
Persistent Middle Tier Components without Logging 
 
 

David Lomet 

Microsoft Research 

Redmond, WA 
lomet@microsoft.com 

 
 

 
Abstract 

Enterprise applications need to be highly 
available and scalable.  In the past, this has required 
“stateless” applications, which essentially require the 
application to manage its state explicitly by storing it 
in transactional resource managers.   Despite 
“stateful” applications being more natural and hence 
easier to write and get correct, having the system 
manage this state automatically has been considered 
too difficult and too costly.  The Phoenix/App system 
showed how to manage state in stateful applications 
transparently, by logging interactions between 
components, guaranteeing “exactly once” execution of 
the application.  By introducing some minor 
restrictions on Phoenix/App components, no logging 
need be done for middle tier components, thus making 
it easy to provide both availability and scalability.  
Because there is no logging, the performance of failure 
free application executions is excellent.  

1. Introduction 

1.1. Robust Applications 
Robust applications are those that, when deployed, 

are capable of providing enterprise systems with highly 
available and highly scalable service.  Such 
applications must be able to survive system crashes, 
permit flexible re-deployment on other computers as 
the system changes and particularly, as it grows.  The 
semantic requirement for robust applications is that, 
despite all this dynamic activity, including system 
crashes, it provides “exactly once” execution 
semantics.  Such an application may start execution on 
one computer, that system crash, be redeployed on 
another, etc., and to the application client, it looks like 
a seamless execution in which the application executed 
exactly once without crashing or moving, etc.  

Application developers naturally tend to let the 
business logic of the application dictate how the 
program is structured.   This natural programming style 
has, in the past, interfered with enterprise system 
requirements for high availability and scalability.   An 
application written in this “natural” way may retain 
control state necessary for correct and successful 
execution across transaction boundaries.  Such an 
application is characterized as a “stateful” application.  
The problem with stateful applications is the risk of 
losing state when the system on which they execute 
crashes.  This creates a “semantic mess” that may 
require human intervention to repair or restart the 
application, resulting in long service outages.   

The classic transaction processing response to this 
problem [6, 7, 13] is to require that an application be 
stateless, where stateless means “no meaningful 
information is retained across transactions”.   But 
stateless applications force a rather unnatural “string of 
beads” style of programming where an application 
must, within a transaction, first read its state from, e.g., 
a transactional queue, execute its logic, and then 
commit the step by writing its state back to a 
transactional queue for the next step.  Note here that 
“state” is not so much avoided as it is made the 
responsibility of the application program to manage it 
in a transactional way.  Potential performance and 
scalability problems related to the message and logging 
cost of two phase commit (2PC) may also be 
encountered. 

To sum up the situation: the system builder is 
faced with a dilemma, having to choose between:  
• fast and easy development, resulting in 

applications that are more likely to be correct 
applications, implemented in a natural stateful 
programming style, but which fail to provide 
availability and scalability; and 



• the high availability and scalability of the stateless 
programming model which adds to development 
time and where correctness is more difficult to 
achieve because of the intrusion of additional 
concerns of explicit state management.   

1.2. New Departures 
There have been recent efforts to escape from the 

stateful/stateless dilemma.  We mention two here, one 
of which is our own, and upon which this paper makes 
a significant further advance.  Both efforts require 
some constraints in the programming model, but both 
nonetheless have stateful aspects to them.   
 
1.2.1. e-Transactions. The e-transaction approach [10, 
11, 12] focuses primarily on reducing state 
management while putting restrictions on how 
applications are structured and deployed.  Indeed, their 
model has sometimes also been called “stateless”, 
though we would argue that it is not.  With e-
transactions, a middle tier application program has a 
lifetime of one client service request.  That is, its state 
lives between the client request and its reply to the 
client.  Middle-tier application submits a single 
transaction to one backend server.  The server must 
support “testable” state for the transaction, i.e. make it 
possible to determine the outcome of transactional 
requests (see, e.g. [13].  This requirement is not really 
new.  Indeed, it is frequently the purpose of using 
queues with databases in the transaction processing [6].  
The deployment of elements in the e-transaction model 
is illustrated in Figure 1. 
 

 
A client interacts with a component supported by a 

middle-tier application server.  That component 
typically provides business logic, submits a transaction, 
and then returns to the client.   Note that the mid-tier 
application has state outside of the backend transaction, 
potentially both before and after the transaction.  

Hence, the application can respond to transactional 
errors, etc.  Further, and crucially, the middle-tier 
component can be made robust without middle-tier 
logging.  The client re-issues the request and the re-
created middle-tier component re-connects with the 
backend database to retrieve the transaction outcome, 
complete execution, and return its result to the client. 
 
1.2.2. Phoenix/App. In Phoenix/App [2, 3, 4], 
components can be stateful.  Components declared as 
persistent (Pcom’s) survive system crashes.  
Components declared as transactional (Tcom’s) must 
have testable transaction state, as in transaction 
processing and e-transactions.  Other component types 
have other requirements.  We focus on Pcom’s here 
because persistence provides availability and 
scalability in Phoenix/App.  Pcom’s are not constrained 
as in the e-transaction model.  They may serve multiple 
calls from multiple clients, send messages to other 
Pcom’s or Tcom’s etc., while providing exactly-once 
semantics.  A system including Pcom’s and Tcom’s is 
shown in Figure 2. 
 

 
In order for Phoenix/App to ensure that Pcom’s 

persist across system crashes, it logs the interactions of 
each Pcom so that the Pcom can be deterministically 
replayed [8, 9], using the log to capture non-
deterministic events and their potentially non-
deterministic arrival order.  A Pcom log also permits it 
to be recovered independently of other components.  
The logging is what permits it to satisfy the 
requirements of what are called “interaction contracts” 
[1, 5], which each Phoenix/App component must do.  
These contracts require components to guarantee that 
their state and messages will survive system crashes 
and provide exactly once executions. It is this logging 

Figure 2: The Phoenix/App system model.  
Multiple clients have multiple message 
interactions with a mid-tier Pcom that does 
logging.  The mid-tier Pcom interacts with 
multiple backend servers in multiple 
transactions. 
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Figure 1: The e-transaction system model.  A 
single client has a single request/reply 
interaction with a middle-tier app server that 
does no logging.  The app server interacts 
with the backend server in a single 
transaction. 
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that permits a Pcom to engage in relatively 
unconstrained activity, with other Pcom’s and Tcom’s 
while maintaining persistence across crashes. 

In [2], we introduced an optimization called the 
“multi-call optimization” to reduce the logging 
required for Pcom’s.  This depended on the observation 
that the components that were called were required to 
guarantee that they would support exactly-once 
execution by ensuring that duplicate calls were detected 
and that the result message was persistent and would be 
returned whenever duplicate requests were submitted.  
Since called components were responsible for making 
their result message persistent, the caller could depend 
up on that persistence to avoid its having to force log 
the result message.  The log was finally forced when 
this component itself returned, thus ensuring that it 
could re-create its state subsequently. 

1.3. Stateful Component Persistence without 
Logging 

We introduce a new component type that avoids 
logging while providing a persistent, stateful model of 
components [5].   This component exploits the logging 
done already by other components, as identified in our 
multi-call optimization, and also exploited in e-
transactions. We call these logless components and 
subsequently define them in detail and discuss how 
they would work in practice.  Importantly, these logless 
components can be called multiple times, and interact 
with a number of backend systems involving a number 
of transactions, while retaining persistent state.   Thus 
they support a natural stateful programming model in 
which the application programmer can focus on 
application logic, not issues system issues. 

Logless components can be easily redeployed 
across an enterprise system since there is no log that 
needs to be shipped to enable this.  In addition to their 
clear advantages for availability and scalability, logless 
components have an important performance advantage 
during normal execution.  Because no logging is 
required of them, they save the execution path for 
storing information in the log buffer, and the delays 
associated with log forces. 

We introduce logless components and their 
advantages in section 2.  Section 3 describes the 
limitations that we need to place on persistent 
components to enable them to be replayed without 
logging.  In section 4, we describe some of the 
engineering implications of logless components and 
how one might effectively deploy them.   We provide 
an example application that illustrates the capabilities 
of logless components in section 5.  We end with a 
brief discussion of further issues in section 6.    

2. Logless Components 

2.1. A New Phoenix Component Type 
The multi-call optimization [2] showed that 

potentially many transactions can be executed via 
several calls to backend servers without the need for 
any intervening log force.  This led us explore ways to 
provide components that do not require any logging, 
but which nonetheless are persistent and stateful.  We 
found that by circumscribing what a Pcom could do, it 
was possible to define what we shall call “logless” 
components or LLcom’s that are stateful, like Pcom’s, 
but that do not require a log.  Importantly, LLcom’s 
will not require more logging or more log forces from 
the components with which they interact.  For these 
components, the LLcom can be treated as if it were a 
Pcom, though these components may be required to 
keep persistent messages for a longer period.  They 
may, at their option, choose to force their logs 
somewhat more often to provide for faster recovery. 

We want to understand under what circumstances 
components can avoid doing logging.  Clearly, we need 
to have some component(s) do some logging.  Exactly 
where does that occur?   For which among persistent, 
transactional, read-only, functional, subordinate, or 
external component is it possible to interact without an 
LLcom needing to log the interaction?  How do we 
enforce "exactly once" execution?  We will answer 
these questions further on.  But first, we want to discuss 
the advantages of logless components. 

2.2. Advantages of Logless Components 
If a component does not need to log its 

interactions, then we do not need to move the log in 
order to move the component.  This permits LLcom’s 
to trivially be failed over to some other server, hence 
enhancing availability.  This also means that there is 
absolutely no work involved in reclaiming resources 
from these components.  There is no stable state that 
needs to be maintained, as presumably, its entire state 
can be recovered without any log.  Hence scalability is 
easily achieved, and components can be redeployed as 
servers and resources become available. 

Availability and scalability are possible with 
Pcom’s as now defined, but requires shipping logs.  
Being logless eliminates even this step.  As when a log 
is involved, a component will need to be replayed in 
order to re-create the interrupted state.  But the cost of 
maintaining the log, forcing the log, and shipping the 
log are all avoided with logless components.  



2.3. From Persistent to Logless Components 
We need to specify precisely how persistent 

components can avoid logging.  If this could be done in 
general, we would have over-engineered Phoenix/App.  
But that is not the case.   Fully general Pcom’s need to 
log interactions.  However, with carefully crafted 
restrictions imposed on Pcom’s, we can turn them into 
LLcom’s.  We describe this in the next two sections. 

3. Making Replay Possible 

3.1. Idempotent Interactions 
The multi-call optimization [2] shows us that 

forced logging after each interaction with a Tcom or 
Pcom is, in fact, not required.  With this optimization, a 
Pcom can fail after some number of interactions 
without logging, and yet be recovered.  What is on the 
log is the Pcom’s initiation or last checkpoint, followed 
(perhaps) by some sequence of interactions that were 
successfully logged.  But one or more interactions 
subsequent to those on the log may have occurred and 
not have been logged.  How do we deal with these? 

We note that interactions between components rely 
upon both components having logged the interaction or 
made it durable in some other way.  Thus, we require 
these other components to enforce the requirements 
that they would have had they been interacting with a 
Pcom.  That is: (i) eliminate duplicates so as to enforce 
“exactly once” execution semantics, and (ii) to return 
on request the result message that they have promised 
to maintain about the interaction.  These requirements 
led, in our Phoenix context, to the multi-call 
optimization for components that we access for the first 
time.  However, when accessed a second time, the 
earlier “contractual” requirement for the persistence of 
result messages is terminated. 

The guarantee provided by a “live” committed 
interaction contract (CIC) or transaction interaction 
contract (TIC) ensures that the interaction is 
idempotent, i.e. it can be re-played multiple times while 
only producing a state change exactly once, and always 
returning the same result message.  It is idempotence 
that describes this “reliable” interaction replay. 

A direct consequence of our observation that what 
we need is idempotence is that we can handle 
functional interactions (i.e. interactions with functional 
components [2]) trivially.  Functional components have 
no effect on state and always provide the same 
response to the same input.  

3.2. Non-Idempotent Interactions  
Idempotence permits interactions to be replayed 

without logging.  Conversely, any non-idempotent 
interaction precludes it.  Logging enables us to replay 
non-idempotent interactions by using the logged 
results. This turns their non-determinism into 
deterministic replay.  But without logging, this is not 
possible. 

Thus, we cannot permit LLcom’s to interact with 
or read external (and hence non-deterministic) system 
state or affect external state outside of Tcom 
interactions.  While a read does not change state, there 
is no guarantee that replaying the interaction will 
produce the same result. Thus reads, which are possible 
with Pcom’s, cannot be permitted for LLcom’s.   For 
interactions that change external state, the situation is 
worse.  We can have multiple executions, hence 
violating exactly-once execution, as well as having 
different results returned.   Hence, such interactions 
cannot be permitted.  Even with Pcom’s that do log 
interactions, such interactions cannot be guaranteed to 
be idempotent should a failure occur during the 
interaction, i.e. prior to the Pcom logging the 
interaction. 

3.3. Deterministic Interaction Order 
The contracts for each interaction guarantees 

idempotence for the interaction [1, 5].  But this is only 
one source of nondeterminism for which logging was 
exploited.  Logging in Pcom’s is also used to remove 
the nondeterminism resulting from the order of 
interactions.   

Consider a long-lived object, implemented as a 
Pcom.  It will normally become active via a call to one 
of its methods from some, perhaps unknown, other 
component.  We usually know neither which method 
will be invoked nor the identity of the invoking 
component.  Both these aspects are captured in Pcom’s 
via logging. 

With an LLcom, of course, we have no log to rely 
upon.  Hence we need to insist that all interactions arise 
via a deterministic replay of idempotent interactions.  
An easy case to see is when an LLcom represents the 
execution of a single request to a single method.  The 
method may call out to other components (using 
idempotent interactions), and if it is single threaded, the 
order of execution is completely determined by the 
code that it executes and the results of the idempotent 
interactions encountered during execution. 

It is tempting to simply end the discussion here.  A 
single procedure, whose execution is single threaded, 
and whose interactions are all request/reply, surely can 
be realized as an LLcom (though there is one more 
issue to deal with, which we discuss in the next 
section).  But, in fact, we can permit more than this.  



What is required is that the LLcom execution 
deterministically identify the next interaction as to the 
kind of interaction (send or receive) and which 
component the interaction is with.  If it is a message 
send, then clearly this will be true as it is the 
component’s deterministic execution that leads to the 
message send.  It is the receive style interactions whose 
determinism needs to be scrutinized.  

For a receive message that is part of a 
request/reply setting, it is clear that the reply (a 
message receive) is from the recipient of the request 
message, and the reply message is awaited at a 
deterministic point in the component execution.  For 
other receives, we must be more guarded. Clearly, truly 
nondeterministic receives must be excluded.  But some 
receives are not ruled out.  For example, an LLcom 
might receive a series of requests from a given client 
component in what might be called a conversation.  In 
such a case, we would know that the initial client would 
be the next sender of a message for which we are 
waiting.  During replay, when execution reaches the 
state where the message is due, we could re-request the 
message from the client.   

3.4. Functional Initiation 
The entire history of an LLcom must be replayable 

without logging.   That is what we described above.  
But another source of nondeterminism is the way that 
logical components are named and mapped to the 
underlying physical resources.  That nondeterminism 
needs to be removed without our requiring that this 
information be logged, which is what is done in 
Phoenix/App [2, 3]. 

Thus, we require that an LLcom have what we call 
a “functional” initiation or creation.  This means that 
from what is in the creation message, the entire 
information about the identity of the LLcom must be 
derivable.  This requirement permits a re-execution of 
this creation message send to produce a component that 
is logically indistinguishable from any earlier 
incarnation.  The initiating component can, in fact, 
create an LLcom multiple times such that all instances 
are logically identical.  Indeed, the initiator component 
might, during replay, create the LLcom in a different 
part of the system, e.g. a different application server.  
 The interactions of the LLcom, regardless of where 
it is instantiated, are all treated in exactly the same way.  
During replay, any Tcom or Pcom whose interaction 
was part of the execution history of the LLcom will 
respond to the re-instantiated LLcom exactly the same 
way, regardless of where the LLcom executes. 

3.5. Pragmatics of Short Lifetimes 
An LLcom has no log.  Hence, it is meaningless to 

talk about checkpointing its state so as to shorten its 
recovery time.  Whenever an LLcom crashes or is de-
allocated to free up resources to enable scalability or 
other system management goals, it can be re-created 
only via complete replay of its entire execution history, 
starting from its initiation message.   Obviously it is 
desirable to perform this replay quickly to achieve high 
availability and minimize system overhead.  This 
argues for keeping the lifetime of LLcom’s short. 

It is important to understand what “short” means in 
this context.  An LLcom relies upon other components 
for logging its interactions.  So the replay time is 
governed by (1) LLcom execution time, and (2) the 
time required for other components to respond to its 
replayed interactions.  The time involved in (2) will 
usually be much shorter than the original execution 
time, since other components will usually not need to 
re-execute requests during replay.  Rather, they will 
normally simply look up the messages sent to them by 
the LLcom and generate replies based on information 
that they have retained in a table.  So lifetime will 
usually be a function of LLcom execution path plus the 
number of interactions times the replay time for each 
interaction, not the original time required to execute 
code to reproduce the result of the original interaction.   

Keeping LLcom lifetime short, while important, is 
a pragmatic consideration.  Long lived LLcom’s will 
work correctly, subject to the other considerations 
addressed here.  It is their practical value that 
diminishes as their lifetime increases. 

A system that implements LLcom’s may want to 
be able to determine lifetime in some syntactic way 
prior to deploying the components in a live system.  An 
easy way to do this is to preclude loops and perhaps to 
impose a limit on the number of calls that an LLcom 
can make or can receive.  This permits us to know the 
execution path of the LLcom and the number of 
interactions in its lifetime.  Perhaps less restrictive 
conditions could also be satisfactory. 

One important point to stress is that at the end of 
an LLcom lifetime (indeed this is true for Pcom’s as 
well), it goes “stateless”.  At that point, there is no state 
that needs to persist.  For example, if an LLcom’s 
lifetime is bracketed by a method call/return, then once 
its caller logs the return message, there is no longer any 
state that needs to be recovered.  At that point, replay 
of the LLcom is no longer necessary.   An LLcom can 
be deallocated at this point. 



4. Detecting Failures and Recovering 

4.1. The Role of the Initiator Component 
The initiator component, i.e. the component 

making the initiating call, must also initiate recovery 
for the LLcom.   Unlike Pcom’s, where the 
infrastructure hosting the Pcom supports a log and a 
recovery manager that handles recovery for local 
components, with LLcom’s there is no log.  So even 
were the infrastructure to have a recovery manager, it 
could not recover the LLcom.  To provide LLcom 
recovery, the initiation call has to be replayed.   

Because the initiator Pcom must replay the 
initiation call for LLcom recovery to happen, it must 
also be able to detect an LLcom’s failure.  Detecting 
failure requires that the initiator expect a message from 
its initiated LLcom and fail to receive it after some 
timeout period.   While this expected message can be a 
“ping”, it is clearly more useful if it is a reply to a 
Pcom request. 

Because of these constraints, LLcom system 
interactions and configurations are more restricted than 
for Pcom’s.  The initiator needs execution control to 
return to it in some way from every LLcom that it 
initiates.  If can send multiple messages to an LLcom 
that it initiates, but it must always reach a state in 
which a message is expected from the LLcom.  It is the 
failure of such a message to arrive that triggers the 
initiator to begin recovery via replay of the initiating 
message. 

A component can initiate more than one LLcom.  
And an LLcom can initiate other LLcom’s.  But the 
initial LLcom in the system must be initiated by a 
Pcom.  These requirements ensure that LLcom’s are 
recoverable.  The Pcom initiating the first LLcom is 
independently recoverable via logging.  Other LLcom’s 
are recoverable either directly by the Pcom or by an 
LLcom that is recoverable by the Pcom.  The 
originating Pcom makes this “recursion” well founded.  
Thus a Pcom can initiate a “tree of LLcom’s” and 
successfully recover them.   

LLcom’s must be terminated as well.  One way to 
do this is to impose responsibility on the initiating 
component.  It must always await a message from the 
LLcom whenever the LLcom is active, so that it can 
provide recovery.  This also means that it can terminate 
the LLcom via a final message.  However, this may not 
be essential.  LLcom’s that are inactive for a 
sufficiently long time might simply be deallocated as 
they can be re-instantiated via replay if they are needed 
again. 

Logging need not be forced when a Pcom interacts 
with an LLcom that it initiates.  The initiating call is an 

example of the multi-call optimization.  Further, there 
is no need to force log subsequent interactions.  What 
is on the stable log in this case is useful solely to 
optimize Pcom recovery.  In all cases, the LLcom is 
guaranteed to be restartable from its initiating call, and 
subsequent replay of interactions with it is entirely 
deterministic.   So Pcom replay, as long as it includes 
replay of an LLcom’s initiating call, need not even log 
LLcom interactions, except to optimize its own replay. 

Should the LLcom be alive during Pcom replay 
and only have retained information about its last call 
from the Pcom, it needs to self-destruct so that its 
complete replay is possible.  When the LLcom no 
longer exists at a middle tier site, the site can respond 
to the initiating Pcom that the message failed to be 
delivered because the target does not exist.  At this 
point, the initiating Pcom can recover the LLcom by 
replaying messages to it starting at its initiating call. 

A Pcom must be prepared to replay an LLcom 
from its initiating call forward.  This makes Pcom 
checkpointing during the LLcom lifetime more 
complicated than were it interacting with another 
Pcom.  Any checkpoint must be sure to include the 
LLcom initiating call together with the Pcom messages 
to the LLcom before the checkpoint, so that the LLcom 
can be recovered. 

4.2. Minimizing Dependencies 
LLcom’s, when failures occur, may have longer 

outages than Pcom’s.  Pcom’s can be recovered based 
on local logging.  In Phoenix/App, a local monitor, 
much like a monitor used for database recovery, is 
deployed which looks for Pcom’s that need recovery.  
When one is detected, the monitor brings up a recovery 
process, points it at the Pcom’s log, and initiates its 
execution.  In contrast, LLcom’s require the replay of 
the initiating call, which will usually not be local.  
Further, this call will only be replayed after the initiator 
has timed out waiting for a message from the LLcom.   
This suggests that the LLcom may be less responsive 
when failures occur. 

Consider a committed interaction contract (CIC) 
[1, 3], used between a pair of Pcom’s when they 
interact.  The sender of a message is responsible for 
guaranteeing message and state persistence.  In 
particular, the sender may be required to re-transmit the 
message upon being asked by the receiver, as part of 
receiver recovery.  Consider now an LLcom as the 
sender with Pcom as receiver. Were both to fail, e.g., as 
the result of a power failure or some site wide failure, 
and then initiate recovery, the receiver would not be 
able to recover until the LLcom is recovered.  And this 
might result in a much larger delay.  The initiator of the 



LLcom would first need to re-send the initiating 
message, and then the LLcom would need to replay 
from its start up to the point where the message was 
sent. 

The delays described above can be avoided if, 
instead of using a CIC for the interaction, an ICIC 
(immediately committed interaction) were used [5].  In 
that case, any message needed for the recovery of a 
component interacting with an LLcom is known to be 
logged at that component, and would not need to be 
provided by a sending LLcom.  Thus, instead of the 
two step release of the responsibility for the message in 
a CIC, the responsibility of the sender to resend the 
message is released all at once in an ICIC. 

Using an ICIC, e.g. as part of a request/reply 
interaction in which the LLcom is the requestor, need 
not lead to additional forced logging, though it may add 
more data to the log.  The sender, whether under a CIC 
or ICIC, periodically re-sends a message until it 
receives an ACK that the message has arrived.  Should 
the message not have arrived (or not been logged), the 
message is not part of the receiver’s recovered state- 
hence is not needed during recovery.  If it has arrived, 
that is indicated by its being on the log, and so the 
sender need not provide the message during receiver 
recovery.  Thus, the receiver can recover independently 
of sender recovery. 

Request/reply interactions avoid the need for a 
message sender (in this case, the replier with its reply 
message) from needing to continually resend the 
message.  The replier knows that the sender is 
expecting a reply.  It need only send the reply once, 
knowing that the requestor will ask again for the reply 
(via resending the request).  Thus, having an LLcom as 
an initiator of a request/reply interaction does not result 
in needless retransmissions of the reply message in the 
case where the LLcom has failed.  This is important as 
the LLcom outage may be longer than would be the 
case for a locally recovered Pcom. 

4.3. LLcom’s to Aid Recovery 
An LLcom not logging does not mean that it can’t 

be helpful in providing recovery for other components.  
For example, the volatile tables that are constructed for 
Pcom’s (and which in that case are “backed up” via 
logging so as to be persistent) [3] might also be 
maintained for LLcom’s.  Thus, a message sending 
LLcom might be expected to retain the message in a 
message table so that it can be re-sent should another 
component need it for recovery.  The persistence of the 
message (and of the volatile table) would be guaranteed 
by the recovery of the LLcom.   In the case where the 
LLcom does not fail, but the receiver of the message 

does, the LLcom is in a position to be as helpful as any 
Pcom in hastening receiver recovery. 

While LLcom’s and Pcom’s have strong 
similarities, we have already seen that LLcom replay 
limits LLcom interactions to idempotent ones.  The 
difference in how they are recovered requires us to 
impose restrictions on how LLcom’s are deployed in a 
multi-tier application.  We next present an architectural 
proposal for how one might proceed in realizing a 
system that exploits LLcom’s. 

4.4. A Simple Architectural Proposal  
One easy way to structure a system involving 

LLcom’s is to require LLcom interactions to be of the 
request/reply form.  This ensures that requestors await 
replies.  Failure of an LLcom reply to arrive in a timely 
fashion triggers LLcom recovery.  LLcom requestor 
failure does not trigger repeated retransmissions of the 
reply.  The reply is simply held until the recovered 
LLcom re-requests it. 

Restricting LLcom’s to request/reply interactions 
still leaves these components with great flexibility.  An 
LLcom has state that might live across multiple 
interactions that it might make with other (backend) 
components, where it is the requestor for the 
interaction.  Further, it is capable of living across 
multiple transactions, e.g. that it is involved with via 
request/reply interactions with Tcom’s.  Additionally, 
such an LLcom can engage in a request/reply 
“conversation” with its initiating Pcom or other 
LLcom.  While LLcom’s have restrictions on their 
deployment when compared with Pcom’s, they still 
retain a large degree of flexibility. 

Many multi-tier systems should be amenable to 
support by LLcom’s.  LLcom’s are not restricted to the 
three tier systems or the single transaction execution of 
the e-transaction model.  Rather, there can be multiple 
layers of LLcom’s between front end client, realized as 
a Pcom, and backend databases, realized as Tcom’s.  

One such deployment is illustrated in Figure 3.  
The Pcom initiator of the first of potentially many 
layers of LLcom will log the LLcom reply-- which 
effectively summarizes the impact of all the LLcom's 
calls and activity into the one message.  This message, 
when logged, permits this Pcom to be replayed from 
the log.  Should the LLcom call not return, it can be 
replayed in an idempotent way.  Hence recovery for the 
initiator Pcom is provided.  This is all done without the 
LLcom’s doing any logging whatsoever. 

LLcom can also play the role of a Pcom in 
interaction with a web service [14].   No middle tier 
logging is needed.  A Pcom client logs interactions 
which it  may  make to  one or  more  LLcom’s  in  the 



 

middle tier.  These LLcom’s would then interact with 
web services using the web service interaction contract 
(WSIC).   The web service provides testable state.   
The logging at client Pcom and at the web services is 
sufficient for exactly once execution. 

5. Example 
To illustrate an application that can be supported 

by logless components, consider an online book buyer 
application.  To be more specific, consider that the 
application is for ordering textbooks from wholesalers.  
The book buyer has a preference to use SupplierA as 
the supplier for textbooks, either because of a better 
price or because SupplierA has some special deal with 
the book buyer.  So it is SupplierA that is first asked to 
satisfy an order.  Only if SupplierA cannot provide 
books for the order is SupplierB used. 

Consider now Figure 4.  Our client wants to order 
50 books.  So the book buyer application requests the 
50 textbooks from SupplierA.  SupplierA only has 35 
of the books in stock and returns to the book buyer 
confirming an order for 35.  Our book buyer proceeds 
to order the remaining 15 books from SupplierB. 

The book buyer application is truly a stateful 
application.  The fact that SupplierA supplied 35 books 
is state that needs to be carried over for a correct 
interaction with SupplierB.  Previous approaches 
require that this application either log its interactions, 
or be implemented in two steps as part of a stateless 
application. 

 

 
 
Figure 4: An online book buyer application 
that can be realized as a logless component.   
This component needs to remember that 
SupplierA provided 35 books so that it can 
correctly order the remaining 15 books from 
SupplierB. 
 

However, our application (in the pink box) can be 
realized as a logless component...  The client, 
requesting the 50 books, needs to make that request  
persistent, either by logging it explicitly, or by logging 
the user input so that replay can re-generate the request.  
Each supplier needs to present an idempotent interface 
where repeating the exact order will yield the same 
result.  Thus all nondeterminism has been captured at 
either the client (who captures the request) or the back 
end suppliers (who capture the order that was 
submitted and provide idempotence).  Hence the 
middle tier application does not require any logging in 
order to ensure persistence across system failures. 

If the system crashes (or merely times out because 
of slow servers or network), the client can re-submit his 
request anywhere in the system, without concern about 
log shipping (to send the state) or worries about double 
ordering at the suppliers.  Any duplicate request to a 
back end supplier is guaranteed, because of 
idempotence, to not trigger multiple executions, and 
further to return the exact same result as the original 
request. 

It is even possible for two book buyer components 
to be active simultaneously, so long as the client can 
distinguish them and their reply message.  There is 
never more than a single order placed at each supplier.  
And the orders are always the same number of books. 
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Continue 
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Figure 3: The Phoenix/App system model 
with logless component in middle tier.  A 
client can have multiple message 
interactions with a mid-tier LLcom that does 
not log.  The LLcom interacts with multiple 
Tcom’s in multiple transactions. 
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6. Discussion 

6.1. Idempotent Read Interactions 
Normally, reads are not repeatable in an 

idempotent way.  That is, if we request information 
from some data source at one time, and then ask again 
later, there is no guarantee that the result returned will 
be the same.  Thus, were reads permitted for LLcom’s, 
during recovery we would need to re-execute the 
interaction.  Since the result is not guaranteed to be the 
same, deterministic replay to the same state would not 
be possible. 

However, were we to perform a versioned read of 
data based, e.g., on its timestamp, where the time 
requested is a deterministic function of the parameters 
of the initiating call to the LLcom, such a read would 
be idempotent.  We would read data as of some time, 
and use the same time during redo recovery.  So this 
restricted form of read is permissible for LLcom’s.  

6.2. Server Affinity 
It is frequently useful for a client to return to the 

same server as the one that handled a prior request.  
Holding an LLcom lifetime to the period between 
initial request and the reply to that request, as done in 
the e-transaction model, makes LLcom replay much 
like the replay of Pcom’s.  That is, a Pcom interaction 
(request/reply) is redone only if it is the last interaction 
of the Pcom.  However, if this requirement were 
relaxed to permit multiple request/reply interactions 
with an LLcom by its initiator, replay remains possible.   

Permitting multiple request/reply interactions from 
initiator Pcom to LLcom directly supports server 
affinity.  So long as there is no failover or other 
redeployment, the LLcom remains instantiated at the 
host system where it originated.  The initiating Pcom 
can re-access the LLcom with additional requests, and 
the state continues to exist and to play a role in keeping 
system execution efficient.  Recovery, should one of 
the later Pcom requests to the LLcom not return in a 
timely way, now requires rebuilding the LLcom, 
starting with the initiating request. 

6.3. Garbage Collection 
Middle-tier garbage collection of LLcom state 

does not pose a problem.  Indeed, we do not need to 
know when an LLcom goes stateless.  Clients can walk 
away from their “sessions” and none of this represents 
a large problem.  Why?  Because we can always replay 
LLcom’s from their initiating call to re-create them.  So 
a very simple time-out based reclamation method will 
work fine.  

Garbage collection of testable state "items" 
maintained by backend servers remains a potential 
problem.  However, it is a problem for Pcom and e-
transaction systems as well.  Contract release still needs 
to be carefully considered.  Essentially, for LLcom’s, 
backend contracts cannot be released until the initiator 
Pcom logs the final (terminating) LLcom reply.  The e-
transaction papers [9, 10, 11] suggest doing the 
garbage collection based on time-outs.  The web 
services paper [14] suggests that, at least in some cases, 
never doing garbage collection might also be ok. 

6.4. Architectural Advantages 
Using request/reply, as with keeping LLcom 

lifetimes short, is a pragmatic way of dealing with and 
providing robust components in a distributed system.  
That is, these two characteristics are not essential.  One 
could imagine a system that provided more flexibility, 
at the cost of more complexity, and perhaps longer 
delays when failures occur.  So request/reply is a 
pragmatic choice, and surely a good starting point for 
functionality. 

Even in a pragmatically constrained deployment, 
LLcom’s go beyond the multi-call optimization by 
entirely eliminating logging.  LLcom deployment goes 
beyond e-transactions in permitting client 
conversations and multiple backend transactions.  
Stateful LLcom’s can retain state between calls in a 
conversation from a client, and between calls to 
servers, whether transactional or not.   Indeed, when 
interacting with a web service [14], an LLcom might 
not even know whether no, one, or several transactions 
were executed for a single request/reply interaction. 

LLcom’s simultaneously achieve the goals of 
offering a natural stateful programming model, high 
normal case performance, and high availability and 
scalability, making them an excellent vehicle for 
structuring and deploying enterprise applications. 
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