
Dynamic Granular Locking Approach to Phantom Protection in R-trees �

Kaushik Chakrabarti Sharad Mehrotra

Department of Computer Science Department of Computer Science
University of Illinois at Urbana-Champaign University of Illinois at Urbana-Champaign

kaushikc@cs.uiuc.edu sharad@cs.uiuc.edu

Abstract
Over the last decade, the R-tree has emerged as one of the

most robust multidimensional access methods. However, before
the R-tree can be integrated as an access method to a com-
mercial strength database management system, e�cient tech-
niques to provide transactional access to data via R-trees need
to be developed. Concurrent access to data through a multidi-
mensional data structure introduces the problem of protecting
ranges speci�ed in the retrieval from phantom insertions and
deletions (the phantom problem). Existing approaches to phan-
tom protection in B-trees (namely, key-range locking) cannot be
applied to multidimensional data structures since they rely on a
total order over the key space on which the B-tree is designed.
This paper presents a dynamic granular locking approach to
phantom protection in R-trees. To the best of our knowledge,
this paper provides the �rst solution to the phantom problem in
multidimensional access methods based on granular locking.

1 Introduction
Over the past few years, many multidimensional data struc-

tures (e.g., R-trees [7], grid �les [18], hB-trees [3]) have been
proposed to meet the requirements of emerging database ap-
plications like computer-aided design (CAD), geographical in-
formation systems (GIS), exploratory scienti�c applications,
astronomical data archives, medical image repositories, and
multimedia databases. Despite extensive research, most of the
developed data structures have not been integrated into exist-
ing DBMSs as access methods1. Among the primary reasons
is the lack of protocols to provide transactional access to data
and to guarantee the consistency of the index structures in the
presence of concurrent operations. This paper addresses the
problems resulting from the concurrent access to data in the
database via multidimensional access methods.

Concurrent access to data through a multidimensional in-
dex structure introduces two independent concurrency control
problems. First, techniques must be developed to prevent con-
current insertions, deletions and updates from violating the
consistency of the data structure. Usage of the standard two-
phase locking protocol [4] for this purpose results in the data
structure becoming a bottleneck and thus poor performance.
Many approaches that exploit the structure and the seman-
tics of the operations to provide high concurrency have been

�

This work was supported in part by the Army Research Laboratory
under Cooperative Agreement No. DAAL01-96-2-0003 and in part by
NSF/DARPA/NASA Digital Library Initiative Program under Cooper-
ative Agreement No. 94-11318.

1An exception to this is the Postgres System [6] developed at Univer-
sity of California at Berkeley,(and its commercial version the Informix
Universal Server (IUS) [9]), which supports R-tree as an access method to
optimize retrieval of multidimensional data. However, Postgres requires
transactions to lock the entire R-tree thereby disallowing concurrent op-
erations. The strategy used by IUS, if di�erent from Postgres, is not
public.

developed for B-trees [4]. These approaches need to be gener-
alized to multidimensional data structures. Initial steps in this
direction can be found in [11, 21] which discuss techniques to
support concurrent operations on the R-tree and the grid �le
respectively.

Second, techniques must be developed to protect the ranges
speci�ed in the retrieval from subsequent insertions and dele-
tions before the retrieval commits. Such insertions and dele-
tions are referred to as the phantoms. Consider a range query
over a B-tree based on the salary of an employee to retrieve all
employees with salary between 10K and 20K. To answer such
a query, the B-tree is traversed to retrieve the pointers to the
data pages containing the records qualifying the predicate 10K
� salary � 20K. Even if all objects currently in the database
that satisfy the predicate are locked, the object-level locks will
not prevent subsequent insertions into the search range. These
insertions may be a result of insertion of new objects or rolling-
back deletions made by other concurrent transactions. So if the
searcher repeats its scan, it will �nd new objects in its range
which seem to appear from nowhere (hence referred to as phan-
toms). The technique used to provide phantom protection in
B-trees is key range locking (KRL)[15, 16]. KRL, however, re-
lies on the presence of a total order over the underlying data
based on their key value and hence is inapplicable to multidi-
mensional index structures.

This paper concentrates on developing techniques to pro-
vide phantom protection to retrievals when the data is accessed
via R-trees. The R-tree is one of the most popular multidimen-
sional data structures as it provides the best tradeo� between
performance and implementation complexity [5]. Several vari-
ants of R-trees (R+trees [23], R*-trees [1], Greene's R-tree [5])
have been proposed in the literature in order to optimize its
performance. R-trees and its variants can be used for indexing
both point and spatial data and is the only multidimensional
index structure known to have been incorporated as an ac-
cess method into a commercial data management system [9].
It has also been implemented as a part of the Paradise parallel
data management system [2]. Although we are addressing the
problem in the context of R-trees, the approach developed in
this paper can be applied to other tree-based multidimensional
access methods as well.

Despite the importance of multidimensional access methods
to emerging database applications, and the requirement to ad-
dress the phantom problem in order to provide transactional
access to data using these data structures, surprisingly little
research exists on providing phantom protection to retrievals
over multidimensional data structures. The only other work
we are aware of which is parallel to ours is the approach devel-
oped in [12] which uses a modi�ed predicate locking mechanism
to provide phantom protection over Generalized Search Trees
(GiSTs) [8]. In contrast, the technique developed in this pa-

Authorized licensed use limited to: MICROSOFT. Downloaded on January 21, 2009 at 18:26 from IEEE Xplore. Restrictions apply.

LOCK MODE PURPOSE

S Shared Access

X Exclusive Access

IX Intention to set shared or
exclusive locks at finer
granularity

IS Intention to set shared
locks at finer granularity

SIX A course granularity shared
lock with intention to set
finer-granularity exclusive
locks (union of S and IX)

Lock Mode IS IX S SIX

IS

IX

S

SIX

X

X

Table 1: Lock mode compatibility matrix for granular Locks

per is based on dynamic granular locking. As discussed in [4],
although the predicate locking o�ers potentially higher con-
currency, typically the granular locking is preferred since the
lock overhead of a predicate locking approach is much higher
compared to that of a granular locking approach. We provide
a detailed comparison of the granular locking approach devel-
oped in this paper to the predicate locking approach proposed
in [12] in the section on related work.

The rest of the paper is developed as follows. Section 2 dis-
cusses the problem of phantoms in R-trees and the main chal-
lenges in developing a granular locking approach to solve it. In
Section 3, we present the dynamic granular locking approach
to prevent phantoms in R-trees. Section 4 provides a compari-
son to related work. Finally, section 5 o�ers the summary and
the concluding remarks.

2 The Challenges
In this section, we discuss why the solutions to the phantom

problem in B-trees (a one-dimensional access method) cannot
be applied to R-trees. We then discuss the fundamental chal-
lenges in developing a granular locking approach to solve the
the phantom problem in R-trees.

The phantom problem is solved in existing commercial data
management systems by using granular locking, which is an en-
gineering approach towards implementing predicate locks. The
key idea is to divide the predicate space into a set of resource
granules that may include or overlap with other resource gran-
ules. Transactions acquire locks on granules instead of on predi-
cates. Transactions either acquire locks in Sharedmode (S lock)
or eXclusive mode (X lock). The locking protocol must guar-
antee that if two transactions request conicting mode locks
on predicates p and p0 such that p ^ p0 is satis�able, then the
two transactions will request conicting locks on at least one
granule in common.

An example of a granular locking approach is the multi-
granularity locking protocol (MGL) [15]. MGL exploits addi-
tional lock modes called intention mode locks which represent
the intention to set locks at �ner granularity[15]. An intention
mode lock on a node prevents other transactions from setting
coarse granularity (i.e S or X) locks on that node. (see the lock
compatibility matrix shown in Table 1). MGL follows the DAG
locking protocol as discussed in [4].

Application of MGL to the key space associated with a B-
tree is referred to as key range locking(KRL). In KRL, the semi-
open ranges (ki; ki+1], de�ned by the ordered list (k1; k2; :::; kn)
of attribute values present in the B-tree such that ki < ki+1,
serve as the lockable granules. A scan acquires locks to com-
pletely cover its query range. Similarly, a transaction that
wishes to insert, delete, or update an object that lies in a given
range, acquires an IX lock on the range which denotes its in-
tention to change an object in that range. Dynamic key range

schemes are more adaptive to the changes in the key space
over time and provides a higher degree of concurrency. How-
ever, since the granules may dynamically change, the locking
protocols are signi�cantly more complex. Further details about
granular locking and KRL can be found in [4].

KRL cannot be applied for phantom protection in R-trees
since it relies on the total order over the underlying objects
based on their key values. While such a total order exists for
a single dimensional data, no such natural order exists over
multidimensional data [22]. Imposing an arti�cial total order
(say a Z-order [19]) over multidimensional data to adapt the
key range idea for phantom protection is unnatural and will
result in a scheme with a high lock overhead and a low degree
of concurrency. The reason is that the protection of a multidi-
mensional region query from phantom insertions and deletions
will require accessing additional disk pages and locking objects
which may not be in the region speci�ed by the query (an ob-
ject will be accessed as long as it is within the upper and the
lower bounds in the region according to the superimposed total
order) [14]. This severely limits the usefulness of the multidi-
mensional access method, essentially reducing it to a single
dimensional access method with the dimension being the total
order. Hence new techniques need to be developed for prevent-
ing phantoms in R-trees. This paper presents a solution based
on dynamic granular locking. The main challenges are:

1. De�ning a set of lockable granules over the multidimen-
sional key space such that they
� dynamically adapt to key distribution
� fully cover the entire embedded space
� are as �ne as possible so as to maximize concurrency with-
out causing high lock overhead

In KRL, the key ranges are used as lockable granules. The key
ranges satisfy all the three criteria above. On the other hand,
in an R-tree, the objects themselves do not fully cover the
embedded space. Moreover, object ranges cannot be de�ned
as the embedded space is multidimensional.
2. Easy mapping of a given predicate onto a set of granules
that needs to be locked to scan the predicate. Subsequently,
the granular locks can be set or cleared as e�ciently as object
locks using a standard lock manager.
3. Overlap of granules. This problem does not arise in KRL
since the key ranges are always mutually disjoint. On the other
hand, due to the spatial data overlap, in an R-tree (and all
its variants R*-tree, R+-tree, Greene's R-tree etc., as well as
other index structures like TV-trees and P-trees which parti-
tion the space based on least bounding polygons), the gran-
ules may overlap with each other. The overlapping between
the granules complicates the locking protocol since a lock on
a granule may not provide exclusive coverage on the entire
space covered by the granule. 2

In our approach, the lowest level bounding rectangles (BRs)
are de�ned as the lockable granules. The granules dynamically
grow and shrink with insertions into and deletions from the
R-tree, thus adapting to the distribution of the objects. Since
the lowest level BRs alone may not fully cover the embedded
space, we de�ne additional granules called external granules,
one for each non-leaf node in the tree, such that the lowest level
BRs (referred to as tree granules) together with the external
granules fully cover the embedded space. The granules de�ned

2Some multidimensional index structures like K-D-B-trees and hB-
trees always partition the space into spatially disjoint subspaces. As will
be discussed later, the locking protocol is simpler for these index struc-
tures.

Authorized licensed use limited to: MICROSOFT. Downloaded on January 21, 2009 at 18:26 from IEEE Xplore. Restrictions apply.

above not only cover the entire space but also adapt to the
key distribution and as argued in Section 3.1, are optimized
for high concurrency.

Based on the above granules, locking protocols for vari-
ous operations have been developed. The developed protocols
guarantee that the overlap between the granules does not cause
phantoms. Finally, the number of locks acquired per operation
is low - searchers need to acquire commit duration shared locks
on all overlapping granules to protect the search range whereas
the inserters and deleters need to acquire just one commit du-
ration lock. The page ids of the leaf nodes (nodes representing
the lowest level BRs) are the resource ids used to lock the leaf
granules. For external granules, the page ids of the non-leaf
nodes are the resource ids. Thus, a logical range can be easily
transferred into a sequence of purely physical locks which can
be set and checked very e�ciently.

3 The Granular Locking Approach to Phan-

tom Protection in R-trees
In this section, we present the dynamic granular locking

approach to phantom protection in R-trees. In developing the
algorithms, we assume that transactions may request the fol-
lowing operations over the R-tree:

� Insert that inserts an object into the R-tree,
� Delete that deletes an object from the R-tree,
� ReadSingle that retrieves a single speci�c object based on
the indexed attributes,
� ReadScan that retrieve all objects overlapping with a given
region (that is, region search),
� UpdateSingle that is similar to ReadSingle except that it
may modify the quali�ed object,
� UpdateScan that is similar to ReadScan except that it
may modify some or all of the qualifying objects.

The update operations do not modify the indexing attributes
of the object since that may cause relocation of the object in
the R-tree. Such an operation is modeled by the deletion of
the original object followed by the insertion of the modi�ed
object into the R-tree. In presenting the solution to the phan-
tom problem, we describe the locks that need to be acquired
by transactions for each of the above operations. The exact
algorithms used to acquire the necessary locks are presented
elsewhere. The locking protocols assumes the presence of a the
standard lock manager (LM) and that the LM supports the
following lock options [17]:

� the conditional lock request which means that the requester
is not willing to wait if the lock is not grantable immediately
� the unconditional lock request which means that the re-
quester is willing to wait until the lock becomes grantable.

Furthermore, locks can be held for di�erent durations [17]:

� short duration locks which are released immediately after
the operation is over, typically long before the transaction
termination.
� commit duration locks which are released only when the
transaction terminates i.e. after commit or rollback is com-
pleted.

Finally, in presenting the lock requirements of various opera-
tions for phantom protection, we assume the presence of some
protocol for ensuring the physical consistency of the tree struc-
ture in presence of concurrent operations. The approach devel-
oped in [12] can be used for this purpose. Obviously such a
protocol needs to be combined with our approach to phantom
protection for the complete solution of concurrency control in

 R1 R2

R3 R4 R5 R6 R7

R8 R9 R10 R11 R12 R13 R14 R15 R16 R17 R18

R1

R2

R3
R4

R5

R6

R7

R8

R10

R11
 R9

R12

R13

R14 R15

R16

R17
R18

R19

R20

R21

Figure 1: An R-tree along with the distribution of objects in 2
dimensional space. R3, R4, R5, R6 and R7 are the R-tree leaf
granules. R19, R20 and R21 are the predicate rectangles.

R-trees. Due to space limitations, we do not attempt such an
integration in this paper and restrict ourselves to only address-
ing the problem of phantoms in R-trees.

3.1 Partitioning the Space into Granules
One of the major challenges in developing a granular locking

solution to phantom problem in R-trees is to dynamically par-
tition the embedded space into lockable granules that adapts
to the distribution of objects. Moreover, to maximize concur-
rency, the granules should be made as �ne as possible. In KRL,
the semi-open key ranges are treated as lockable granules. How-
ever, key ranges cannot be de�ned in a multidimensional space
due to the lack of ordering of the key domain. We de�ne the
lowest level BRs of the R-tree as the lockable granules. Each
lowest level BR correspond to a leaf node of the R-tree (hence
referred to as leaf granules) i.e. it is the smallest rectangle that
covers all the objects stored in that particular leaf node. The
page id of the leaf node can be used as the resource id to lock
the corresponding granule. For example, in the R-tree shown in
Figure 1 there are 5 such granules, one corresponding to each
of the entries R3; R4; R5; R6, and R7.

If we are to use only the lowest level BRs as the lockable
granules, since the R-tree partitions may not cover the entire
embedded space, the set of lockable granules may not cover the
embedded space. This presents a problem as the set of granules
may not be able to properly protect search predicates resulting
in phantoms. To see this, consider again the tree shown in
Figure 1. Let transaction t1 request a scan on the rectangle
R19 which only overlaps with granule R7. An S lock on R7
will not prevent the insertion of an object R20 by another
transaction t2 since R20 does not overlap with R7. Insertion of
R20, however, should not be permitted since it overlaps with
the region being scanned by t1 (that is, R19). This problem
would not arise if the set of granules fully covered the embedded
space and t1 had acquired locks on enough granules to cover
its search predicate.

A simple solution to cover the entire embedded space is to
maintain a single extra lockable granule which covers the space
that is not covered by the R-tree leaf granules. This solution is
infeasible since the extra granule will become a hot spot lead-
ing to very low concurrency. Non conicting predicates with
conicting lock modes that overlap with the space not covered

Authorized licensed use limited to: MICROSOFT. Downloaded on January 21, 2009 at 18:26 from IEEE Xplore. Restrictions apply.

by the leaf granules would not be able to execute concurrently
as they would require conicting locks on the extra granule.
For example, in Figure 1, a read scan over rectangle R19 and
an insertion of rectangle R21 would not be granted locks con-
currently although the rectangles do not intersect.

We present a scheme that partitions the non-covered space
into a set of granules referred to as external granules. An exter-
nal granule is associated with each non-leaf node of the R-tree
whose shape and size is determined by the R-tree partitionings.
Let T be a non-leaf node of the R-tree and Ts be the space cov-
ered by T i.e. the space covered by the smallest rectangle that
contains all the rectangles associated with its children (if T is
the root node, Ts is the entire embedded space S). The ex-
ternal granule associated with T (denoted by ext(T)) is the
space covered by T (that is, Ts) which is not covered by any
of its children. More formally, let E1; E2; :::En be the entries
in T . Then, ext(T) is the space (Ts �

S
n

i=1
Ei:I).

3 The page
id of the non-leaf node T itself can be is used as the resource
id to lock external granule ext(T). The mapping of granules
to the resource ids is therefore very simple for both types of
granules, which makes it easy to transfer a logical range to a
sequence of purely physical locks which can be set and checked
very e�ciently by a standard lock manager.

In Figure 1, there are 3 external granules, one associated
with each non-leaf node. The external granule associated with
the root (i.e. ext(root)) node covers the space S�(R1:I[R2:I)
where S is the total embedded space. The external granules as-
sociated with the nodes bounded by R1 and R2 (i.e. ext(R1)
and ext(R2)) cover spaces R1:I � (R3:I [R4:I [R5:I) and
R2:I� (R6:I[R7:I) respectively. Note that the external gran-
ules along with the lowest level BRs completely cover the em-
bedded space. For example, for the R-tree in Figure 1, the
union of ext(root), ext(R1), ext(R2), R3, R4, R5, R6 and R7
is the entire embedded space S. 4

Note that the partitioning strategy described above could
alternatively be applied to the object level instead of the lowest
level BRs. For example, for the R-tree in Figure 1, the extents
of the objects R8 to R18 could be considered as the lockable
granules. In that case, there would be an external granule as-
sociated with each of the index nodes R1 to R7. In this par-
titioning too, the set of granules cover the entire embedded
space. Moreover, the granules are �ner than the ones in which
the lowest level BRs are used as the leaf granules and there
are external granules associated with all index nodes, includ-
ing leaf-level index nodes. Although the granules are �ner, this
scheme does not necessarily result in an improvement in con-
currency. The reason is that a scan predicate typically spans
more than one object extent and would thus always need to
lock the external granule associated with the lowest level BR
containing the object. Thus conicting operations within the
same lowest level BR would almost always conict on the lock
on the external granule associated with that BR. Thus, hav-
ing �ner granules would increase the lock overhead without
providing much additional concurrency. Hence, we support the
lowest level BRs as the leaf granules since it provides as high

3A non-leaf node T in an R-tree contains entries of the form (I, child-
pointer) where child-pointer is the address of a lower node in the R-tree
and I covers all rectangles in the lower node's entries.

4Note that for those index structures where it is always possible to
split a node into disjoint subspaces (referred to as space partitioning
data structures) like K-D-B-trees [20], hB-trees [3]) etc., the set of leaf
granules alone cover the entire embedded space. Therefore the external
granules are not required. Moreover, the granules never overlap with each
other. This makes the granular locking approach much simpler to apply
to space partitioning data structures.

concurrency as supporting objects extents as granules but with
considerably lower lock overhead.

3.2 Problems due to Growing Granules
Once the embedded space has been partitioned into a dy-

namic set of covering granules, we now discuss how the granular
locking protocol can be applied to the set of granules. Follow-
ing the principles of granular locking, each operation requests
locks on enough granules to guarantee that any two conicting
operations request conicting locks on at least one granule in
common. One strategy is to require an insert (delete) opera-
tion to acquire IX locks on a minimal set of granules su�cient
to fully cover the object (followed by an X lock on the object
itself) and a scan operation to acquire S locks on all granules
that overlap with the predicate being scanned. In this strategy,
the insertion of an object that overlaps with the search region
of a query is not permitted to execute concurrently, thereby
preventing phantoms from arising. For example in Figure 1, a
transaction wishing to insert rectangle R21 acquires IX locks
on granules ext(R1) and R4 5. A searcher wishing to scan pred-
icate R19 acquires S locks on ext(R2) and R7. We refer to this
policy as the cover-for-insert and overlap-for-search policy. The
reverse policy, namely overlap-for-insert and cover-for-search,
in which IX locks are acquired on all overlapping granules for
insert and delete operations and S locks on the minimal set of
granules that cover the scan predicate for search could also be
followed.

The lock requirements of an UpdateScan operation also de-
pends on the policy that is followed. Since an UpdateScan re-
quires an S as well as IX mode locks on the scanned area [15],
for the �rst policy, it needs to acquire SIX locks on the minimal
set of granules su�cient to fully cover the predicate and S locks
on all the remaining granules that overlap with the predicate.
In the reverse policy, an UpdateScan would acquire SIX locks
on the minimal set of granules su�cient to fully cover the pred-
icate and IX locks on all the remaining granules that overlap
with the predicate. The lock requirements of the ReadSingle
and UpdateSingle operations do not depend on the policy cho-
sen. We next present a couple of examples to show that when
the granules are dynamically changing due to insertions and
deletions, neither of the above two policies are su�cient to
prevent phantoms from arising.

First let us consider the cover-for-insert and overlap-for-
search policy. In Figure 2(a), R1 and R2 are two leaf granules
within the same BR R. Assume a transaction t1 arrives to scan
the rectangle R3. It acquires an S lock on R1 and proceeds
with the scan. Then another transaction t2 arrives to insert
rectangle R4, acquires IX locks on R2 and ext(R), an X lock
on R4 and inserts R4. As a result, R2 grows to R20. Then t2
commits and releases all its locks. Now a third transaction t3
arrives to insert rectangle R5. R5 is completely covered by R20

and hence if the above protocol is followed, t3 just needs to
acquire an IX lock on R20. t3 gets the lock and proceeds with
insertion which should have been prevented because if t1 now
repeats its scan, it would �nd R5 has appeared from nowhere.

The problem in the above example arises since growth of
the BR R2 to R20 causes t1 to lose its S lock on part of its
scan predicate R3 (speci�cally, on the region R3 \R20). Since
the locking protocol developed in the previous section follows
the cover-for-insert and overlap-for-search policy, for t1 to have
an S lock on R3 after the rectangle R2 had grown to R20, it

5Since both R1 and R2 fully covers R21, either path can be selected. If
R2 was selected, then the transaction would acquire IX locks on ext(R2)
and R6

Authorized licensed use limited to: MICROSOFT. Downloaded on January 21, 2009 at 18:26 from IEEE Xplore. Restrictions apply.

R

R1
R3

R4
R5

R2

R2’
R

R2’

R2

R1

R3

R4
R5

Figure 2: Insertions cause leaf granules to grow into other tree
granules. (a) shows the problem with the cover-for-insert and
overlap-for-search policy (b) shows the problem with overlap-
for-insert and cover-for-search policy.

requires S locks on both granules R1 and R20. An S lock on
R1 alone does not provide the necessary protection against
phantoms. Since a search operation does not cause granules
to either grow or shrink, at �rst glance it may appear that
the reverse policy in which a search acquires locks on a mini-
mal set of granules to cover the search predicate and a insert
(delete) acquires locks on all granules overlapping with the ob-
ject being inserted (deleted) may resolve the problem. Indeed,
if the reverse policy is used, the above discussed situation will
not arise. However, even the reverse policy does not prevent
phantoms from arising as shown in the next example.

In Figure 2(b), R1 and R2 are two leaf granules within the
same BR R. Assume a transaction t1 arrives to insert rectangle
R3. It acquires an IX lock on R1 as R3 overlaps only with R1,
an X lock on R3 and proceeds with insertion. Then another
transaction t2 arrives to insert rectangle R4. R4 overlaps with
R1, R2 and ext(R). So t2 acquires IX locks on R1, R2 and
ext(R), an X lock on R4 and inserts R4. As a result, R2 grows
to R20. Then t2 commits and releases all its locks. Now a third
transaction t3 arrives to scan rectangle R5. R5 is completely
covered by R20 and hence t3 just needs to acquire an S lock on
R20. t3 gets the lock and proceeds with the scan which again
should have been prevented because if t1 aborts and t3 repeats
its scan it will �nd the object R3 has disappeared.

To identify the lock requirements of the operations when
the granules can dynamically change, we need to carefully ana-
lyze how operations modify granules and how the modi�cations
a�ect the lock coverage of transactions that had previously
acquired locks. We conduct such an analysis for the case in
which the cover-for-insert and overlap-for-search policy is used.
This policy is preferred to the reverse policy (namely, cover-
for-search and overlap-for-insert) for R-trees since searchers in
R-trees anyway follow all overlapping paths while inserters fol-
low single paths. A similar analysis can also be conducted and
solutions be developed if the reverse policy were to be followed.
In conducting the analysis, we di�erentiate between the leaf
granules and the external granules.

The operations that may modify the current set of granules
are the insert and the delete operations. In the simple case,
an insertion may cause the BR of the leaf node into which the
object is inserted to grow, thereby causing the corresponding
leaf granule to grow. When the BRs are adjusted bottom-up,
the BRs associated with the ancestors of the node into which
the insertion takes place may also grow a�ecting the sizes of
the external granules associated with those nodes. An inser-
tion may also cause node splits which may propagate upwards
causing the higher level nodes to split which may in turn a�ect
the external granules associated with them.

Similar to an insertion, a deletion may also cause the gran-
ule associated with the leaf node from which the object is
deleted as well as the external granules associated with the
ancestors of the node to change. Occasionally, a deletion may
cause node elimination and thus causing the granule associated
with the node to disappear. As a result, the external granules
associated with the ancestors of the eliminated node may also
change. Furthermore, the entries of the eliminated node may
get reinserted into some other part of the tree which may cause
the granules associated with the nodes into which reinsertion
takes place and the external granules associated with their an-
cestors to change.

In the next 5 subsections, we describe how each of these
operations a�ects the lock coverage of other transactions and
develop solutions to prevent phantoms that may arise due to
the changes in the lock coverage.

3.3 Insertion
We �rst consider the case when the insertion does not cause

any node split. Insertion of an object into a granule g may cause
the following two things to happen:

� Growth into Leaf Granules: The leaf granule g grows
into some other leaf granule(s) causing the overlap between
the two granules to increase. For example, in Figure 2(a), the
growth of R2 to R20 increases the overlap between R1 and
R2.
� Growth into External Granules: The granule g grows
into the external granule associated with the parent of g caus-
ing the external granule to shrink in size. As the BRs are
adjusted from the leaf to the root, the external granules as-
sociated with the non-immediate ancestors of g may change
as well. For example, in Figure 2(a), the growth of R2 to R20

shrinks the external granule ext(R) from R � (R1 [R2) to
R� (R1[R20). Notice that only the external granules associ-
ated with the ancestors of the granule into which the insertion
took place can change.

Both the above situations could result in phantoms. The
two examples discussed earlier illustrate the problem arising
due to the growth of a granule g2 into a leaf granule g1. Such
a growth may result in a transaction holding an S lock on g1
prior to growth of g2 to lose its lock coverage on the portion
of g1 into which g2 grew. The reason is that to acquire an S
lock on a region, a transaction t needs to S lock all granules
that overlap with the region. Since after the growth, g2 also
may overlap with the search region of t, a lock on g1 alone
may not provide the required protection from future insert or
delete operations in the same region resulting in phantoms.

One approach to preventing phantoms is for all the locks
held by transactions on granule g1 to be inherited by the gran-
ule g2 that is growing, where g1 is a leaf granule into which
g2 grows. Even if such an approach can be made to work, it
will be expensive since it requires traversing down the tree to
identify the leaf granules that g2 grew into and inheriting all
the locks.

One feasible approach is to require all future inserters wish-
ing to insert an object O that overlaps with the region of g1
into which g2 (e.g., R1 \ (R20 � R2) in Figure 2(a)) grew to
ensure that there exists no old searchers that had acquired an
S lock on g1 prior to the growth of g2 and which lost the cover-
age of their S lock due to growth of g2. A simple way to achieve
this is to require the new inserters to acquire IX locks (since
they must conict with S locks held by searchers) on all the
overlapping granules instead of just the minimally covering set
of granules. Since the purpose of the extra locks (i.e. locks on

Authorized licensed use limited to: MICROSOFT. Downloaded on January 21, 2009 at 18:26 from IEEE Xplore. Restrictions apply.

R1’
R1

R3

R3’

R4

R15

R16

R17

R18

R2

R5

R6

R7 R8

R9

R10

R11

R12

 R13
R14

R1 R2

R3 R4 R5 R6

R7 R8 R9 R10 R11 R12 R13 R14

Figure 3: Insertions cause external granules to shrink. R15 is
the object being inserted. R16, R17 and R18 are other predi-
cate rectangles. The R-tree corresponding to the initial spatial
distribution of the objects is shown alongside.

the granules that overlap with the predicate but are not needed
to minimally cover it) is to detect presence of old searchers and
after the operation g2 alone covers O, these locks are acquired
only for a short duration i.e. they are released at the end of the
operation.

For example, in Figure 2(a), the transaction t3 wishing to
insert R5 would need to acquire a short duration IX lock on
R1 in addition to the commit duration IX lock on R20 thus
ensuring that the insertion takes place only after transaction t1
scanning R3 has released its S lock on R1, thereby preventing
phantoms.

While the above discussion describes techniques to over-
come problems that arise due to the growth of a granule into
other leaf granules, phantoms may also arise due to growth of
a granule into an external granule causing the latter to shrink.
Such a situation is illustrated next.

In Figure 3, let us consider a transaction t1 wishing to insert
rectangle R15 into the granule R3. t1 acquires an IX lock on
R3 and short duration IX locks on ext(R1) and ext(R2) and
proceeds with the insertion. The insertion causes R3 to grow
to R30 which in turn causes R1 to grow to R10. Let us consider
an old active transaction t2 wishing to insert rectangle R17
into granule R4. It had acquired an IX lock on R4 and a short
duration IX lock on ext(R1). Due to growth of R3 to R30,
ext(R1) shrinks due to which t2 loses its short duration lock
on ext(R1). After t1 commits, if a searcher arrives to scan
region R18, it will be incorrectly permitted to do so because
it only needs an S lock on R30. Similar to inserters, searchers
also may lose their lock due to shrinkage of external granules.
For example, in Figure 3, a searcher scanning region R16 loses
its lock on ext(root) when R1 grows to R10.

To prevent loss of locks held by other transactions, an in-
serter must ensure that no other transaction is holding any
lock on the external granule before growing into it. This can
be achieved by acquiring short duration SIX locks (since they
conict with all lock modes except the IS mode which is never
used by the protocol) on the external granules that change due
to the insertion of the object. 6 In the above example, t1 should
acquire a short duration SIX lock on ext(R1) before adjusting
R3 to R30 and a short duration SIX lock on ext(root) before
adjusting R1 to R10.

6The maximum number of external granules that can change is equal
to the height of the R-tree minus one. The number of external granules
that actually change may be less because the change may not propagate
all the way up to the root.

Nature
of data

Fanout Height Avg. Number of Disk Ac-
cesses Per Insertion (ADA)
Level 2 Level 3 Level 4

Point 50 3 1.567 - -

Spatial 50 3 1.871 - -

Point 24 4 1.154 1.938 -

Spatial 24 4 1.197 2.702 -

Point 12 5 1.012 2.144 2.640

Spatial 12 5 1.033 2.043 3.137

Table 2: Experimental results. The levels of the tree are num-
bered from top to bottom, the root is level 1 and the lowest
index level is level h (the tree height). The ADA for levels be-
tween 2 and h � 1 are listed (the value for the root level is 1
and there is no additional I/O at level h). The average I/O
overhead per inserter for any level is the ADA for that level
minus one as the inserter anyway accesses one page per level.

While acquiring SIX locks on the external granules prevents
other transactions from losing their locks on the external gran-
ules, if the inserting transaction t itself was holding an S lock
on the external granule that shrinks due to the insertion, it
may lose its S lock coverage after the growth. To prevent this,
t needs to acquire an S lock on the growing granule g. Acquir-
ing an S lock on g provides t with the same lock coverage it
had prior to the growth of g since the amount of coverage lost
due to shrinkage of the external granule is fully covered by the
growth of g.

Above, we have described how phantoms that may arise due
to dynamic changes to the granules resulting from an insertion
can be prevented. To insert an object, since cover-for-insert
and overlap-for-search policy is used, a single commit dura-
tion lock on the granule into which the object is inserted is
su�cient. After the insertion, the granule grows to cover the
inserted object. All the other locks are acquired for a short du-
ration to prevent the potential loss of locks by other operations
due to the dynamic changes to the granules resulting from the
insertion.

3.4 Overhead Optimization
In the above protocol, since inserters need to traverse all

paths that overlap with the object O to be inserted to ac-
quire short duration IX locks on all overlapping granules and
O may overlap with BRs other than those in the insertion path
(path from the root to the leaf into which O will get inserted),
the inserter may need to pay the overhead in terms of disk
I/O to access the additional disk pages. To estimate the av-
erage amount of overhead, we performed experiments on both
point and spatial datasets. The point dataset consists of 32,000
uniformly distributed randomly generated points. The spatial
dataset consists of 32,000 uniformly distributed randomly gen-
erated two-dimensional rectangles, the extents of the rectangles
being, on average, 5% of the extent of the total region over
which the rectangles are distributed along the same dimen-
sion. We calculated the average number of disk pages accessed
at each level of the R-tree if the inserter is forced to follow all
overlapping paths. Note that an inserter never needs to access
the lowest level index nodes for acquiring the short duration
locks. The results of the experiments are summarized in Table
2.

The experimental results show that for a 5-level tree, the
average I/O overhead paid by an inserter by following all over-
lapping paths is approximately 3 disk accesses (1 additional
disk access for level 3 and 2 additional disk accesses for level
4). For a 4-level tree, the overhead is approximately 1 disk I/O.
The overhead is expected to be lower with a reasonably large

Authorized licensed use limited to: MICROSOFT. Downloaded on January 21, 2009 at 18:26 from IEEE Xplore. Restrictions apply.

bu�er and a frequently used R-tree since the pages correspond-
ing to the three highest levels of the R-tree will always be kept
in memory thus requiring no I/O to access them. 7 If the three
highest levels are always is main memory, the inserter incurs
no I/O overhead even for a 4-level R-tree (which can store
6.25 million objects with a fanout of 50 and 100 million with a
fanout of 100). In a 5-level tree, the I/O overhead is only due
to page accesses at level 4, that is, 2 extra disk accesses. Since
a 5-level tree with a reasonably high fanout can index a large
number of data items (312.5 million with a fanout of 50 and 10
billion with a fanout of 100), the height of an R-tree is usually
never greater than 5. The inserters also need to pay some com-
putational overhead at each node accessed to determine the
paths overlapping with O.

The above discussion indicates that the granular locking ap-
proach imposes some overhead on inserters for reasonably deep
trees. One approach to overcoming this overhead is to follow
a modi�ed insertion policy. In Figure 2(a), the growth of the
granule R2 to R20 caused the second inserter t3 to conict
with the old searcher t1. If an inserter, that causes a granule
g to grow, itself acquires short duration IX locks on all gran-
ules into which it grew, thereby ensuring that there exists no
old searchers which could lose their lock coverage due to the
growth of g, then no future inserters, which do not cause any
granule growth, need to follow all overlapping paths. Thus,
only those inserters that change the granule boundaries need
to incur the overhead of additional disk accesses and acquire
the extra locks. Furthermore, even if an inserter I causes the
granule g to grow, it needs to follow only those paths contain-
ing granules that overlap with the region into which g grew
and have at least one active searcher. Thus, if one or more of
the overlapping paths do not contain any active searchers, the
inserter does not need to traverse those paths.

To verify the impact of the modi�ed insertion policy on
reducing the overhead, we implemented the policy without
the optimization based on checking the presence of active
searchers. 8 We performed experiments to estimate the num-
ber of inserters that change the granule boundary and hence
need to pay the extra I/O overhead. The experiments demon-
strate that the number of inserters that change the granule
boundary depends on the fanout of the R-tree. The larger the
fanout, the larger the average number of objects in a granule,
the larger the average granule size, the lower the probability
that an insertion changes the granule boundary and hence the
lower the fraction of inserters that change the granule bound-
ary. For both point and spatial data, about 35-38 % inserters
change the granule boundary for a fanout of 12, about 15-19
% for a fanout of 24, about 6-8 % for a fanout of 50 and about
3-4 % for a fanout of 100. This implies for a tree with a reason-
ably large fanout, only 3-4 % of the inserters have to incur the
additional overhead of traversing overlapping paths (which for
a 5-level R-tree, as discussed earlier, is approximately 2 extra
I/Os). Thus, the amortized overhead over all inserters is quite
small. This overhead can be further reduced by using the opti-
mization based on checking for the presence of active searchers
before traversing overlapping paths.

7Assuming 60 transactions per second operating on the R-tree and an
R-tree fanout as high as 100, the average frequency of access of the pages
in the top three levels are once every 0.01667, 1.667 and 166.7 seconds
respectively. According to the �ve-minute rule [4] of the bu�er manager,
such pages would be kept in memory.

8The implementation of this optimization is quite involved as it re-
quires a testbed load of transactions accessing the R-tree.

3.5 Node Split
We now consider the case in which the insertion by a trans-

action t into an already full node causes the corresponding
granule g to split into granules g1 and g2. Since after the split,
the IX lock held by t on g is lost, t needs to acquire IX locks
on g1 and g2 to protect the inserted object. Since t acquires an
IX lock on g before the insertion, no other transaction (besides
t itself) can be holding an S lock on g. If t itself was holding
an S lock on g, just inheriting the S lock of t on g to g1 and g2
will not prevent phantoms since after the split g1 [g2 may not
fully cover g. To cover the region originally covered by g, t will
need to acquire SIX locks on g1 and g2 after the split as well as
S locks on all additional granules that overlap with both with
the predicate g0 = g� (g1 [g2) and the search region.The only
additional lock it needs to satisfy the above requirement in an
S lock on ext(P) where P is the parent of g.

Since before the split the inserter acquires an IX lock on
g, other inserters and deleters may also be holding IX locks
on g which will be lost when g disappears. To prevent this, all
transactions holding IX locks on g must acquire IX locks on g1
and g2 after the split This is su�cient since the insert and/or
delete ranges are protected just by acquiring locks on g1 and
g2. This situation can be avoided if the inserter acquires a short
duration SIX lock instead of an IX lock on g in case it causes
g to split. After the split, the inserter just needs to acquire IX
locks on g1 and g2.

The splitting of the granule may propagate upwards causing
the higher level nodes to split. When a non-leaf node N splits,
the external granule associated with N shrinks in size due to
which a transaction holding a lock on the external granule may
lose its lock. To prevent this, transactions need to acquire short
duration SIX locks on the external granules associated with the
parent nodes during split propagation. Since inserters anyway
acquire short duration SIX locks on the external granules asso-
ciated with the ancestors of the granule in which the insertion
took place while propagating the changes in BRs (even if there
is no node split), no additional locks are required on the ex-
ternal granules when the insertion causes the node to split.
However, if the transaction itself was holding an S lock on the
external granule ext(N) that shrinks due to the split of N to
N1 and N2, it may lose its S lock coverage after the split. So
needs to acquire S locks on ext(N1), ext(N2) and ext(P) where
P is the parent of N to preserve the lock coverage.

3.6 Logical Deletion
Similar to insertion, to delete an object O an IX lock on

the region that covers the deleted object is required. However,
unlike insertion, (in which the granule where the object is in-
serted grows and covers the inserted object), the granule g from
which the object is deleted may shrink (to g0) and hence not
cover O after adjustment.

To protect the delete region, the deleter needs to acquire
commit duration IX locks on the minimal set of granules C
su�cient to fully cover the deleted object. The set C includes
g and the minimal set of additional granules whose union fully
covers the predicate O\(g�g0) (as g only covers O\g0 after the
operation). The predicate may or may not be a continuous re-
gion in space. Computing C requires a top-down tree-traversal.
Further, multiple commit duration locks need to be acquired.
For this reason, we do not consider this approach any further.

Instead, deletes are performed logically. The deleter needs
to acquire only a commit duration IX lock on the granule
that contains the object and an X lock on the object itself.
If the transaction aborts, the R-tree remains unchanged. On

Authorized licensed use limited to: MICROSOFT. Downloaded on January 21, 2009 at 18:26 from IEEE Xplore. Restrictions apply.

Operation Overlapping
granules
(E)

Minimal
covering
granules (C)

Granule g containing object Object (O) Others (X)

Insert (No split or
granule change)

None None IX X None

Insert (Granule
change)

Short du-
ration IX

None IX X Short duration SIX on
ext(P�) y

Insert (Node split) Short du-
ration IX

None Before split: Short duration SIX on g
After split: IX on g1 and g2 if no S lock on
g; SIX on g1 and g2 and S on ext(P) where
P is the parent of g if S lock on g

X Short duration SIX on
ext(P�) y

Delete (Logical) None None IX X None

Delete (Deferred) None None Short duration IX if g does not become un-
derfull
Short duration SIX if g becomes underfull

X Short duration SIX on
ext(P�) and locks for rein-
sertion of orphan entries

ReadSingle None None None S None

ReadScan S None None None None

UpdateSingle None None IX X None

UpdateScan S SIX None None for read None
X for update

Table 3: Lock protocols and lock modes required for various operations in the dynamic granular locking approach. P � denotes
all the ancestors of g whose external granule changes due to the operation. Since g 2 C � E , the locking of E implies locking of
C and locking of C implies locking of g. y If the inserter itself was holding an S lock on ext(P), the growing/splitting granule(s)
must inherit the lock.

the other hand, if the deleter commits, the physical deletion of
the object from the R-tree is executed as a separate operation.

If the transaction requests deletion of an object that does
not exist, other transaction wishing to insert the same object
should be prevented as long as the deleter is active. For this
purpose, the deleter acquires S locks on all overlapping granules
just like a ReadScan operation with the object as the scan
predicate.

3.7 Deferred Deletion
The deferred delete operation removes the logically deleted

object from the R-tree and adjusts the BRs of the ancestors. To
physically delete an object from a granule g, an short duration
IX lock on g is acquired to prevent other searchers who may
have an S lock on g from losing their lock coverage. Deletion of
an entry from the node may cause the node becoming underfull
in which case the node is eliminated and its entries are later
reinserted. In this case, even transactions holding IX locks on g

may lose their lock coverage due to elimination of g. To prevent
this, if the deletion causes the leaf node to become underfull,
the deleter acquires a short duration SIX lock on g (instead
of a short duration IX lock). In either case, since BR of the
ancestor nodes of g (granule from which the object is physically
removed) needs to be adjusted, the external granules associated
with the ancestors may shrink. To prevent loss of lock coverage
by other transactions due to this shrinkage, similar to insert,
short duration SIX locks on external granules that shrink when
the BRs are adjusted are acquired.

If deletion of the object had caused the node to become
underfull and the underfull node eliminated, the remaining en-
tries of the eliminated node are reinserted. The node elimi-
nation may propagate up causing elimination of higher level
nodes. In such a case, the entries of the eliminated node must
be placed higher in the tree, so that leaves of their dependent
subtrees will be on the same level as leaves of the main tree
[7, 1].

When the entries are reinserted, the lock requirements de-
pend on whether the entry E being reinserted is a data object
(if the eliminated node was a leaf node) or an index node (if the
eliminated node was a non-leaf node). In both cases, similar to
an ordinary insert operation, an IX lock needs to be acquired on
the granule in which the reinsertion takes place (along with the

short duration IX locks on all overlapping granules and short
duration SIX locks on the external granules associated with the
parent nodes if the reinsertion causes the granule boundary to
change). If the entry E is an index node, the external granule
g associated with the node into which E is inserted may shrink
causing a transaction holding a lock on g to lose its lock. To
ensure that no transaction loses its lock coverage, a short du-
ration SIX lock is required on g. On the other hand, if E is an
object, it will be inserted into a leaf granule which can only
grow due to the insertion. Since no transaction loses its lock in
this case, the SIX lock is not required for object reinsertion.

3.8 Other Operations
The ReadSingle operation acquires an S lock on the ob-

ject. The ReadScan operation acquires S lock on all granules
overlapping with the scan region. The UpdateSingle operation
acquires an IX lock on the granule containing the object and
an X lock on the object. The UpdateScan operation acquires
SIX locks on the minimal set of granules covering the predi-
cate and S locks on the remaining granules overlapping with
the predicate. The lock requirements for the various operations
is summarized in the Table 3.

4 Comparison to Related Work
Table 4 shows the comparison of the granular locking ap-

proach developed in this paper with the predicate locking ap-
proach proposed in [12]. In the case of B-trees, granular locking
is always better than predicate locking as it implements pred-
icate locks much more e�ciently without imposing any addi-
tional overhead to any of the operations. On the other hand,
the granular locking approach in R-trees imposes a small I/O
overhead on the insertion operation. We believe that this over-
head, especially when the modi�ed insertion policy is used, is
minimal compared to the cost of maintaining predicates in the
predicate-based approach. A more conclusive comparison be-
tween the performance of the two approaches is possible only
through extensive experimentation under varying system loads.
In this paper, we have concentrated on developing the granular
locking approach for R-trees. A comparative analysis between
the two approaches based on empirical studies will be reported
elsewhere.

Authorized licensed use limited to: MICROSOFT. Downloaded on January 21, 2009 at 18:26 from IEEE Xplore. Restrictions apply.

Criterion Predicate Locking Approach (PL) Granular Locking Approach (GL)

Lock Over-
head

The average number of locks required for search is higher com-
pared to GL as searchers need locks on all overlapping objects.

The average number of locks required for search is lower
compared to PL as searchers need locks on all overlapping
granules.

Concurrency Provides the maximum permissible concurrency Provides high concurrency by choosing �nest possible gran-
ules

Scalability Not scalable to high system loads since under a mixed load
of read-only (searchers) and read-write (updators and inserters)
transactions), the lock overhead increases along with the system
load. The reason is that inserters (and updators) needs to check
the object to be inserted (or updated) against the predicates of
the concurrently executing transactions for potential conict.

Scalable to high system loads since the lock overhead is in-
dependent of the number of concurrent transactions.

Complexity
of search
keys

Overhead increases with the complexity of the key space due to
the increase in the cost of checking for predicate satis�ability for
complex spaces (e.g., high dimensionality, arbitrary distance met-
ric etc.). Prohibitive cost for many GiST applications.

Complexity of the key space poses no extra overhead to the
tree operations i.e. the operations do not need to perform any
extra predicate checking for the purpose of phantom protec-
tion.

Other
Overhead

Space overhead of storing the predicates, namely, list of predi-
cates per transaction, list of node attachments per transaction,
list of predicates attached to each node etc. Also, overhead of
predicate management, namely, predicate attaching/detaching by
searchers to/from all overlapping nodes at all levels of the tree,
predicate checking and replication if necessary from parent to the
child nodes during BR adjustments, similar predicate checking
and replication between sibling nodes during node split

Disk I/O overhead on some inserters i.e. those insertions
that change the granule boundaries need to make additional
disk accesses to acquire short duration locks for phantom
protection. Experiments show that the amortized I/O over-
head over all insertions is small. No I/O overhead is imposed
for space partitioning index structures as there is no overlap
among granules.

Table 4: Comparison of the predicate locking approach with the granular locking approach.

5 Conclusions
Multimedia systems and other applications dealing with

non-traditional data types require the support of multidimen-
sional index structures as access paths within the database. But
most of the multidimensional data structures have not been
integrated to any industrial strength system. One of the pri-
mary reasons is the lack of concurrency control protocols that
guarantee consistency in the presence of concurrent operations.
Permitting concurrent access to data via multidimensional in-
dex structures introduces two independent concurrency control
problems. Firstly, techniques must be developed to ensure the
consistency of the data structure in presence of concurrent in-
sertions, deletions and updates. Secondly, mechanisms to pro-
tect search regions from phantom insertions and deletions must
be developed. This paper addresses the problem of phantom
protection in multidimensional access methods which [4] has
identi�ed to be as one of the challenges to transaction manage-
ment for future database systems. This problem has also been
studied in [12] which proposes a predicate locking mechanism
to solve the phantom problem in GiSTs. In contrast, we present
a granular locking approach to phantom protection in multidi-
mensional access methods. The granular locking approach may
o�er slightly lower concurrency compared to predicate locking
but it is preferred to the latter as granular locks can be imple-
mented more e�ciently compared to predicate locks. Although
presented in the context of R-trees, the approach developed
here can be applied to other tree-based multidimensional ac-
cess methods as well (both object-partitioning methods like
R*-trees [1], R+-trees [23], TV-trees [13], P-trees [10] etc. as
well as space-partitioning methods like K-D-B-trees [20], hB-
trees [3] etc.). To the best of our knowledge, this paper provides
the �rst solution to the phantom problem in multidimensional
data structures based on granular locking.

The work in this paper can be extended in several direc-
tions. The paper solves the phantom problem using only the
MGL lock modes. Higher concurrency may be achieved by ex-
ploiting enhanced lock modes as is done in [15] for KRL. An-
other avenue of research is integrating the approach developed
here with techniques to ensure tree consistency. Such an inte-
grated approach will form the complete solution to the concur-
rency control problem in multidimensional access methods.

References
[1] N. Beckmann, H. Kriegel, R. Schneider, and B. Seeger. The R*-

tree: An e�cient and robust access method for points and rectan-
gles. In Proceedings of ACM SIGMOD, May 1990.

[2] D. J. DeWitt., N. Kabra, J. Luo, J. M. Patel, and J. B. Yu. Client
server paradise. In Proceedings of VLDB, September 1994.

[3] G. Evangelidis, D. Lomet, and B. Salzberg. The hb�-tree: A mod-
i�ed hb-tree supporting concurrency, recovery and node consolida-
tion. In Proceedings of VLDB, 1995.

[4] J. Gray and A. Reuter. Transaction Processing: Concepts and
Techniques. Morgan Kaufmann, San Mateo, CA, 1993.

[5] D. Greene. An implementation and performance analysis of spatial
data access methods. In Proceedings of ICDE, 1989.

[6] The POSTGRES group. Postgres reference manual. In Technical
Report, Electronic Research Laboratory, University of California,
Berkeley, April 1994.

[7] A. Guttman. R-trees: A dynamic index structure for spatial search-
ing. In Proc. ACM SIGMOD, pp. 47{57., 1984.

[8] J. Hellerstein, J. Naughton, and A. Pfe�er. Generalized search
trees in database systems. In Proceeding of VLDB, pages 562-
573, September 1995.

[9] Informix Software Inc. Informix universal server reference manual.
1997.

[10] H. V. Jagadish. Linear clustering of objects with multiple at-
tributes. In Proceedings of ACM SIGMOD, pages 332-342, May
1990.

[11] M. Kornacker and D. Banks. High-concurrency locking in r-trees.
In Proceedings of Very Large Databases (VLDB), pages 134-145,
September 1995.

[12] M. Kornacker, C. Mohan, and J. Hellerstein. Concurrency and
recovery in generalized search trees. In Proceedings of SIGMOD,
June 1997.

[13] H. V. Lin, K. Jagadish and C. Faloutsos. The TV-tree - an index
stucture for high dimensional data. In VLDB Journal, 1994.

[14] D. Lomet. A review of recent work on multi-attribute access meth-
ods. In SIGMOD Record, Sept. 1992.

[15] D. Lomet. Key range locking strategies for improved concurrency.
In VLDB Proceedings, August 1993.

[16] C. Mohan. ARIES/KVL: A key value locking method for con-
currency control of multiaction transactions operating on B-tree
indexes. In VLDB Proceedings, August 1990.

[17] C. Mohan, D. Haderle, B. Lindsay, H. Pirahesh, and P. Schwarz.
ARIES: A transaction recovery method supporting �ne-granularity
locking and partial rollbacks using write-ahead logging. ACM
TODS, Vol. 17, No. 1:94{162, March 1992.

[18] J. Nievergelt, H. Hinterberger, and K.C. Sevcik. The grid �le: An
adaptable, symmetric multikey �le structure. ACM Transactions
on Database Systems(TODS), 1984.

[19] J. Orenstein and T. Merett. A class of data structures for asso-
ciative searching. In Proc. Third SIGACT News SIGMOD Sym-
posium on the Principles of Database Systems, pages 181-190,
1984.

[20] J. T. Robinson. The k-d-b-tree:A search structure for large multi-
dimensional dynamic indexes. In Proc. ACM SIGMOD,1981.

[21] B. Salzberg. Grid �le concurrency. In Information and Systems,
volume 11(3): 235{244, 1986.

[22] H. Samet. The Design and Analysis of Spatial Data Structures.
Addison-Wesley Publishing Company, Inc, 1990.

[23] T. Sellis, N. Roussopoulos, and C. Faloutsos. The R+-tree: A dy-
namic index for multi-dimensional objects. In Proc. VLDB, 1987.

Authorized licensed use limited to: MICROSOFT. Downloaded on January 21, 2009 at 18:26 from IEEE Xplore. Restrictions apply.

