Persistent Middle Tier Componentswithout L ogging

David Lomet
Microsoft Research
Redmond, WA
lomet@microsoft.com

Abstract

Enterprise applications need to be highly
available and scalable. In the padt, this has required
“ stateless’ applications, which essentially require the
application to manage its state explicitly by storing it
in transactional resource managers. Despite
“ stateful” applications being more natural and hence
easier to write and get correct, having the system
manage this state automatically has been considered
too difficult and too costly. The Phoenix/App system
showed how to manage state in stateful applications
transparently, by logging interactions between
components, guaranteeing “ exactly once” execution of
the application. By introducing some minor
restrictions on Phoenix/App components, no logging
need be done for middle tier components, thus making
it easy to provide both availability and scalability.
Because there is no logging, the performance of failure
free application executionsis excellent.

1. Introduction

1.1. Robust Applications

Robust applications are those that, when deployed,
are capable of providing enterprise systems with highly
available and highly scalable service. Such
applications must be able to survive system crashes,
permit flexible re-deployment on other computers as
the system changes and particularly, as it grows. The
semantic requirement for robust applications is that,
despite al this dynamic activity, including system
crashes, it provides “exactly once” execution
semantics. Such an application may start execution on
one computer, that system crash, be redeployed on
another, etc., and to the application client, it looks like
a seamless execution in which the application executed
exactly once without crashing or moving, etc.

Application developers naturally tend to let the
business logic of the application dictate how the
programis structured. This natural programming style
has, in the past, interfered with enterprise system
requirements for high availability and scalability. An
application written in this “natural” way may retain
control state necessary for correct and successful
execution across transaction boundaries.  Such an
application is characterized as a “stateful” application.
The problem with stateful applications is the risk of
losing state when the system on which they execute
crashes. This creates a “semantic mess’ that may
require human intervention to repair or restart the
application, resulting in long service outages.

The classic transaction processing response to this
problem [6, 7, 13] is to require that an application be
stateless, where stateless means “no  meaningful
information is retained across transactions’. But
stateless applications force a rather unnatural “string of
beads’ style of programming where an application
must, within a transaction, first read its state from, e.g.,
a transactional queue, execute its logic, and then
commit the step by writing its state back to a
transactional queue for the next step. Note here that
“state” is not so much avoided as it is made the
responsibility of the application program to manage it
in a transactional way. Potential performance and
scalability problems related to the message and logging
cost of two phase commit (2PC) may also be
encountered.

To sum up the situation: the system builder is
faced with a dilemma, having to choose between:

o fast and easy development, resulting in
applications that are more likely to be correct
applications, implemented in a natural stateful
programming style, but which fail to provide
availability and scalability; and



o the high availability and scalability of the stateless
progranming model which adds to development
time and where correctness is more difficult to
achieve because of the intrusion of additional
concerns of explicit state management.

1.2. New Departures

There have been recent efforts to escape from the
stateful /stateless dilemma.  We mention two here, one
of which is our own, and upon which this paper makes
a significant further advance. Both efforts require
some constraints in the programming model, but both
nonethel ess have stateful aspects to them.

1.2.1. e Transactions. The e-transaction approach [ 10,
11, 12] focuses primarily on reducing state
management while putting restrictions on  how
applications are structured and deployed. Indeed, their
model has sometimes also been called “stateless’,
though we would argue that it is not. With e
transactions, a middle tier application program has a
lifetime of one client service request. That is, its state
lives between the client request and its reply to the
client.  Middle-tier application submits a single
transaction to one backend server. The server must
support “testable” state for the transaction, i.e. make it
possible to determine the outcome of transactiona
requests (see, e.g. [13]. This requirement is not really
new. Indeed, it is frequently the purpose of using
gueues with databases in the transaction processing [6].
The deployment of elements in the e-transaction model
isillustrated in Figure 1.

Testable
State

No Log in
mid-tier

App
Server

Figure 1: The e-transaction system model. A
single client has a single request/reply
interaction with a middle-tier app server that
does no logging. The app server interacts
with the backend server in a single
transaction.

A client interacts with a component supported by a
middle-tier application server.  That component
typically provides business logic, submits a transaction,
and then returns to the client. Note that the mid-tier
application has state outside of the backend transaction,
potentially both before and after the transaction.

Hence, the application can respond to transactional
errors, etc. Further, and crucialy, the middlie-tier
component can be made robust without middle-tier
logging. The client re-issues the request and the re-
created middle-tier component re-connects with the
backend database to retrieve the transaction outcome,
complete execution, and return its result to the client.

1.2.2. Phoenix/App. In Phoenix/App [2, 3, 4],
components can be stateful. Components declared as
persistent (Pcom’'s) survive system  crashes.
Components declared as transactional (Tcom's) must
have testable transaction state, as in transaction
processing and e-transactions. Other component types
have other requirements. We focus on Pcom’s here
because persistence provides availability and
scalability in Phoenix/App. Pcom'’s are not constrained
as in the e-transaction model. They may serve multiple
cals from multiple clients, send messages to other
Pcom’'s or Tcom's etc., while providing exactly-once
semantics. A system including Pcom’s and Tcom's is
shown in Figure 2.

Log in Testable

mid-tier

Figure 2: The Phoenix/App system model.
Multiple clients have multiple message
interactions with a mid-tier Pcom that does
logging. The mid-tier Pcom interacts with
multiple backend servers in multiple
transactions.

In order for Phoenix/App to ensure that Pcom’s
persist across system crashes, it logs the interactions of
each Pcom so that the Pcom can be deterministically
replayed [8, 9], using the log to capture non-
deterministic events and their potentialy non-
deterministic arrival order. A Pcom log also permits it
to be recovered independently of other components.
The logging is what permits it to satisfy the
requirements of what are called “interaction contracts’
[1, 5], which each Phoenix/App component must do.
These contracts require components to guarantee that
their state and messages will survive system crashes
and provide exactly once executions. It is this logging



that permits a Pcom to engage in relatively
unconstrained activity, with other Pcom’'s and Tcom's
while maintaining persistence across crashes.

In [2], we introduced an optimization caled the
“multi-call optimization” to reduce the logging
required for Pcom’s. This depended on the observation
that the components that were called were required to
guarantee that they would support exactly-once
execution by ensuring that duplicate calls were detected
and that the result message was persistent and would be
returned whenever duplicate requests were submitted.
Since called components were responsible for making
their result message persistent, the caller could depend
up on that persistence to avoid its having to force log
the result message. The log was finally forced when
this component itself returned, thus ensuring that it
could re-create its state subsequently.

1.3. Stateful Component Persistence without
L ogging

We introduce a new component type that avoids
logging while providing a persistent, stateful model of
components [5]. This component exploits the logging
done aready by other components, as identified in our
multi-call optimization, and also exploited in e
transactions. We call these logless components and
subsequently define them in detail and discuss how
they would work in practice. Importantly, these logless
components can be called multiple times, and interact
with a number of backend systems involving a number
of transactions, while retaining persistent state. Thus
they support a natural stateful programming model in
which the application programmer can focus on
application logic, not issues system issues.

Logless components can be easily redeployed
across an enterprise system since there is no log that
needs to be shipped to enable this. In addition to their
clear advantages for availability and scalability, logless
components have an important performance advantage
during normal execution. Because no logging is
required of them, they save the execution path for
storing information in the log buffer, and the delays
associated with log forces.

We introduce logless components and their
advantages in section 2. Section 3 describes the
limitations that we need to place on persistent
components to enable them to be replayed without
logging. In section 4, we describe some of the
engineering implications of logless components and
how one might effectively deploy them. We provide
an example application that illustrates the capabilities
of logless components in section 5. We end with a
brief discussion of further issuesin section 6.

2. Logless Components

2.1. A New Phoenix Component Type

The multi-call optimization [2] showed that
potentially many transactions can be executed via
severa cals to backend servers without the need for
any intervening log force. This led us explore ways to
provide components that do not require any logging,
but which nonetheless are persistent and stateful. We
found that by circumscribing what a Pcom could do, it
was possible to define what we shall call “logless’
components or LLcom’s that are stateful, like Pcom’s,
but that do not require a log. Importantly, LLcom’'s
will not require more logging or more log forces from
the components with which they interact. For these
components, the LLcom can be treated as if it were a
Pcom, though these components may be required to
keep persistent messages for a longer period. They
may, a their option, choose to force their logs
somewhat more often to provide for faster recovery.

We want to understand under what circumstances
components can avoid doing logging. Clearly, we need
to have some component(s) do some logging. Exactly
where does that occur? For which among persistent,
transactional, read-only, functional, subordinate, or
external component is it possible to interact without an
LLcom needing to log the interaction? How do we
enforce "exactly once" execution? We will answer
these questions further on. But first, we want to discuss
the advantages of |ogless components.

2.2. Advantages of L ogless Components

If a component does not need to log its
interactions, then we do not need to move the log in
order to move the component. This permits LLcom’s
to trivialy be failed over to some other server, hence
enhancing availability. This also means that there is
absolutely no work involved in reclaiming resources
from these components. There is no stable state that
needs to be maintained, as presumably, its entire state
can be recovered without any log. Hence scalability is
easily achieved, and components can be redeployed as
servers and resources become available.

Availability and scalability are possible with
Pcom’s as now defined, but requires shipping logs.
Being logless eliminates even this step. Aswhen alog
is involved, a component will need to be replayed in
order to re-create the interrupted state. But the cost of
maintaining the log, forcing the log, and shipping the
log are al avoided with logless components.



2.3. From Persistent to L ogless Components

We need to specify precisely how persistent
components can avoid logging. If this could be donein
general, we would have over-engineered Phoenix/App.
But that is not the case. Fully general Pcom's need to
log interactions. However, with carefully crafted
restrictions imposed on Pcom's, we can turn them into
LLcom's. We describe thisin the next two sections.

3. Making Replay Possible

3.1. Idempotent Interactions

The multi-call optimization [2] shows us that
forced logging after each interaction with a Tcom or
Pcom s, in fact, not required. With this optimization, a
Pcom can fail after some number of interactions
without logging, and yet be recovered. What is on the
log is the Pcom’s initiation or last checkpoint, followed
(perhaps) by some sequence of interactions that were
successfully logged. But one or more interactions
subsequent to those on the log may have occurred and
not have been logged. How do we deal with these?

We note that interactions between components rely
upon both components having logged the interaction or
made it durable in some other way. Thus, we require
these other components to enforce the requirements
that they would have had they been interacting with a
Pcom. That is: (i) eliminate duplicates so as to enforce
“exactly once” execution semantics, and (ii) to return
on request the result message that they have promised
to maintain about the interaction. These requirements
led, in our Phoenix context, to the multi-call
optimization for components that we access for the first
time. However, when accessed a second time, the
earlier “contractual” requirement for the persistence of
result messages is terminated.

The guarantee provided by a “live” committed
interaction contract (CIC) or transaction interaction
contract (TIC) ensures that the interaction is
idempotent, i.e. it can be re-played multiple times while
only producing a state change exactly once, and always
returning the same result message. It is idempotence
that describesthis“reliable” interaction replay.

A direct consequence of our observation that what
we need is idempotence is that we can handle
functional interactions (i.e. interactions with functional
components [2]) trivially. Functional components have
no effect on state and always provide the same
response to the same inpuit.

3.2. Non-ldempotent I nteractions
Idempotence permits interactions to be replayed

without logging. Conversely, any non-idempotent
interaction precludes it. Logging enables us to replay
non-idempotent interactions by using the logged
results. This turns their non-determinism into
deterministic replay. But without logging, this is not
possible.

Thus, we cannot permit LLcom’s to interact with
or read external (and hence non-deterministic) system
state or affect external state outside of Tcom
interactions. While a read does not change state, there
is no guarantee that replaying the interaction will
produce the same result. Thus reads, which are possible
with Pcom’s, cannot be permitted for LLcom’'s.  For
interactions that change external state, the situation is
worse.  We can have multiple executions, hence
violating exactly-once execution, as well as having
different results returned.  Hence, such interactions
cannot be permitted. Even with Pcom’'s that do log
interactions, such interactions cannot be guaranteed to
be idempotent should a failure occur during the
interaction, i.e. prior to the Pcom logging the
interaction.

3.3. Deterministic Interaction Order

The contracts for each interaction guarantees
idempotence for the interaction [1, 5]. But thisis only
one source of nondeterminism for which logging was
exploited. Logging in Pcom’s is also used to remove
the nondeterminism resulting from the order of
interactions.

Consider a long-lived object, implemented as a
Pcom. It will nhormally become active viaacall to one
of its methods from some, perhaps unknown, other
component. We usually know neither which method
will be invoked nor the identity of the invoking
component. Both these aspects are captured in Pcom’s
vialogging.

With an LLcom, of course, we have no log to rely
upon. Hence we need to insist that al interactions arise
via a deterministic replay of idempotent interactions.
An easy case to see is when an LLcom represents the
execution of a single request to a single method. The
method may call out to other components (using
idempotent interactions), and if it is single threaded, the
order of execution is completely determined by the
code that it executes and the results of the idempotent
interactions encountered during execution.

It is tempting to simply end the discussion here. A
single procedure, whose execution is single threaded,
and whose interactions are all request/reply, surely can
be realized as an LLcom (though there is one more
issue to deal with, which we discuss in the next
section). But, in fact, we can permit more than this.



What is required is that the LLcom execution
deterministically identify the next interaction as to the
kind of interaction (send or receive) and which
component the interaction is with. If it is a message
send, then clearly this will be true as it is the
component’s deterministic execution that leads to the
message send. It isthe receive style interactions whose
determinism needs to be scrutinized.

For a receive message that is pat of a
request/reply setting, it is clear that the reply (a
message receive) is from the recipient of the request
message, and the reply message is awaited at a
deterministic point in the component execution. For
other receives, we must be more guarded. Clearly, truly
nondeterministic receives must be excluded. But some
receives are not ruled out. For example, an LLcom
might receive a series of requests from a given client
component in what might be called a conversation. In
such a case, we would know that the initial client would
be the next sender of a message for which we are
waiting. During replay, when execution reaches the
state where the message is due, we could re-request the
message from the client.

3.4. Functional Initiation

The entire history of an LLcom must be replayable
without logging. That is what we described above.
But another source of nondeterminism is the way that
logical components are named and mapped to the
underlying physical resources. That nondeterminism
needs to be removed without our requiring that this
information be logged, which is what is done in
Phoenix/App [2, 3].

Thus, we require that an LLcom have what we call
a “functional” initiation or creation. This means that
from what is in the creation message, the entire
information about the identity of the LLcom must be
derivable. This requirement permits a re-execution of
this creation message send to produce a component that
is logicaly indistinguishable from any earlier
incarnation. The initiating component can, in fact,
create an LLcom multiple times such that al instances
are logically identical. Indeed, the initiator component
might, during replay, create the LLcom in a different
part of the system, e.g. a different application server.

The interactions of the LLcom, regardless of where
itisinstantiated, are all treated in exactly the same way.
During replay, any Tcom or Pcom whose interaction
was part of the execution history of the LLcom will
respond to the re-instantiated LLcom exactly the same
way, regardless of where the LLcom executes.

3.5. Pragmatics of Short Lifetimes

An LLcom has no log. Hence, it is meaningless to
talk about checkpointing its state so as to shorten its
recovery time. Whenever an LLcom crashes or is de-
alocated to free up resources to enable scalability or
other system management goals, it can be re-created
only via complete replay of its entire execution history,
starting from its initiation message.  Obvioudly it is
desirable to perform this replay quickly to achieve high
availability and minimize system overhead. This
argues for keeping the lifetime of LLcom’s short.

It isimportant to understand what “short” meansin
this context. An LLcom relies upon other components
for logging its interactions. So the replay time is
governed by (1) LLcom execution time, and (2) the
time required for other components to respond to its
replayed interactions. The time involved in (2) will
usualy be much shorter than the original execution
time, since other components will usually not need to
re-execute requests during replay. Rather, they will
normally simply look up the messages sent to them by
the LLcom and generate replies based on information
that they have retained in a table. So lifetime will
usualy be afunction of LLcom execution path plus the
number of interactions times the replay time for each
interaction, not the original time required to execute
code to reproduce the result of the original interaction.

Keeping LLcom lifetime short, while important, is
a pragmatic consideration. Long lived LLcom’'s will
work correctly, subject to the other considerations
addressed here. It is their practica vaue that
diminishes astheir lifetime increases.

A system that implements LLcom’'s may want to
be able to determine lifetime in some syntactic way
prior to deploying the componentsin alive system. An
easy way to do thisisto preclude loops and perhaps to
impose a limit on the number of calls that an LLcom
can make or can receive. This permits us to know the
execution path of the LLcom and the number of
interactions in its lifetime. Perhaps less restrictive
conditions could also be satisfactory.

One important point to stress is that at the end of
an LLcom lifetime (indeed this is true for Pcom's as
well), it goes “stateless’. At that point, thereis no state
that needs to persist. For example, if an LLcom's
lifetime is bracketed by a method call/return, then once
its caller logs the return message, there is no longer any
state that needs to be recovered. At that point, replay
of the LLcom is no longer necessary. An LLcom can
be deallocated at this point.



4. Detecting Failures and Recovering

4.1. The Role of the Initiator Component

The initiator component, i.e. the component
making the initiating call, must aso initiate recovery
for the LLcom. Unlike Pcom’s, where the
infrastructure hosting the Pcom supports a log and a
recovery manager that handles recovery for loca
components, with LLcom’s there is no log. So even
were the infrastructure to have a recovery manager, it
could not recover the LLcom. To provide LLcom
recovery, theinitiation call hasto be replayed.

Because the initiator Pcom must replay the
initiation call for LLcom recovery to happen, it must
also be able to detect an LLcom's failure. Detecting
failure requires that the initiator expect a message from
its initiated LLcom and fail to receive it after some
timeout period. While this expected message can be a
“ping”, it is clearly more useful if it is a reply to a
Pcom request.

Because of these constraints, LLcom system
interactions and configurations are more restricted than
for Pcom’'s. The initiator needs execution control to
return to it in some way from every LLcom that it
initiates. If can send multiple messages to an LLcom
that it initiates, but it must always reach a state in
which a message is expected from the LLcom. It isthe
failure of such a message to arrive that triggers the
initiator to begin recovery via replay of the initiating
message.

A component can initiate more than one LLcom.
And an LLcom can initiate other LLcom’'s. But the
initial LLcom in the system must be initiated by a
Pcom. These requirements ensure that LLcom's are
recoverable. The Pcom initiating the first LLcom is
independently recoverable vialogging. Other LLcom's
are recoverable either directly by the Pcom or by an
LLcom that is recoverable by the Pcom. The
originating Pcom makes this “recursion” well founded.
Thus a Pcom can initiate a “tree of LLcom’'s’ and
successfully recover them.

LLcom's must be terminated as well. One way to
do this is to impose responsibility on the initiating
component. It must always await a message from the
LLcom whenever the LLcom is active, so that it can
provide recovery. Thisalso meansthat it can terminate
the LLcom via afina message. However, this may not
be essential. LLcom's that are inactive for a
sufficiently long time might simply be deallocated as
they can be re-instantiated via replay if they are needed
again.

Logging need not be forced when a Pcom interacts
with an LLcom that it initiates. The initiating call is an

example of the multi-call optimization. Further, there
is no need to force log subseguent interactions. What
is on the stable log in this case is useful solely to
optimize Pcom recovery. In all cases, the LLcom is
guaranteed to be restartable from its initiating call, and
subsequent replay of interactions with it is entirely
deterministic. So Pcom replay, as long as it includes
replay of an LLcom's initiating call, need not even log
LLcom interactions, except to optimize its own replay.

Should the LLcom be aive during Pcom replay
and only have retained information about its last call
from the Pcom, it needs to self-destruct so that its
complete replay is possible.  When the LLcom no
longer exists at a middle tier site, the site can respond
to the initiating Pcom that the message failed to be
delivered because the target does not exist. At this
point, the initiating Pcom can recover the LLcom by
replaying messages to it starting at itsinitiating call.

A Pcom must be prepared to replay an LLcom
from its initiating call forward. This makes Pcom
checkpointing during the LLcom lifetime more
complicated than were it interacting with another
Pcom. Any checkpoint must be sure to include the
LLcom initiating call together with the Pcom messages
to the LLcom before the checkpoint, so that the LLcom
can be recovered.

4.2. Minimizing Dependencies

LLcom’s, when failures occur, may have longer
outages than Pcom’s. Pcom’s can be recovered based
on loca logging. In Phoenix/App, a local monitor,
much like a monitor used for database recovery, is
deployed which looks for Pcom’s that need recovery.
When one is detected, the monitor brings up a recovery
process, points it at the Pcom’'s log, and initiates its
execution. In contrast, LLcom's require the replay of
the initiating call, which will usualy not be local.
Further, this call will only be replayed after the initiator
has timed out waiting for a message from the LLcom.
This suggests that the LLcom may be less responsive
when failures occur.

Consider a committed interaction contract (CIC)
[1, 3], used between a pair of Pcom’'s when they
interact. The sender of a message is responsible for
guaranteeing message and state persistence.  In
particular, the sender may be required to re-transmit the
message upon being asked by the receiver, as part of
receiver recovery. Consider now an LLcom as the
sender with Pcom as receiver. Were both to fail, e.g., as
the result of a power failure or some site wide failure,
and then initiate recovery, the receiver would not be
able to recover until the LLcom is recovered. And this
might result in amuch larger delay. Theinitiator of the



LLcom would first need to re-send the initiating
message, and then the LLcom would need to replay
from its start up to the point where the message was
sent.

The delays described above can be avoided if,
instead of using a CIC for the interaction, an ICIC
(immediately committed interaction) were used [5]. In
that case, any message needed for the recovery of a
component interacting with an LLcom is known to be
logged at that component, and would not need to be
provided by a sending LLcom. Thus, instead of the
two step release of the responsibility for the message in
a CIC, the responsibility of the sender to resend the
message isreleased all at onceinan ICIC.

Using an ICIC, eg. as part of a request/reply
interaction in which the LLcom is the requestor, need
not lead to additional forced logging, though it may add
more data to thelog. The sender, whether under a CIC
or ICIC, periodically re-sends a message until it
receives an ACK that the message has arrived. Should
the message not have arrived (or not been logged), the
message is not part of the receiver’s recovered state-
hence is not needed during recovery. If it has arrived,
that is indicated by its being on the log, and so the
sender need not provide the message during receiver
recovery. Thus, the receiver can recover independently
of sender recovery.

Request/reply interactions avoid the need for a
message sender (in this case, the replier with its reply
message) from needing to continually resend the
message. The replier knows that the sender is
expecting a reply. It need only send the reply once,
knowing that the requestor will ask again for the reply
(viaresending the request). Thus, having an LLcom as
aninitiator of arequest/reply interaction does not result
in needless retransmissions of the reply message in the
case where the LLcom has failed. This is important as
the LLcom outage may be longer than would be the
case for alocally recovered Pcom.

4.3.LLcom’sto Aid Recovery

An LLcom not logging does not mean that it can't
be helpful in providing recovery for other components.
For example, the volatile tables that are constructed for
Pcom’s (and which in that case are “backed up” via
logging so as to be persistent) [3] might also be
maintained for LLcom’s. Thus, a message sending
LLcom might be expected to retain the message in a
message table so that it can be re-sent should another
component need it for recovery. The persistence of the
message (and of the volatile table) would be guaranteed
by the recovery of the LLcom. In the case where the
LLcom does not fail, but the receiver of the message

does, the LLcom isin a position to be as helpful as any
Pcom in hastening receiver recovery.

While LLcom’s and Pcom’'s have strong
similarities, we have aready seen that LLcom replay
limits LLcom interactions to idempotent ones. The
difference in how they are recovered requires us to
impose restrictions on how LLcom's are deployed in a
multi-tier application. We next present an architectural
proposal for how one might proceed in redlizing a
system that exploits LLcom’s.

4.4. A Simple Architectural Proposal

One easy way to structure a system involving
LLcom’s is to require LLcom interactions to be of the
request/reply form. This ensures that requestors await
replies. Failure of an LLcom reply to arrive in atimely
fashion triggers LLcom recovery. LLcom requestor
failure does not trigger repeated retransmissions of the
reply. The reply is simply held until the recovered
LLcom re-requestsit.

Restricting LLcom'’s to request/reply interactions
il leaves these components with great flexibility. An
LLcom has state that might live across multiple
interactions that it might make with other (backend)
components, where it is the requestor for the
interaction.  Further, it is capable of living across
multiple transactions, e.g. that it is involved with via
request/reply interactions with Tcom’s. Additionally,
such an LLcom can engage in a request/reply
“conversation” with its initiating Pcom or other
LLcom. While LLcom's have restrictions on their
deployment when compared with Pcom’s, they still
retain alarge degree of flexibility.

Many multi-tier systems should be amenable to
support by LLcom’s. LLcom’s are not restricted to the
three tier systems or the single transaction execution of
the e-transaction model. Rather, there can be multiple
layers of LLcom’s between front end client, realized as
a Pcom, and backend databases, realized as Tcom's.

One such deployment is illustrated in Figure 3.
The Pcom initiator of the first of potentiadly many
layers of LLcom will log the LLcom reply-- which
effectively summarizes the impact of al the LLcom's
calls and activity into the one message. This message,
when logged, permits this Pcom to be replayed from
the log. Should the LLcom call not return, it can be
replayed in an idempotent way. Hence recovery for the
initiator Pcom is provided. Thisisal done without the
LLcom'sdoing any logging whatsoever.

LLcom can also play the role of a Pcom in
interaction with a web service [14]. No middle tier
logging is needed. A Pcom client logs interactions
whichit may maketo oneor more LLcom’s in the



No Log in Testable
mid-tier State

Figure 3: The Phoenix/App system model
with logless component in middle tier. A
client  can have multiple message
interactions with a mid-tier LLcom that does
not log. The LLcom interacts with multiple
Tcom’s in multiple transactions.

middle tier. These LLcom’s would then interact with
web services using the web service interaction contract
(WSIC). The web service provides testable state.
The logging at client Pcom and at the web services is
sufficient for exactly once execution.

5. Example

To illustrate an application that can be supported
by logless components, consider an online book buyer
application. To be more specific, consider that the
application is for ordering textbooks from wholesalers.
The book buyer has a preference to use SupplierA as
the supplier for textbooks, either because of a better
price or because SupplierA has some special deal with
the book buyer. So it is SupplierA that isfirst asked to
satisfy an order. Only if SupplierA cannot provide
books for the order is SupplierB used.

Consider now Figure 4. Our client wants to order
50 books. So the book buyer application requests the
50 textbooks from SupplierA. SupplierA only has 35
of the books in stock and returns to the book buyer
confirming an order for 35. Our book buyer proceeds
to order the remaining 15 books from SupplierB.

The book buyer application is truly a stateful
application. The fact that SupplierA supplied 35 books
is state that needs to be carried over for a correct
interaction with SupplierB.  Previous approaches
require that this application either log its interactions,
or be implemented in two steps as part of a stateless
application.

Transaction
Boundary

Request [—» order
50 copies e < =_
of book Supplier A[" .a
\ 4
Order
- from >
Continue Supplier B -
State before,
between,
and after

transactions

Figure 4: An online book buyer application
that can be realized as a logless component.
This component needs to remember that
SupplierA provided 35 books so that it can
correctly order the remaining 15 books from
SupplierB.

However, our application (in the pink box) can be
redlized as a logless component..  The client,
requesting the 50 books, needs to make that request
persistent, either by logging it explicitly, or by logging
the user input so that replay can re-generate the request.
Each supplier needs to present an idempotent interface
where repeating the exact order will yield the same
result. Thus al nondeterminism has been captured at
either the client (who captures the request) or the back
end suppliers (who capture the order that was
submitted and provide idempotence). Hence the
middle tier application does not require any logging in
order to ensure persistence across system failures.

If the system crashes (or merely times out because
of slow servers or network), the client can re-submit his
request anywhere in the system, without concern about
log shipping (to send the state) or worries about double
ordering at the suppliers. Any duplicate request to a
back end supplier is guaranteed, because of
idempotence, to not trigger multiple executions, and
further to return the exact same result as the original
request.

It is even possible for two book buyer components
to be active simultaneously, so long as the client can
distinguish them and their reply message. There is
never more than a single order placed at each supplier.
And the orders are always the same number of books.



6. Discussion

6.1. Idempotent Read | nteractions

Normally, reads are not repeatable in an
idempotent way. That is, if we request information
from some data source at one time, and then ask again
later, there is no guarantee that the result returned will
be the same. Thus, were reads permitted for LLcom's,
during recovery we would need to re-execute the
interaction. Since the result is not guaranteed to be the
same, deterministic replay to the same state would not
be possible.

However, were we to perform a versioned read of
data based, e.g., on its timestamp, where the time
requested is a deterministic function of the parameters
of the initiating call to the LLcom, such a read would
be idempotent. We would read data as of some time,
and use the same time during redo recovery. So this
restricted form of read is permissible for LLcom’s.

6.2. Server Affinity

It is frequently useful for a client to return to the
same server as the one that handled a prior request.
Holding an LLcom lifetime to the period between
initial request and the reply to that request, as done in
the e-transaction model, makes LLcom replay much
like the replay of Pcom’s. That is, a Pcom interaction
(request/reply) is redone only if it is the last interaction
of the Pcom. However, if this requirement were
relaxed to permit multiple request/reply interactions
with an LLcom by itsinitiator, replay remains possible.

Permitting multiple request/reply interactions from
initiator Pcom to LLcom directly supports server
affinity. So long as there is no failover or other
redeployment, the LLcom remains instantiated at the
host system where it originated. The initiating Pcom
can re-access the LLcom with additional requests, and
the state continues to exist and to play arole in keeping
system execution efficient. Recovery, should one of
the later Pcom requests to the LLcom not return in a
timely way, now requires rebuilding the LLcom,
starting with the initiating request.

6.3. Garbage Collection

Middle-tier garbage collection of LLcom state
does not pose a problem. Indeed, we do not need to
know when an LLcom goes stateless. Clients can walk
away from their “sessions’ and none of this represents
alarge problem. Why? Because we can always replay
LLcom's from their initiating call to re-create them. So
a very simple time-out based reclamation method will
work fine.

Garbage collection of testable state "items'
maintained by backend servers remains a potentia
problem. However, it is a problem for Pcom and e-
transaction systems aswell. Contract release till needs
to be carefully considered. Essentialy, for LLcom'’s,
backend contracts cannot be released until the initiator
Pcom logs the final (terminating) LLcom reply. The e-
transaction papers [9, 10, 11] suggest doing the
garbage collection based on time-outs. The web
services paper [14] suggests that, at least in some cases,
never doing garbage collection might also be ok.

6.4. Architectural Advantages

Using request/reply, as with keeping LLcom
lifetimes short, is a pragmatic way of dealing with and
providing robust components in a distributed system.
That is, these two characteristics are not essential. One
could imagine a system that provided more flexibility,
at the cost of more complexity, and perhaps longer
delays when failures occur. So request/reply is a
pragmatic choice, and surely a good starting point for
functionality.

Even in a pragmatically constrained deployment,
LLcom’s go beyond the multi-call optimization by
entirely eliminating logging. LLcom deployment goes
beyond etransactions in  permitting client
conversations and multiple backend transactions.
Stateful LLcom's can retain state between calls in a
conversation from a client, and between calls to
servers, whether transactional or not. Indeed, when
interacting with a web service [14], an LLcom might
not even know whether no, one, or several transactions
were executed for a single request/reply interaction.

LLcom’'s simultaneously achieve the goals of
offering a natural stateful programming model, high
normal case performance, and high availability and
scalability, making them an excellent vehicle for
structuring and deploying enterprise applications.

7. References

[1] R. Barga, D. Lomet, G. Shegalov, and G. Weikum,
“Recovery Guarantees for Internet Applications’, ACM
Trans. on Internet Technology 4(3), 2004, pp. 289-328.

[2] R.Barga, S. Chen, and D. Lomet, “Improving Logging
and Recovery Performance in Phoenix/App”, ICDE
Conference, Boston, 2004, pp. 486-497.

[3] R. Barga, D. Lomet, S. Paparizos, H. Yu, and S.
Chandrasekaran, “ Persistent Applications via Automatic
Recovery”, IDEAS Conference, Hong Kong, 2003, pp.
258-267.



[4]

(5]

(6]

[9]

R. Barga and D. Lomet, “Phoenix Project: Fault
Tolerant Applications’, SGMOD Record 31(2) 2002,
pp. 94-100.

R. Barga, D. Lomet, and G. Wekum, “Recovery
Guarantees for Multi-tier  Applications’, ICDE
Conference, San Jose, 2002, pp. 543-554.

P. Bernstein, M. Hsu, and B. Mann, , Implementing
Recoverable Requests Using Queues’, ACM SIGMOD
Conference, Atlantic City, 1990, pp. 112-122.

P. A. Bernstein and E. Newcomer, Principles of
Transaction Processing, Morgan Kaufmann, 1996.

A. Borg, W. Blau, W. Graetsch, F. Herrmann, and W.
Oberle, “Fault Tolerance under UNIX”, ACM TOCS
7(1), 1989, pp. 1-24.

E.N. Elnozahy, L. Alvisi, Y. Wang, and D.B. Johnson,
“A Survey of Rollback-Recovery Protocols in Message-
Passing Systems’, ACM Computing Surveys, 34(3),
2002, pp. 375-408.

[10] S. Frglund and R. Guerraoui, “A Pragmatic
Implementation of e-Transactions’, |EEE Symposium.
on Reliable Distributed Systems, Nirnberg, 2000, pp.
186-195.

[11] S. Frglund and R. Guerraoui, “e-Transactions: End-to-
end Reliability for Threetier Architectures’, |EEE
Trans. on Software Eng. 28(4), 2002, pp. 378—-395.

[12] S. Frglund and R. Guerraoui, “Implementing e
transactions with Asynchronous Replication”, |EEE
Trans. on Parallel and Dist. Systems, 12(2), 2001, pp.
133-146.

[13] . Gray and A. Reuter, Transaction Processing:
Concepts and Techniques, Morgan Kaufmann, 1993.

[14] D. Lomet, “Robust Web Services via Interaction
Contracts’, TES Workshop, Toronto, 2004, pp. 1-14.



