then the mapping table entry contains a secondary

storage address. In that case, the page will be read into main

memory and the mapping table updated with the new address.

2.2 Page Management Operations
In addition to supporting data operations, LLAMA needs to provide

operations to manage the existence, location, and persistence of

pages. To adjust to the amount of data stored, the access method

will add or subtract pages from its managed collections. To provide

state persistence, an access method will from time to time flush

pages to secondary storage. To manage this persistence effectively,

pages need to be annotated appropriately, e.g. with log sequence

numbers.

878

1. Flush(PID, in-ptr, out-ptr, annotation): Flush copies the

page state into the log structured store (LSS) I/O buffer. Flush

is similar to Update-D in its impact on main memory, i.e. it

prepends a delta (with an annotation) to the prior state. This

delta is tagged as a “flush”. LLAMA stores the LSS secondary

storage address of the page and the caller “annotation” in the

flush delta. Flush does not guarantee that the I/O buffer is

stable when it returns.

2. Mk-Stable(LSS address): Mk-Stable ensures that pages

flushed to the LSS buffer, up to the LSS address argument, are

stable on secondary storage. When Mk-Stable returns, the

LSS address provided and all lower LSS addresses are

guaranteed to be stable on secondary storage.

3. Hi-Stable(out-LSS address): Hi-Stable returns the highest

LSS address that is currently stable on secondary storage.

4. Allocate(out-PID): Allocate returns the PID of a new page

allocated in the mapping table. All such pages need to be

remembered persistently, so Allocate is always part of a

system transaction (see 2.3 below), which automatically

flushes its included operations.

5. Free(PID): Free makes a mapping table entry identified by

the PID available for reuse. In main memory, the PID is

placed on the pending free list for PIDs for the current epoch.

We discuss epochs in section 3.4. Again, because active pages

need to be remembered, Free is always part of a system

transaction.

2.3 System Transaction Operations
LLAMA system transactions are used to provide relative durability

and atomicity (all or nothing) for structure modifications (SMOs

[20]). We use our LSS and its page oriented records as our “log

records”. All operations within a transaction are automatically

flushed to an in-memory LSS I/O buffer in addition to changing

page state in the cache. Each LSS entry includes the state of a page

as our LSS is strictly a “page” store.

In main memory, all such operations within a transaction are held

in isolation until transaction commit (details are described in

Sections 5.2 and 5.3.) At commit, all page changes in the

transaction are flushed atomically to the LSS buffer. On abort, all

changes are discarded.

System transactions are initiated and terminated in a conventional

way via LLAMA supported operations.

1. TBegin(out-TID): A transaction identified by a TID is

initiated. This involves entering it into an active transaction

table (ATT) maintained by the LLAMA CL.

2. TCommit(TID): The transaction is removed from the active

transaction table and the transaction is committed. Page state

changes in the transaction are installed in the mapping table

and flushed to the LSS buffer.

3. TAbort(TID): The transaction is removed from the active

transaction table and changed pages are reset to transaction

begin in the cache and no changes are flushed.

In addition to Allocate and Free, Update-D operations are

permitted within a transaction to change page states. Update-R is

not used as it complicates transaction undo (see section 5.3).

Transactional operations all have input parameters: TID and

annotation. TID is added to the deltas in the cache, and an

annotation is added to each page updated in the transaction, as if it

were being flushed. When installed in the flush buffer and

committed, all updated pages in the cache will have flush deltas

prepended describing their location, as if they were flushed

independently of a transaction.

2.4 Using the Interface
The Bw-tree [16] provides a key-value store that enables

transactions to be supported. It manages LSNs, enforces the WAL

protocol, and responds to checkpointing requests as required of a

Deuteronomy data component (DC) [15, 19]. Here, we address

how it does that when using LLAMA.

What is data to the Update-D and Update-R LLAMA operations

can include keys, LSNs, and the data part of a key value store. The

Bw-tree can thus, via these operations, implement a key value store,

provide idempotence via LSNs, do incremental updates via Update-

D, do its page consolidations via Update-R, and access pages for

read or write using the LLAMA Read or Flush operation.

An access method can store LSNs in the data it provides to LLAMA

via update operations. Further, the Flush operation annotation

stored in a flush delta can provide additional information to

describe page contents. These permit the Bw-tree to enforce the

write-ahead logging. A Stabilize operation after flushing a page

makes updates stable for transaction log checkpointing.

Allocate and Free permit the Bw-tree to grow and shrink its tree.

BTrans and TCommit/TAbort enable the atomicity required for

structure modifications operations (SMOs). Update operations are

not limited to “user level” data. For example, the Bw-tree uses

Update-D to post its “merge” and “split” deltas when implementing

SMOs. We provide more detail about this when discussing system

transactions in Section 5.

3 CACHE LAYER

3.1 Data Operations
All page updating is accomplished by installing a new page state

pointer in the mapping table using a CAS, whether a delta or a

replacement update (see Figure 3). A replacement update must

include both the desired new state and the location of the prior state

of the page in LSS. A new update delta will point to the prior state

of the page, which already includes this LSS location.

This latch-free approach avoids the delays introduced by latching,

but it has a penalty of its own, as do all “optimistic” concurrency

control methods, i.e., the CAS can fail and the update then must be

re-attempted. It is up to the LLAMA user to retry its operation as

appropriate. LLAMA merely indicates when a failure occurs.

While no operation blocks when the data is in cache, reading a page

from secondary storage has to wait for the page to appear in the

cache. The mapping table will always point to the LSS page, even

for cached pages (see above), enabling pages to be moved between

cache and LSS for effective cache management.

Figure 3: Installing delta updates in the mapping table.

879

3.2 Flushing Pages
When a page is flushed, LLAMA ensures that what is represented

in the cache matches what is in LSS. Thus, the flush delta includes

both PID and LSS offset, and LLAMA includes that delta in the

LSS buffer and in the cache by prepending it to the page.

3.2.1 Non-contiguous Pages
Because LLAMA supports delta updating, it is possible that page

state will consist of several non-contiguous pieces. Combine this

with flushing activity and an in-cache page may have part of its

state in LSS (having been flushed earlier) while recent updates are

only present in the cache. When this occurs, it provides an

opportunity to reduce the storage cost of the next flush.

Thus, LLAMA can flush such a page by writing a delta that

contains only the changes since the prior flush. Multiple update

deltas in the cache can all be made contiguous for flushing by

writing a contiguous form of the deltas (called a C-delta), with a

pointer to the remainder of the page in LSS. Thus the entire page

is accessible in LSS, but in possibly several pieces.

The Flush operation sees a cached page state that may have several

parts that have been flushed over time in this way, resulting in a

cached page in which the separate pieces and their LSS addresses

are represented. At any time, Flush can bring these pieces together

in LSS storage by writing everything contiguously (and

redundantly). One might be willing to leave the pieces separate

when LSS uses flash storage, while wanting contiguity when LSS

uses disk storage, due to the differing read access costs.

3.2.2 A Problem
When we flush a page, we must know, prior to the flush, exactly

what state of the page we are flushing. This is trivial with latches:

one simply latches the page, does the flush. But in a latch free

approach, we have no way to prevent updates to a page being

flushed. This poses a problem when we are trying to enforce the

write-ahead log protocol or when the flush occurs as part of a

structure modification. We want inappropriate flushes to fail when

they perform their CAS. Thus, we use the pointer to the page state

we wish to flush in the CAS, which will then only capture that

particular state and will fail if the state has been updated before the

flush completes. But this raises another problem.

We found it surprisingly hard to provide the kind of strong invariant

that we think is needed when doing cache management and flushing
pages to LSS. What we want is:

(*) A page that is flushed successfully to LSS is immediately seen

in the cache as having been flushed and the flushed state of the page

must indeed be in the LSS I/O buffer ahead of the flushes of all later

states. A page whose flush has failed should not be seen as flushed

in the cache and it should be clear when looking at LSS that the

flush did not succeed.

Consider two alternative approaches.

1. We ensure that the flush succeeds by first performing the CAS.

Once the CAS succeeds, we post the page to the LSS. If we

do that, a race condition undermines correct LSS recovery.

We can subsequently flush a page that depends upon the

earlier flush, where this “later” flush succeeds in writing to

LSS before a system crash, while our “earlier” flush is too

slow to complete and does not appear in the stable LSS. We

have just compromised a form of causality.

2. We capture the page state that we wish to flush and write it to

the LSS buffer. Then we attempt the CAS, which fails. We

now have a page written to LSS with no way to distinguish

whether the flush succeeded or failed should the system crash.

Indeed, we can have multiple such pages written to LSS at

various times. It is even possible that we have written a later

state of the page that is earlier in the LSS than our failed CAS.

It began later but got its buffer slot before the earlier flush.

3.2.3 A Solution
This dilemma briefly confounded us, but there is a way out.

The CAS needs to be done early enough that we can know whether

we will successfully flush or not—prior to copying the state of the
page to the log buffer. Thus, our flush procedure is as follows.

1. Identify the state of the page that we intend to flush.

2. Seize space in the LSS buffer into which to write the state.

3. Perform the CAS to determine whether the flush will succeed.

We need the LSS offset in the flush delta when we do this.

But step 2 has provided us with that.

4. If step 3 succeeds, write the state to be saved into the LSS.

While we are writing into the LSS, LLAMA prevents the

buffer from being written to LSS secondary storage.

5. If step 3 fails, write “Failed Flush” into the reserved space in

the buffer. This consumes storage but removes any ambiguity

as to which flushes have succeeded or failed.

The result of this is that the LSS, during recovery, never sees pages

that are the result of CASs that have failed. This preserves also the

property that any page that appears later in the LSS (in terms of its

position in the “log”) will be a later state of the page than all earlier

instances of the page in the LSS log.

3.3 Swapping Out Pages
We want LLAMA to manage the cache and effectively swap

out data so as to meet its memory constraints. LLAMA knows

about delta updates, replacement updates, and flushes and can

recognize each of these. But LLAMA must know nothing about

the contents of the pages if it is to be general purpose. Importantly,

this means that the LLAMA knows nothing about whether the

access method layer is supporting transactions by maintaining

LSNs in the pages. So the problem becomes: how does LLAMA

provide cache space management (including evicting pages) when

it cannot see LSNs and enforce the write-ahead log protocol?

The important observation is that any data that has already been

flushed can be dropped from the cache. Systems in which pages

are updated in place are prevented from swapping out (dropping

from the cache) any recently updated and dirty page. But because

of delta updates, LLAMA can determine which parts of pages have

already been flushed. Each such part is described with a flush

delta. And those flushed parts can be “swapped out” of the cache.

We cannot, in “swapping out” parts of pages, simply deallocate the

storage and reuse it. Doing that leaves dangling references to the

swapped out parts. We need a delta describing what parts of a page

have been swapped out.

For a fully swapped out page, we replace its main memory address

in the mapping table with an LSS pointer from the page’s most

recent flush delta. For partially swapped out pages, we use a CAS

to insert a “partial swap” delta record. This delta record indicates

that the page has been partially swapped out (so none of the page

can be accessed normally) and points to the flush delta that

designates where in the LSS to find the missing part of the page.

880

Once the “partial swap” delta has been installed with a CAS, the

memory for the part of the page being dropped can be freed using

our epoch mechanism in Section 3.4. Partial page swap out and

the partial swap delta are illustrated in Figure 4.

The approach described here has a number of advantages.

1. LLAMA’s cache layer can reclaim memory without knowing

anything about the content of pages.

2. Dropping flushed pages and flushed parts of pages requires no

I/O operation.

3. Bringing a partially flushed page back into main memory

involves fewer LSS reads than would be the case for a fully

flushed page with multiple parts in LSS.

Several cache management strategies can be used to manage cache

storage, e.g. LRU, LRU(k), Clock, etc. [9, 24]. These frequently

require some additional bookkeeping, but pose no large difficulty.

3.4 Epochs for Resource Reuse
With our latch-free approach, operations can be examining both

pages and page states even after they have been designated as

“garbage”. There are no “latches” that prevent either of:

1. An Update-R operation replaces the entire page state, de-

allocating prior state while another operation is reading it.

2. A De-allocate operation “frees” a page in the mapping table

while another operation is examining it.

We cannot allow storage or PIDs to be reused until there is no

possibility that another operation is accessing them. Thus we

distinguish between a freed and a re-usable resource. A freed

resource has been designated as garbage by an operation. A re-

usable resource has been freed and can be guaranteed not to be

accessible by any other operation. Epochs are a way of protecting

de-allocated objects from being re-used too early [12].

Every operation enrolls in the current epoch E prior to accessing

PIDs or page states, and exits E once such access is over. An

operation always posts freed resources on the list of the current

epoch, which may be E (the epoch it joined), or a larger epoch if

the current epoch has advanced. No resource on E’s list is reused

until all operations enrolled in E have exited.

Epochs are numbered and from time to time, a new epoch E+1

becomes the current epoch. New operations continue to enroll in

the current epoch, now E+1. The epoch mechanism invariant is:

 No operation in epoch E+1 or later epochs can have seen and

be using resources freed in epoch E.

Thus, once all operations have exited from E, no active operation

can access resources freed in E. Two epochs and their garbage

collection lists are illustrated in Figure 5.

4 STORAGE LAYER

4.1 Log Structured Storage Organization
LLAMA organizes data on secondary storage (flash in our case) in

a log structured manner [27] similar to a log structured file system

(LFS). Thus, each page flush relocates the position of the page on

flash. This provides an additional reason for using our mapping

table. Log structured storage has the substantial advantage of

greatly reducing the number of writes per page and makes the

writes “sequential”. That is, it converts many random writes into

one large multi-page write.

As discussed in Section 3.1, a logical page consists of a base page

and zero or more delta records reflecting updates to the page. This

allows a page to be written to flash in pieces when it is flushed.

Thus, a logical page on flash corresponds to records on possibly

different physical device blocks that are linked together using file

offsets as pointers. Further, a physical block may contain records

from multiple logical pages. This is illustrated in Figure 6. These

are important differences between LLAMA and conventional LFS

systems, enabling LLAMA to write a page using less storage, and

hence with less write amplification.

A logical page is read from flash into memory by starting from the

head of the chain on flash (whose offset is obtained from the

mapping table) and following the linked records. The read process

is made more efficient by consolidating multiple delta records of

the same logical page into a contiguous C-delta on flash when they

Figure 6: Log-structured storage organization on flash

Figure 5: The epoch mechanism for garbage collection

Figure 4: Swapped out page Q and a partially swapped P

881

are flushed together. Moreover, a logical page will get consolidated

on flash when it is flushed after being consolidated in memory.

These techniques improve page read performance.

4.2 Flushing
LLAMA is entirely latch-free and asynchronous. Further, we do

not use dedicated threads to flush I/O buffer as this makes it harder

to keep thread workload balanced. So all threads participate in

managing this buffer. Most prior approaches have required latches.

The best only latch while allocating space in the buffer, releasing

the latch prior to data transfers, which can then proceed in parallel.

We take this same basic approach but without using latches.

Succeeding in this requires solving a number of problems.

4.2.1 Buffer Space Allocation
Our approach avoids the prior latch, using a CAS for atomicity, as

we have done elsewhere in our system. This requires that we define

the state on which the CAS executes. The constant part of buffer

state consists of its address (Base) and size (Bsize). We keep track

of the current high water mark of storage used in the buffer with an

Offset relative to the Base. Each request for the use of the buffer

begins with an effort to reserve space Size for a page flush.

To reserve space in the buffer, a thread acquires the current Offset

and computes Offset+Size. If Offset+Size ≤ Bsize then the request

can be stored in the buffer. The thread issues a CAS with current

Offset as the comparison value, and Offset+Size as the new value.

If the CAS succeeds, Offset gets the new value, the space is

reserved, and the buffer writer can transfer data to the buffer.

This logic deals only with space allocation in the buffer. Writing

the buffer and how to manage multiple buffers requires more in the

CAS state, and we describe this next.

Figure 7: Flush buffer state

4.2.2 Writing the Buffer to Secondary Storage
If Offset+Size > Bsize, there is insufficient space in the buffer to

hold the thread’s record. At that point, the thread seals the buffer—

marking it as no longer to be used and as prepared to be written to

secondary storage. This is tracked with a Sealed bit in the flush

buffer state. A CAS changes Sealed from F (false) to T (true). A

sealed buffer can no longer be updated and a thread encountering a

sealed buffer must find a different (unsealed) buffer.

A sealed buffer can no longer accept new update requests. But we

cannot yet be sure that the prior writers, all of whom have

succeeded in acquiring buffer space, have finished transferring

their data to the buffer. An Active count indicates the number of

writers transferring data to the buffer. When reserving space in the

buffer, the writer’s CAS includes Offset, Sealed, and Active. It

acquires this structure, adds its payload size to Offset, increments

Active by 1, and if ~Sealed, does a CAS to update this state and

reserve space. When a writer is finished, it reacquires this state,

decrements Active by one, and does a CAS to effect the

change. Operations are redone as needed in case of failure.

A buffer is flushable if it is Sealed and Active = 0. The writer who

causes this condition is responsible for initiating the asynchronous

I/O, i.e. the thread does not wait. When the I/O is completed, the

buffer’s Offset and Active users are both set to zero, and the buffer

is unSealed.

4.2.3 Multiple Buffers
Each of the buffers in a set has a state as indicated above. We

assume that buffers are accessed and used in a round-robin style,

such that as one buffer is sealed, we can simply proceed to the next

buffer in the buffer “ring”. We use CURRENT to indicate which

of a set of buffers is currently accepting new write requests.

The thread that SEALs a currently active buffer must also update

CURRENT when it SEALs the buffer. This thread then chooses

the next CURRENT buffer. When a buffer I/O completes, the I/O

thread unseals the buffer but does not set CURRENT as there may

be another buffer serving as the current buffer. The complete flush

buffer state is illustrated in Figure 7.

4.3 LSS Cleaning
LSS is a log structured store and so is conceptually “append only”.

To realize LSS, one must be continuously reclaiming space for the

appending of new versions of pages, as any log structured file

system (LFS) must. This is called “cleaning” [27].

Because versions of pages have different lifetimes, it is possible

that very old parts of our “log”, which we would like to reuse, will

contain current page states. To reuse this “old” section of our log,

we need to move the still current page states to the active tail of the

log, appending them there so that the old part can be recycled for

subsequent use. This side effect of cleaning increases the number

of writes (called write amplification) [11].

We organize our cleaning effort very simply. We manage the log

as a large “circular buffer” in which the oldest part (head of the log)

is “cleaned” and added as new space at the active tail of the log

where new page state is written. This is entirely conventional LFS.

What is not so conventional are:

1. What we rewrite when a page is re-appended to the LSS store.

Every page that is relocated is made contiguous when it is re-

written. That is, as many incremental flushes as it may have

had, all parts of the page are now made contiguous. This
optimizes the accessibility of the page in LSS.

2. How we manage the cache so as to install the new location

information. We use our usual technique, i.e., a CAS on a delta

(called a relocation delta) at the mapping table entry for the

page, providing the new location and describing which parts

of the page have been relocated. A concurrent update or flush

can cause this CAS to fail, in which case we try again.

4.4 Storage Efficiency
Storage efficiency has a positive impact on log structured storage

systems. And LSS is very efficient. For any given amount of space

allocated to LSS, the more efficiently it uses that space, the less

cleaning it needs to do, and the fewer page moves it will need. Page

moves result in additional writes to storage (write amplification).

So how is LSS storage efficient? First, there is no empty space in

pages that are flushed. They are written as packed variable length

strings. On average, traditional B-tree pages are only 69% utilized.

Second, because we will frequently flush only deltas since the prior

flush, much less space will be consumed per page flush. Finally,

882

swapping updated pages out of our cache will not require an

additional flush as we reclaim memory only for the parts of the page

previously flushed.

5 SYSTEM TRANSACTIONS

5.1 A Limited System Transaction Capability
Access methods need to make structure modifications operations

(SMOs) to permit such structures to grow and shrink. This is one

of the more subtle aspects of access methods. SMOs require that

there be a way to effect atomic changes of the index so that ordinary

updates can execute correctly in the presence of on-going SMOs,

and be atomic (all or nothing). The Bw-tree exploits LLAMA

system transactions as the mechanism for its SMOs.

Durability of system transactions is realized via a log in a more or

less conventional way. However, our log is not a transaction log,

but our LSS “page” store. This may seem inefficient given that a

transactional system usually only logs operations. But with delta

updating we can log page state by logging only the delta updates

since the prior page flush. Durability at commit is not required so

commit does not “force” the LSS buffer. However, we guarantee

that all subsequent operations that use the result of a transaction

come after the transaction commit in the LSS.

Like non-transactional operations, all transaction operations are

installed via a CAS on a page pointer in the mapping table. A

critical aspect is to ensure that what is in the cache is represented

faithfully in LSS and the reverse. Thus, all updates within a system

transaction include a flush. Every system transaction update is

recorded in the LSS buffer, and hence is “logged”. The two

representations of the information need to be equivalent. This

ensures that, in case of system crash, we can faithfully reconstruct

the state of the cache as of the last buffer stably captured by LSS.

This equivalence is a problem when actions involve more than one

page, as SMOs do. For example, a node split SMO in a B-link tree

both allocates a new page and updates its sibling page link pointer

to reference the new page. SMOs in latch-based systems use

latches to provide isolation so that the internal states of a multi-page

SMO are not visible in the cache manager until the SMO is

complete. A latch-free design means that the ability to isolate

active (and hence uncommitted) transaction updates is limited.

LLAMA provides a transactional interface that permits fairly

arbitrary access to pages, i.e., operations on arbitrary pages can be

placed within a transaction. But “users beware”. We do not protect

pages updated during a transaction from access by an operation

outside of the transaction. Fortunately, SMOs can be designed that

do not need a fully general isolation capability. SMO transactions

can be frequently captured by the “template” shown in Figure 8.

Figure 8: SMO transaction template

A new node for a node split (using this template), is not visible to

other threads executing operations until step 3 when it is connected

to the tree and the transaction is committed. Thus, such an SMO

transaction provides both atomicity and isolation.

5.2 Active System Transactions
As in conventional transactional systems, we maintain an active

transaction table for our system transactions, called the ATT. The

ATT has an entry per active system transaction that contains the

TID for the transaction and a pointer to the immediately prior

operation of the transaction, called IP, which points to the memory

address of the most recent operation of the transaction.

A TBegin operation adds a new entry to the ATT, with a transaction

id (TID) higher than any preceding transaction, with IP set to

NULL. Execution of a transaction operation creates a “log record”

for the operation pointing back to the log record for the operation

identified by the IP, and IP is updated to reference the new

operation. This backlinks the “log records” for operations of a

transaction in the conventional way, but all “log records” are only

in main memory. Further, operations within a system transaction

only change cache state via mapping table updates, not LSS buffer

state. All these pages are flushed on transaction commit.

When an end of transaction (commit or abort) occurs, the

transaction is removed from the ATT.

5.3 System Transaction Atomicity
At commit, pages changed by a transaction need to be flushed to

the LSS buffer in some atomic fashion. One might bracket these

page writes with begin and end records for the transaction in the

LSS. But this would require crash recovery to undo interrupted

transactions. Such undo recovery would require the writing of undo

information to LSS. We avoid this by doing an atomic flush at

commit of all pages changed by a transaction (see 5.3.1 below).

Subsequent actions that depend on an SMO must be later in the LSS

buffer than the information describing the SMO transaction. Thus,

when the state of an SMO becomes visible in the cache to threads

other than the thread working on the system transaction, those other

threads must be able to depend upon the SMO having been

committed to the LSS and already present in the LSS buffer.

It is step 3 in Figure 8 that is tricky. It must encapsulate both the

updating in main memory (making the transaction state visible) and

the committing of the transaction in the LSS buffer via an atomic

flush. We introduce a “commit” capability for an Update-D to do

this, i.e. combining an update with transaction commit.

5.3.1 Commit

LSS deals with a transactional Update-D “commit” operation by

combining the update and its CAS installation with an atomic flush

of all pages changed in the transaction. This flush on commit of

multiple pages is done in the same style as for individual page

flushes. LSS buffer space is allocated for all pages changed in the

transaction. Then the CAS is executed that installs the Update-D

delta prepended with a flush delta. If the CAS succeeds, the pages

updated in the transaction are written to the LSS flush buffer. Only

after the flush of all pages for the transaction is complete does the

flush process decrement the number of writers of the flush buffer.

It is the allocation of space for all pages in the transaction as a single

unit with the hold until writer decrement on the LSS buffer that

ensure atomicity for the transaction in the LSS store.

5.3.2 Abort

If the CAS fails, we respond as we do for other flush failures.

That is, we VOID the space we had allocated so that the LSS,

during recovery, does not confuse the space with anything else. In

883

this way, our recovery process is completely unaware of system

transactions. Rather, system transactions are solely a capability of

our caching layer. This means that there is no need to ensure TID

uniqueness across system crashes or reboots.

Operations of an aborted system transaction need only be undone

in the cache since recovery will never see incomplete transactions.

Thus, we follow the back chain of log records for the transaction,

and provide the undo based on the nature of the operations on the

ATT list for the transaction, undoing a delta update by removing

the delta, undoing an allocate with a free, and undoing a free by

restoring the page to its state prior to the free. Aside from undoing

a FREE, no extra information is needed beyond the information

describing operation success.

5.4 Interaction with Epochs
Actions that happen within transactions are provisional. This

includes the allocation and freeing of storage and mapping table

page entries (PIDs). During transaction execution, PIDs are

allocated or freed, and Update-D deltas are generated. The

management of these resources has to be done in our epoch based

way. Since an SMO is done within a single user operation request,

the thread remains in its epoch for the duration of the transaction.

LLAMA reclaims resources depending on transaction commit or

abort. For commit, free page PIDs are added to the PID pending

free list for the current epoch. For abort, an allocated PID is freed

during undo and similarly added to the PID pending free list.

Finally, for an Update-D, operation, the update delta is added to the

storage pending free list for the current epoch.

6 FAILURE RECOVERY

6.1 Need for Crash Recovery
When we discuss recovery here, we are not referring to

transactional recovery. When we discuss checkpointing, we are not

referring to checkpointing as used to manage a transactional log.

Rather, recovery here refers to the need for LSS (a log structured

store) to recover its mapping table of pages and their states to the

time of a system crash. This recovery step is not needed for

conventional update-in-place storage systems.

A way to think about crash recovery is to consider the mapping

table as a “database”. Updates to this database are the page states

flushed to the LSS. Thus, every page flush updates the “mapping

table database”. Should the system crash, we replay the LSS “log”

to recover the “mapping table database”, using the pages flushed as

redo log records to update the mapping table.

For the above strategy to work, we need to periodically checkpoint

the mapping table so as to avoid having to keep LSS updates

forever. Our LSS cleaning could be used for this purpose (i.e.,

shortening the recovery log) but leaves a recovery log (the LSS log

structured store) that is too large for high speed recovery.

6.2 Checkpointing

6.2.1 Strategy for Checkpoints
We use a very simple tactic for checkpointing. LLAMA

asynchronously and incrementally writes the complete mapping

table during a checkpoint to one of two alternating locations. Each

location, in addition to the complete mapping table, stores a

recovery start position (RSP) and garbage collection offset GC as

shown in Figure 9. The RSP is the end offset in the LSS store at

the time we start copying the mapping table. The GC offset marks

the garbage collection “frontier”.

Later checkpoints have higher RSPs, as LSS offsets monotonically

increase by being virtualized. After a system crash, we use the

completed checkpoint with the highest RSP to initialize the state of

the recovered mapping table. The RSP indicates where in the LSS

“log” we begin redo recovery. To identify the last complete

checkpoint, we do not write the RSP to the checkpoint until the

mapping table has been fully captured. In that way, the previous

high RSP (from the alternate location) will be the highest RSP until
the current checkpoint is complete.

Figure 9: Checkpoint data: Mapping Table, GC, and RSP

6.2.2 “Copying” the Mapping Table
When LLAMA writes out the mapping table as part of a

checkpoint, this is not a byte-for-byte copy of the mapping table as
it exists in the cache for two reasons:

1. The cached form of the mapping table has main memory

pointers in the mapping table entries for cached pages. Our

checkpoint needs to capture the LSS addresses of the pages.

2. Mapping table entries that are not currently allocated are

maintained on a free list that uses the mapping table entries as

list items. Thus a free mapping table entry either has zero or

the address of the immediately preceding free mapping table

entry (in time order by when they were added to the free list).

We cannot capture a usable free list during our asynchronous

“copying” of the mapping table. Our copy of the mapping

table is written asynchronously and incrementally, minimizing

the impact on normal execution.

LLAMA first saves the current end offset of the LSS store as the

RSP. We scan the mapping table (concurrently with ongoing

operations) and identify the LSS address of the most recent flush of

the page for each PID entry (stored in the most recent flush delta),

and store that LSS address in our checkpoint for that mapping table

entry. If the entry is free, we zero that entry in our checkpoint copy.

(We reconstruct the free list at the end of redo recovery.) Finally,

when we finish copying the mapping table, we save the GC as of

the end of checkpoint and write both previously saved RSP and GC

to the stable checkpoint area, completing the checkpoint.

6.3 Recovery

6.3.1 Redoing Operations
Recovery begins by copying the mapping table for the checkpoint

with the highest RSP (i.e. the latest complete checkpoint) into

cache. It then reads the log from RSP forward to the end of the LSS.

Each page flush that is encountered is used to restore the page’s

PID in the mapping table to the flash offset for the page. When an

Allocate operation is encountered, the mapping table entry for the

884

allocated PID is initialized to empty as required by an Allocate

operation. When a Free operation is encountered, the mapping

table entry is set to ZERO. The LSS cleaner will resume garbage

collecting the log from the GC offset read from the checkpoint.

6.3.2 Rebuilding the Free PID List
During recovery, all free mapping table entries are set to ZERO.

We scan the rebuilt mapping table. When we encounter a ZERO

entry, we add it to the free list, which is managed as a stack. That

is the first entry to be reused is the last one that is added to the list.

In this way, we preferentially reuse the low order PIDs, which tends

to keep the table size clustered and small (at least as a result of

recovery). We also keep a high water mark in the mapping table

indicating the highest PID used so far. When the free list is

exhausted, we add PIDs from the unused part of the table,

incrementing the high water mark.

7 PERFORMANCE EXPERIMENTS
This section provides an experimental evaluation of LLAMA

comparing the Bw-tree [16] implemented over LLAMA with the

BerkeleyDB B-tree [5], a “traditional” page-based B-tree. Our

experiments use both real and synthetic workloads.

7.1 Implementation and Setup
Bw-tree and LLAMA. LLAMA is implemented in approximately

12,000 lines of C++ code. The Bw-tree on top of LLAMA is

approximately 4,000 lines of code. LLAMA uses the Windows

InterlockedCompareExchange64 to perform the CAS, and

LSS flush buffers are set to 4MB. The Bw-tree consolidates pages

(e.g., installs a new page using the Update-R API) after ten or

more deltas to a base page; this was found to perform well [16].

BerkeleyDB. We compare the Bw-tree on LLAMA to the

BerkeleyDB key-value store, which is known for its good

performance and is used as a storage layer in several well-known

platforms, e.g., Project Voldemort from LinkedIn [26]. We use

BerkeleyDB running in B-tree mode, a B-tree index on top of a

buffer pool for its page cache. This is a traditional architecture for

a B-tree. To maximize BerkeleyDB concurrency and provide a fair

comparison, we run it without transactional support, which permits

a single writer and multiple readers with page-level latching.

Experiment machine. Our experiment machine is an Intel Xeon

W3550 (at 3.07 GHz) with 24 GB of RAM and a 160GB Fusion IO

flash SSD drive. The machine has four cores that we hyperthread

to eight in all of our experiments.

Data sets. We use three workloads, two from real-world

applications and one synthetic. The workload characteristics are

summarized in Table 1.

1. Xbox Live. This workload contains 27M get-set key

operations obtained from a real-world instance of the

Microsoft Xbox Live [33] backend that manages state for

multi-player games. The key is dot-separated sequence of

strings with a length of 94 characters and average value sizes

of 1200 bytes. The ratio of get to set operations is 7.5 to 1.

2. Storage Deduplication. This workload is from a Microsoft

deduplication trace that generates a sequence of chunk hashes

for a root directory and compute the number of deduplicated

chunks and storage bytes. Keys are 20 byte SHA-1 values that

uniquely identify a chunk, while the value is a 44 byte

metadata string. The trace contains 27M total chunks and 12M

unique chunks. The workload first attempts to read a chunk,

and if the chunk is not present inserts its record. The read to

write ratio is 2.2 to 1.

3. Synthetic. This workload consists of 8 byte keys and 8 byte

values. The workload begins with an index of 15M entries

with keys generated with a uniform random distribution. It

then performs 120M operations that are either reads or updates

of existing keys. Keys for these operations come from either

the hot set (lower 20% of the key range) or cold set (upper

80% of the key range), with the probability of a generating a

hot key of 95%. The read to write ratio is 5 to 1.

Defaults. Unless otherwise mentioned, our metric is throughput

measured in operations per second. We use eight worker threads

for each workload (equal to the hyperthreaded cores on our

machine). The default page size for both BerkeleyDB and the Bw-

tree is 8KB. The LLAMA maximum LSS file size is set to half of

its observed maximum file size with cleaning turned off.

Memory Limit. For each workload, we measure the index’s

maximum memory usage when run completely in memory. To

force each system to push data to flash, the memory limit we assign

to the index for each workload is half of its observed max value.

7.2 Effect of LSS Cleaning
We ran each workload on Bw-tree/LLAMA with LSS cleaning

disabled, then enabled. The 2nd column of Table 2 reports the

overhead of LSS cleaning. For Xbox and Deduplication workloads,

we saw a 9% overhead, while for the synthetic workload cleaning

overhead was less than 5%. LSS cleaning in LLAMA entails

relocating a base page on the log as well as compacting and

relocating any deltas prepended to the page (Section 4.3). We

believe a 9% overhead is a tolerable price to pay. Such low

overhead is a necessity for log-structured storage systems to

perform well.

A benefit of LSS cleaning is the creation of consolidated pages on

the LSS that reduce the number of reads LLAMA performs on flash

(Section 3.2). We instrumented LLAMA with counters to measure

the number of flash reads performed during each run. The 3rd

column of Table 2 reports the reduction in flash reads we observed

with cleaning enabled. Clearly, consolidation has a positive effect

on read performance. The benefit of consolidations is correlated to

Table 2: LLAMA statistics

 Op

Count

Read:Write

ratio
Avg Key

Size

Avg Val

Size

XBOX 27 M 7.5:1 92 bytes 1200 bytes

Dedup 40 M 2.2:1 20 bytes 44 bytes

Synthetic 120M 5:1 8 bytes 8 bytes

Table 1: Properties of experiment data sets

885

the read ratio of the workload. Xbox, being a read-heavy workload,

benefits the most from page consolidation (7% drop in read count).

The update-heavy Deduplication workload sees a smaller benefit

since it creates a relatively larger number of deltas on flash, not

allowing the cleaner to catch up. The improvement for the synthetic

workload falls in between the two other workloads.

7.3 Flush Failure
This section studies LLAMA’s flush failure rate. Since all memory

operations in LLAMA are latch-free, page flushing may fail due to

a CAS failure on a flush delta after reserving buffer space (Section

3.2). A high flush failure rate results in more garbage on LSS (the

unused reserved buffer space). Column 4 of Table 2 provides the

flush failure rate when running all three workloads on Bw-

tree/LLAMA with cleaning enabled. All rates are well below 1%,

with the highest being 0.29% for the Xbox workload. Thus, flush

failures have a negligible impact. Such low contention is possible

since LLAMA avoids waiting for the page to be copied into the

flush buffer before installing a flush delta. LLAMA simply reserves

space in the buffer before installing the delta. The Xbox workload

exhibits the highest contention due to larger keys and data. This

causes pages to split more often, which trigger the Bw-tree to force

two page flushes to correctly order the split on LSS [16]. More flush

traffic increases the chances a flush will occasionally wait for a

buffer to unseal. The Deduplication and synthetic workloads have

relatively smaller keys and data, leading to less flush traffic.

7.4 Throughput
Figure 10 provides workload results for Bw-tree/LLAMA and

BerkeleyDB. The graph plots throughput for BerkeleyDB and Bw-

tree/LLAMA with and without cleaning. For fairness our

discussion refers only to the numbers with cleaning.

For the XBOX workload, BerkeleyDB’s throughput is 539K

ops/sec, while Bw-tree/LLAMA has a throughput of 3.2M ops/sec

representing a 5.9x speedup. For Deduplication, the performance

of BerkeleyDB is 267K ops/sec, while Bw-tree/LLAMA has

throughput of 859K ops/sec (a 3.2x speedup). The performance

drop of Bw-tree/LLAMA is mostly additional flash reads. Since the

Deduplication workload uses hashed keys, there is no key locality,

i.e., pages are accessed at random. This increases the chance an

operation on Bw-tree/LLAMA waits for a flash I/O to bring a page

to memory. Finally, Bw-tree/LLAMA exhibits a 17x speedup over

BerkeleyDB on the synthetic workload. This wide gap is mainly

due to the latch-free behavior of LLAMA. Since most updates go

to a hot set of records in this workload, only a relatively small

number of high-contention pages are updated. Bw-tree/LLAMA

allows concurrent page access to both readers and writers.

BerkeleyDB’s page-level latches block both writers and readers

during an update, causing performance to suffer.

We believe three factors account for the Bw-tree/LLAMA superior

performance. (1) Latch-freedom: the Bw-tree makes use of

LLAMA’s latch-free design. Latch-free page updates increase in-

memory concurrency (and reduce latency) for threads updating

pages. Latch-free write buffers allow page flushes (e.g., during an

SMO) to proceed without blocking. Meanwhile, BerkeleyDB

requires page-level latches that block readers and other writers

during a page update. We believe BerkeleyDB also requires latches

to reserve space in its write buffer. (2) Delta updates: In-memory

LLAMA delta updates avoid invalidating CPU caches of other

threads accessing the same page memory concurrently (except for

the 8 byte mapping table being updated). Meanwhile, BerkeleyDB

updates in-memory pages in place, leading to several more cache

line invalidations. (3) Log structuring, LLAMA only writes

sequentially to flash to maintain a high write bandwidth and

obviating the need for a flash FTL mapping layer. LLAMA often

avoids re-writing entire pages by flushing only delta updates.

BerkeleyDB updates whole pages in place on secondary storage,

leading to inefficient random writes on flash.

7.5 Scalability
This experiment reports the multi-core scalability of Bw-

tree/LLAMA (not cross-CPU scalability), and demonstrates

LLAMAs ability to increase performance as CPU power grows by

adding more cores. Using our same experimental setup, we not only

measured peak performance but also scaling from a single core to

exploiting all four cores, and then turning on hyperthreading to

exploit eight “logical” cores. Each increase in number of cores

produced a performance improvement, though scaling was not

linear.

All workloads demonstrate close to linear scaling when moving

from one to two cores. Scalability is lower in moving to four cores,

though our synthetic workload scalability is linear throughout.

Though scalability is less than linear for our real workloads, it still

results in substantially higher performance at four cores (about 3x

for Deduplication, 2.5x for Xbox). Hyperthreading scalability is

more limited, though still producing performance gains. Going to

8 hyperthreaded cores increases performance by about another third

for both real workloads over using four cores without

hyperthreading. Again, our synthetic workload scalability

remained linear, which we suspect results from much smaller

record size and working set, leading to better cache performance.

Figure 10: Throughput performance Figure 11: Throughput scaling with number of cores

886

8 RELATED WORK

8.1 Database System Architecture
Database systems have always exploited caching and managed

storage. These are essential: caching for performance, storage

(secondary) for durability. System R [2] divided its database

engine into RDS (relational data system) and RSS (research storage

system). However, the database kernel (RSS) has classically been

treated as a monolith, given the intertwined nature of transactional

concurrency control and recovery with access methods and cache

management.

Early attempts to modularize database systems [3] stopped short of

decomposing the kernel. The first successful attempt at a

decomposition of which we are aware was in the Deuteronomy

project [15 19], which separated transactional concurrency control

and recovery from the data management aspects of access methods

and cache management. Other efforts [30] have created prototypes

where this separation was exploited as an architectural feature.

We know of no work separating an access method layer from

cache/storage management, as done in LLAMA. One reason for

this is the need to enforce the write-ahead log protocol. Before

flushing a page, a conventional database kernel checks the page

LSN to see whether there are updates not yet stable in the

transactional log. LLAMA cache management can exploit our

delta updates to “swap out” a partial page. It can drop from the

cache the part of the page already present on secondary storage

(which does not include recent delta updates). The access method

layer will be regularly flushing for transactional log checkpointing.

So the cache manager will find sufficient candidate (possibly

partial) pages to satisfy any buffer size constraint.

8.2 NO SQL and Key Value Systems
There are a large number of indexing subsystems that are not

contained within a surrounding database system. Such indexing

subsystems have been present for a long time, e.g. IBM’s VSAM

[7], but have become increasingly popular over the past 10 years.

Indeed, Wikipedia lists around 70 such systems [32], e.g.

MongoDB [22], memcachedb, etc. on its “No SQL” page [20].

Some provide persistence as well as indexing, and support a variety

of data models. We are not aware of any that are latch-free or

exploit log structured storage.

Most key value systems are distributed in some fashion, usually by

sharding/partitioning. LLAMA has no aspects of distribution, but

it could be appropriate for the support of a single shard so long as

distribution is handled outside or above the storage layer. In this

way, it could play the same role for these systems that it might play

in database systems generally. And, like database systems, key

value stores when running on modern hardware, would benefit

from its latch-freedom and log structuring.

8.3 Latch-Free Techniques
There are several ways to avoid latches. A number of papers, e.g.

[25, 29], suggest scheduling threads so that they do not conflict on

the usual units of latches, i.e. pages. Thus, a thread never

encounters a page being changed by another thread. There can be

an interlock present, however, in the preprocessing step that does

this partitioning. Further, balancing the workload among threads

accessing partitioned data can be a problem.

LLAMA’s latch-freedom is the form that avoids latches while

allowing concurrent access by any thread to any data. This kind of

latch-freedom is provided by systems using skip-lists [20]. Our

experience with skip-lists [16] suggests that the Bw-tree/LLAMA

approach out-performs skip-lists because of better cache locality.

Hekaton, a recently announced main memory feature for SQL

Server [34], is completely latch-free. Hekaton uses no latches in its

lock manager, its hash table, and its ordered index, which is a Bw-

tree. Particularly notable about Hekaton is its latch-free lock

manager [13], which is also lock-free by using optimistic multi-

version concurrency control. Hekaton is purely a main memory

system, however, while LLAMA’s purpose is to bring latch-

freedom and log structuring to systems that also exploit secondary

storage.

8.4 Flash Storage without In-Place Updates
Flash SSDs have a “flash translation layer” (FTL) that avoids

update-in-place. Even so, write costs are high and random write

performance is low. Having the “application” avoid update-in-

place frequently improves performance [14]. The technique there

is to log updates related to a page near the original data, in a “log

block”. What LLAMA does has a similar effect, and coupled with

large write buffering, also greatly reduces the number of write I/Os.

8.5 Log Structured Storage
Log structured storage appeared first in file systems in LFS [27].

LFS dramatically reduced the number of writes by batching page

writes into a large sequential buffer, and writing it in a single large

sequential write. The price for this is an indirection table tracking

pages re-located when written. But for write-intensive workloads,

e.g. TPC-A, the number of I/Os is cut substantially [18].

Log structured merge trees (LSM-trees) [23] use log structured

techniques, exploiting large sequential writes, by periodically

merging a batch of recent “B-tree” updates, maintained in cache in

a main memory B-tree, into an existing densely packed secondary

storage B-tree. LSM-trees have gained popularity recently [28] as

a way to deal with heavy write workloads in the cloud, where

inexpensive disks have very limited I/O access rates.

The Hyder system [6] uses log structuring at the record level.

Hyder exploits flash memory, visible to a cluster of processors in a

data sharing manner. That is, multiple processors are allowed to

hold an intersecting set of pages in their caches. Hyder ensures that

each processor is notified when the flash memory is written, so that

each processor can perform appropriate cache invalidation.

Further, it is this visibility of changes to the flash memory that is

used to maintain a consistent binary tree that provides access to the

data records. Every update in Hyder results in changes to this

binary tree being propagated to the root of the tree.

The log-structuring of updates to a page through chaining delta

records on flash evolved from the SkimpyStash [8] hashed access

method record lists. Like SkimpyStash, LLAMA consolidates the

dis-contiguous pieces of a “page” when it does garbage collection.

LLAMA is page oriented like LFS, with an indirection table. It is

like Hyder in its ability to limit what is written to only the changed

data. LLAMA avoids Hyder’s propagating of changes to the root

of the tree, while gaining much of Hyder’s record level advantage.

Further, it spreads the synchronization burden over many pages,

rather than focusing it on the root of the tree, where Hyder requires

a subtle merge algorithm for high concurrency.

887

9 DISCUSSION
We have introduced and described LLAMA, our caching and

storage subsystem. LLAMA is unique in a number of ways.

1. It is an independent architectural subsystem, cleanly separated

from both transactional functionality and the details of access

method implementation. Its general purpose operations can be

used by access methods of the “grow and post” variety [17]

(tree index growth by node splitting and index terms posting at

parent nodes). LLAMA operations enable access methods to

easily become latch-free and exploit log structured storage.

2. Both the latch-free and the log structuring techniques are done

in a new and particularly effective way to provide an efficient

and high performance implementation. Further, they exploit a

common mapping table. This synergism between the two

previously separate techniques makes the system easier to

describe, easier to implement, and more efficient.

By enabling access methods to be latch-free and log structured,

LLAMA achieves about an order of magnitude performance

improvement for the Bw-tree over even a high quality, well-tuned

conventional B-tree. And this performance scales well as the

number of cores in a multi-core cpu increases.

Part of our work going forward will be the implementation of

additional access methods on top of LLAMA. We see no reason

why hash based, multi-attribute, and temporal access methods

should not be able to use LLAMA successfully. This, of course,

remains to be demonstrated in a concrete manner, so stay tuned.

10 REFERENCES
[1] A. Ailamaki, D. J. DeWitt, M. D. Hill, and D. A. Wood:

DBMSs on a Modern Processor: Where Does Time Go?
VLDB, 1999, 266–277.

[2] M. Astrahan, M. Blasgen, D. Chamberlin, et al.: System R:

Relational Approach to Database Management. ACM TODS

1(2): 97-137 (1976)

[3] D. S. Batory, J. R. Barnett, J. F. Garza, K. P. Smith, K.

Tsukuda, B. C. Twichell, T. E. Wise: GENESIS: An

Extensible Database Management System. IEEE Trans.
Software Eng. 14(11): 1711-1730 (1988)

[4] R. Bayer and E. M. McCreight: Organization and

Maintenance of Large Ordered Indices. Acta Inf. 1(1) pp.

173–189, 1972.

[5] BerkeleyDB. http://www.oracle.com/technology/products/
berkeley-db/index.html.

[6] P. Bernstein, C. Reid, and S. Das: Hyder - a transactional
record manager for shared flash. CIDR, 2011, pp. 9–20.

[7] D. Comer: The Ubiquitous B-tree. ACM Comp. Surveys 11,
2 (June 1979) 121 – 137.

[8] B. Debnath, S. Sengupta, and J. Li, SkimpyStash: RAM

Space Skimpy Key-Value Store on Flash-based Storage.
SIGMOD, 2011, pp. 25–36.

[9] W. Effelsberg, T. Haerder: Principles of database buffer

management. ACM TODS 9 (4) 560 –595, 1984

[10] S. Harizopoulos, D. Abadi, S. Madden, M. Stonebraker:

OLTP through the looking glass, and what we found there.
SIGMOD 2008: 981-992

[11] X.-Y. Hu, E. Eleftheriou, R. Haas, I. Iliadis, and R. Pletka,

Write amplification analysis in flash-based solid state drives.
iSYSTOR 2009: pp. 10:1–10:9.

[12] H. Kung and P. Lehman, Concurrent manipulation of binary
search trees, TODS, vol. 5, no. 3, pp. 354–382, 1980.

[13] P-A Larson, S. Blanas, C. Diaconu, et al: High-Performance

Concurrency Control Mechanisms for Main-Memory

Databases. PVLDB 5(4): 298-309 (2011)

[14] S.-W. Lee, B. Moon. Design of Flash-Based DBMS: An In-
Page Logging Approach. SIGMOD, 2007, pp. 55–66.

[15] J. Levandoski, D. Lomet, M. Mokbel, K. Zhao,

Deuteronomy: Transaction Support for Cloud Data. CIDR,
2011, pp. 123–133.

[16] J. Levandoski, D. Lomet, S. Sengupta. The Bw-Tree: A B-
tree for New Hardware Platforms. ICDE 2013, pp. 302-313.

[17] D. B. Lomet: Grow and Post Index Trees: Roles, Techniques
and Future Potential. SSD 1991: 183-206

[18] D. Lomet: The Case for Log Structuring in Database

Systems. HPTS (1995)

[19] D. Lomet, A. Fekete, G. Weikum, M. Zwilling. Unbundling
Transaction Services in the Cloud. CIDR, 2009: 123–133.

[20] “MemSQL Indexes.
http://developers.memsql.com/docs/1b/indexes.html

[21] C. Mohan, Frank E. Levine: ARIES/IM: An Efficient and

High Concurrency Index Management Method Using Write-
Ahead Logging. SIGMOD 1992: 371-380

[22] “MongoDB. http://www.mongodb.org/MongoDB.
http://www.mongodb.org.

[23] Patrick E. O'Neil, Edward Cheng, Dieter Gawlick, Elizabeth

J. O'Neil: The Log-Structured Merge-Tree (LSM-Tree). Acta
Inf. 33(4): 351-385 (1996)

[24] E. O’Neil, P. O’Neil, G. Weikum. The LRU-K page

replacement algorithm for database disk buffering. SIGMOD
1993. pp 297–306.

[25] I. Pandis, P. T¨oz¨un, R. Johnson, and A. Ailamaki, “PLP:

Page Latch-free Shared-everything OLTP,” PVLDB 4(10)

pp. 610–621, 2011.

[26] Project Voldermont. http://www.project-voldemort.com/
voldemort/

[27] M. Rosenblum and J. Ousterhout, “The Design and

Implementation of a Log-Structured File System,” ACM
TOCS 10(1) pp. 26–52, 1992.

[28] R. Sears and R. Ramakrishnan, bLSM: A General Purpose
Log Structured Merge Tree. SIGMOD 2012: 217 – 228.

[29] J. Sewall, J. Chhugani, C. Kim, et al. “PALM: Parallel

Architecture-Friendly Latch-Free Modifications to B+ Trees
on Many-Core Processors. PVLDB 4 (11) pp. 795–806, 2011.

[30] A.Thomson, T. Diamond, S-C Weng, K. Ren, et al.: Calvin:

fast distributed transactions for partitioned database systems.

SIGMOD 2012: 1-12

[31] Wikipedia: (CRUD)
http://en.wikipedia.org/wiki/Create,_read,_update_and_delete

[32] Wikipedia: (NoSQL) http://en.wikipedia.org/wiki/NoSQL

[33] “Xbox LIVE. http://www.xbox.com/live

[34] C. Diaconu, C. Freedman, P.-°A. Larson, P. Mittal, R.

Stonecipher, N. Verma, and M. Zwilling. Hekaton: SQL

Server’s Memory-Optimized OLTP Engine. SIGMOD 2013:

1243–1254

888

http://www.oracle.com/technology/products/%20berkeley-db/index.html
http://www.oracle.com/technology/products/%20berkeley-db/index.html
http://developers.memsql.com/docs/1b/indexes.html
http://www.mongodb.org/
http://www.project-voldemort.com/%20voldemort
http://www.project-voldemort.com/%20voldemort
http://en.wikipedia.org/wiki/Create,_read,_update_and_delete
http://en.wikipedia.org/wiki/NoSQL
http://www.xbox.com/live

