CTL+FO Verification as Constraint Solving

Tewodros A. Beyene
Technische Universität München, Germany

Marc Brockschmidt
Microsoft Research Cambridge, UK

Andrey Rybalchenko
Microsoft Research Cambridge, UK

ABSTRACT

Expressing program correctness often requires relating program data throughout (different branches of) an execution. Such properties can be represented using CTL+FO, a logic that allows mixing temporal and first-order quantification. Verifying that a program satisfies a CTL+FO property is a challenging problem that requires both temporal and data reasoning. Temporal quantifiers require discovery of invariants and ranking functions, while first-order quantifiers demand instantiation techniques. In this paper, we present a constraint-based method for proving CTL+FO properties automatically. Our method makes the interplay between the temporal and first-order quantification explicit in a constraint encoding that combines recursion and existential quantification. By integrating this constraint encoding with an off-the-shelf solver we obtain an automatic verifier for CTL+FO.

Categories and Subject Descriptors

D.2.4 [Software Engineering]: Software/Program Verification; F.3.1 [Logics and Meanings of Programs]: Specifying and Verifying and Reasoning about Programs

General Terms

Verification, Theory

Keywords

Model Checking, Software Verification, Temporal Logic

1. Introduction

In specifying the correct behaviour of systems, relating data at various stages of a computation is often crucial. Examples include program termination [7] (where the value of a rank function should be decreasing over time), correctness of reactive systems [13] (where each incoming request should be handled in a certain timeframe), and information flow [11] (where for all possible secret input values, the output should be the same). The logic CTL+FO offers a natural specification mechanism for such properties, allowing to freely mix temporal and first-order quantification. First-order quantification makes it possible to specify variables dependent on the current system state, and temporal quantifiers allow to relate this data to system states reached at a later point.

While CTL+FO and similar logics have been identified as a specification language before, no fully automatic method to check CTL+FO properties on infinite-state systems was developed. Hence, the current state of the art is to either produce verification tools specific to small subclasses of properties, or using error-prone program modifications that explicitly introduce and initialize ghost variables, which are then used in (standard) CTL specifications.

In this paper, we present a fully automatic procedure to transform a CTL+FO verification problem into a system of existentially quantified recursive Horn clauses. Such systems can be solved by leveraging recent advances in constraint solving [3], allowing to blend first-order and temporal reasoning. Our method benefits from the simplicity of the proposed proof rule and the ability to leverage on-going advances in Horn constraint solving.

Related Work.

Verification of CTL+FO and its decidability and complexity have been studied (under various names) in the past. Bohn et al. [5] presented the first model-checking algorithm. Predicates partitioning a possibly infinite state space are deduced syntactically from the checked property, and represented symbolically by propositional variables. This allows to leverage the efficiency of standard BDD-based model checking techniques, but the algorithm fails when the needed partition of the state space is not syntactically derivable from the property.

Working on finite-state systems, Hallé et al. [10], Patthak et al. [15] and Rensink [16] discuss a number of different techniques for quantified CTL formulas. In these works, the finiteness of the data domain is exploited to instantiate quantified variables, thus reducing the model checking problem for quantified CTL to standard CTL model checking.

Hodkinson et al. [13] study the decidability of CTL+FO and some fragments on infinite state systems. They show the general undecidability of the problem, but also identify certain decidable fragments. Most notably, they show that by restricting first order quantifiers to state formulas and only applying temporal quantifiers to formulas with at most one free variable, a decidable fragment can be obtained. Finally, Da Costa et al. [8] study the complexity of checking properties over propositional Kripke structures, also providing...
2. Preliminaries

Programs.

We model programs as transition systems. A program P consists of a tuple of program variables v, an initial condition $init(v)$, and a transition relation $next(v, v')$. A state is a valuation of v. A computation π is a maximal sequence of states s_1, s_2, \ldots such that $init(s_1)$ and for each pair of consecutive states (s, s') we have $next(s, s')$. The set of computations of P starting in s is denoted by $\Pi_P(s)$.

CTL+FO Syntax and Semantics.

The following definitions are standard, see e.g. [5, 14].

Let T be a first order theory, and \models denote its satisfaction relation that we use to describe sets and relations over program states. Let c range over assertions in T and x range over variables. A CTL+FO formula φ is defined by the following grammar using the notion of a path formula π.

$$\varphi ::= \forall x : \varphi \mid \exists x : \varphi \mid c \mid \varphi \land \varphi \mid \varphi \lor \varphi \mid A\phi \mid E\phi$$

$$\phi ::= X\varphi \mid G\varphi \mid \varphi \pi$$

As usual, we define $F\varphi = (trueU\varphi)$. The satisfaction relation $P \models \varphi$ holds if and only if for each s such that $init(s)$ we have $P, s \models \varphi$. We define $P, s \models \varphi$ as follows using an auxiliary satisfaction relation $P, \pi \models \phi$. Note that d ranges over values from the corresponding domain.

$$P, s \models \forall x : \varphi \text{ iff for all } d \text{ holds } P, s \models \varphi[d/x]$$

$$P, s \models \exists x : \varphi \text{ iff exists } d \text{ such that } P, s \models \varphi[d/x]$$

$$P, s \models c \text{ iff } s \models T c$$

$$P, s \models \varphi_1 \land \varphi_2 \text{ iff } P, s \models \varphi_1 \text{ and } P, s \models \varphi_2$$

$$P, s \models \varphi_1 \lor \varphi_2 \text{ iff } P, s \models \varphi_1 \text{ or } P, s \models \varphi_2$$

$$P, s \models A\phi \text{ iff for all } \pi \in \Pi_P(s) \text{ holds } P, \pi \models \phi$$

$$P, s \models E\phi \text{ iff exists } \pi \in \Pi_P(s) \text{ such that } P, \pi \models \phi$$

$$P, s \models X\varphi \text{ iff } \pi = s_1, s_2, \ldots \text{ and } P, s_2 \models \varphi$$

$$P, s \models G\varphi \text{ iff } \pi = s_1, s_2, \ldots \text{ for all } i \geq 1 \text{ holds } P, s_i \models \varphi$$

$$P, s \models \varphi_1 U \varphi_2 \text{ iff } \pi = s_1, s_2, \ldots \text{ and exists } j \geq 1 \text{ such that } P, s_j \models \varphi_2 \text{ and } P, s_i \models \varphi_1 \text{ for } 1 \leq i < j$$

Quantified Horn Constraints.

Our method uses the EHSF [3] solver for forall-exists Horn constraints and well-foundedness. We omit the syntax and semantics of constraints solved by EHSF, see [3] for details. Instead, we consider an example:

$$x \geq 0 \rightarrow \exists y : x \geq y \land rank(x, y), \quad wf(rank).$$

These constraints are an assertion over the interpretation of the “query symbol” $rank$ (the predicate wf is not a query symbol, but requires well-foundedness). A solution maps query symbols into constraints. The example has a solution that maps $rank(x, y)$ to the constraint $(x \geq 0 \land y \leq x - 1)$.

EHSF resolves clauses like the above using a CEGAR scheme to discover witnesses for existentially quantified variables. The refinement loop collects a global constraint that declaratively determines which witnesses can be chosen. The chosen witnesses are used to replace existential quantification, and then the resulting universally quantified clauses are passed to a solver over decidable theories, e.g., HSF [3] or μZ [12]. Such a solver either finds a solution, i.e., a model for uninterpreted relations constrained by the clauses, or returns a counterexample, which is a resolution tree (or DAG) representing a contradiction. EHSF turns the counterexample into an additional constraint on the set of witness candidates, and continues with the next iteration of the refinement loop.

For the existential clause above, EHSF introduces a witness/Skolem relation sk over variables x and y, i.e., $x \geq 0 \land sk(x, y) \rightarrow x \geq y \land rank(x, y)$. In addition, since for each x such that $x \geq 0$ holds we need a value y, we require that such x is in the domain of the Skolem relation using an additional clause $x \geq 0 \rightarrow \exists y : sk(x, y)$. In the EHSF approach, the search space of a Skolem relation $sk(x, y)$ is restricted by a template function $\text{TEMP}(sk)(x, y)$. To conclude this example, we note that one possible solution returned by EHSF is the Skolem relation $sk(x, y) = (y \leq x - 1)$.

3. Constraint Generation

In this section we present our algorithm Gen for generating constraints that characterize the satisfaction of a CTL+FO formula. We also consider its complexity and correctness and present an example.

See Figure 3 Gen performs a top-down, recursive descent through the syntax tree of the given CTL+FO formula. It introduces auxiliary predicates and generates a sequence of implication and well-foundedness constraints over these predicates. We use “π” to represent the concatenation operator on sequences of constraints. At each level of recursion, Gen takes as input a CTL+FO formula φ_0, a tuple of variables v_0 that are considered to be in scope and define a state, assertions $init(v_0)$ and $next(v_0, v'_0)$ that describe a set of states and a transition relation, respectively. We assume that variables bound by first-order quantifiers in φ_0 do not shadow other variables. To generate constraints for checking if $P = (v, init(v), next(v, v'))$ satisfies φ_0 we execute $\text{Gen}(\varphi, v, init(v), next(v, v'))$.

Handling First-Order Quantification.

When φ_0 is obtained from some φ_1 by universally quantifying over x, we directly descend into φ_1 after adding x to the scope. Hence, the recursive call to Gen uses $v_1 = (v_0, x)$. Since $init(v_0)$ defines a set of states over v_1 in which x ranges over arbitrary values, the application $\text{Gen}(\varphi_1, v_1, init(v_0), \ldots)$ implicitly requires that φ_1 holds for arbitrary x. Since the value of x is arbitrary but fixed within φ_1, we require that the transition relation considered by the recursive calls does not modify x and thus extend $next$ to $next(v_0, v'_0) \land x' = x$ in the last argument.

When φ_0 is obtained from some φ_1 by existentially quantifying over x, we use an auxiliary predicate aux that implicitly serves as witness for x. A first constraint connects the set of states $init(v_0)$ on which φ_0 holds to hold with $aux(v_1)$, which describes the states on which φ_1 holds to hold. We require that for every state s allowed by $init(v_0)$, a choice of x exists such that the extension of s with x is allowed by $aux(v_1)$. Then, the recursive call $\text{Gen}(\varphi_1, v_1, aux(v_1), \ldots)$ generates constraints that keep track of satisfaction of φ_1 on arbitrary x allowed by $aux(v_1)$. Thus, $aux(v_1)$ serves as a restriction of the choices allowed for x. Again, we enforce rigidity of x by adding $x' = x$ to the next relation.
GEN(φ₀, v₀, init(v₀), next(v₀, vₐ₀)) =
match φ₀ with
| ∀x : φ₁ ⇒
 let v₁ = (v₀, x) in
 GEN(φ₁, v₁, init(v₁), next(v₁, vₐ₁) ∧ x' = x)
| ∃x : φ₁ ⇒
 let v₁ = (v₀, x) in
 let aux = fresh symbol of arity |v₁| in
 init(v₀) → ∃x : aux(v₁),
 GEN(φ₁, v₁, aux(v₁), next(v₁, vₐ₁) ∧ x' = x)
| c ⇒
 init(v₀) → c
| EFφ₁ ⇒
 let inv, aux = fresh symbols of arity |v₀| in
 let rank = fresh symbol of arity |v₀| + |v₀| in
 init(v₀) → inv(v₀),
 inv(v₀) ∧ ¬aux(v₀) → ∃v₁ : next(v₀, vₐ₁) ∧ inv(v₁) ∧ rank(v₀, v₁),
 wf(rank),
 GEN(φ₁, v₀, aux(v₀), next(v₀, vₐ₀))

GEN(φ, v, init(v), next(v, v')) computes a constraint that is satisfiable if and only if P ⊨ φ.

Proof. (sketch) We omit the full proof here for space reasons. We proceed by structural induction, as the constraint generation of the algorithm GEN. Formally, we prove that the constraints generated by GEN(φ₀, v₀, init(v₀), next(v₀, vₐ₀)) have a solution if and only if the program P = (v₀, init(v₀), next(v₀, vₐ₀)) satisfies φ₀. The base case, i.e., φ₀ is an assertion c from our background theory T, is trivial.

As example for an induction step, we consider φ₀ = ∃x : φ₁. To prove soundness, we assume that the generated constraints have a solution. For the predicate aux, this solution is a relation S_aux that satisfies all constraints generated for aux. For each s with init(s), we choose T_x such that (s, T_x) ∈ S_aux. As we require init(v₀) → ∃x : aux(v₀, x), this element is well-defined. We now apply the induction hypothesis for P' = ((v₀, x), aux(v₀, x), next(v₀, vₐ₀) ∧ x' = x) and φ₁. Then for all s with init(s), we have P', (s, T_x) ⊨ φ₁, and as P' is not changing x by construction, also P', (s, T_x) ⊨ φ₁[S'_{aux}/x]. From this, P, s ⊨ φ₀ directly follows.

For completeness, we proceed analogously. If P, φ₀ | holds, then a suitable instantiation T_x of x can be chosen for each s with init(s), and thus we can construct a solution for aux(v₀, x) from init(v₀). □

Example.
We illustrate GEN (see Figure 1) on a simple example. We consider a property that the value stored in a register v can grow without bound on some computation.

∀x : v = x → EF(v > x)

This property can be useful for providing evidence that a program is actually vulnerable to a denial of service attack. Let init(v) and next(v, v') describe a program over a single variable v.

We apply GEN on the property and the program and obtain the following application trace (here, we treat → as expected, as its left-hand side is a background theory atom).

GEN(∀x : v = x → EF(v > x), v, init(v), next(v, v'))

GEN(v = x → EF(v > x), (v, x), init(v), next(v, v') ∧ x' = x)

GEN(v = x → aux(v, x), (v, x), init(v), next(v, v') ∧ x' = x)

GEN(EF(v > x), (v, x), aux(v, x), next(v, v') ∧ x' = x)

This trace yields the following constraints.

init(v) → (v = x → aux(v))

aux(v) → inv(v, x)

inv(v, x) ∧ ¬(v > x) → ∃v', x' : next(v, x, v', x') ∧ x' = x

∧ inv(v', x') ∧ rank(v, x, v', x')

wf(rank)

Note that there exists an interpretation of aux, inv, and rank that satisfies these constraints if and only if the program satisfies the property.

4. Evaluation

In this section we present CTLFO, a CTL+FO verification engine. CTLFO implements the procedure GEN and applies Ehsf to solve resulting clauses.

We run CTLFO on the examples OS frag. 1, . . . , OS frag. 4 from industrial code from [6] Figure 7. Each example consists of a program and a CTL property to be
We have modified the given properties to lift the CTL formula to CTL+FO. As example, consider the property \(AG(a = 1 \rightarrow AF(r = 1)) \). One modified property to check could be \(3x : AG(a = x \rightarrow AF(r = 1)) \), and another one is \(AG(\exists x : (a = x \rightarrow AF(r = 1))) \). By doing similar satisfiability-preserving transformations of the properties for all the example programs, we get a set programs whose properties are specified in CTL+FO as shown in Table 1. For each pair of a program and CTL+FO property, we generated two verification tasks: proving \(\phi \) and proving \(\neg \phi \). While the existence of a proof for a property \(\phi \) implies that \(\neg \phi \) is violated by the same program, we consider both properties to show the correctness of our tool.

We report the results in Table 1. √ (resp. ×) marks the cases where CTLFO was able to prove (resp. disprove) a CTL+FO property. T/O marks the cases where CTLFO was not able to find either a solution or a counter-example in 600 seconds.

Table 1: Evaluation of CTLFO on benchmarks from [6].

<table>
<thead>
<tr>
<th>Property (\phi)</th>
<th>(\models_{\text{CTL+FO}} \phi)</th>
<th>(\models_{\text{CTL+FO}} \neg \phi)</th>
</tr>
</thead>
<tbody>
<tr>
<td>P1 2x : AG(a = x \rightarrow AF(r = 1))</td>
<td>√</td>
<td>×</td>
</tr>
<tr>
<td>AG(\exists x : a = x \rightarrow AF(r = 1))</td>
<td>×</td>
<td>√</td>
</tr>
<tr>
<td>P2 2x : EF(a = x \rightarrow AF(r \neq 0))</td>
<td>√</td>
<td>×</td>
</tr>
<tr>
<td>EF(\exists x : a = x \rightarrow EF(r \neq 0))</td>
<td>×</td>
<td>√</td>
</tr>
<tr>
<td>P3 2x : AG(a = x \rightarrow EF(r = 1))</td>
<td>×</td>
<td>√</td>
</tr>
<tr>
<td>AG(\exists x : a = x \rightarrow EF(r = 1))</td>
<td>√</td>
<td>×</td>
</tr>
<tr>
<td>P4 2x : EF(a = x \rightarrow AG(r \neq 1))</td>
<td>√</td>
<td>×</td>
</tr>
<tr>
<td>EF(\exists x : a = x \rightarrow AG(r \neq 1))</td>
<td>×</td>
<td>√</td>
</tr>
<tr>
<td>P5 2x : AG(s = x \rightarrow AF(a = x))</td>
<td>×</td>
<td>√</td>
</tr>
<tr>
<td>AG(\exists x : s = x \rightarrow AF(a = x))</td>
<td>√</td>
<td>×</td>
</tr>
<tr>
<td>P6 2x : EF(s = x \rightarrow AG(a = x))</td>
<td>√</td>
<td>×</td>
</tr>
<tr>
<td>EF(\exists x : s = x \rightarrow AG(a = x))</td>
<td>×</td>
<td>√</td>
</tr>
<tr>
<td>P7 2x : AG(s = x \rightarrow EF(a = x))</td>
<td>×</td>
<td>√</td>
</tr>
<tr>
<td>AG(\exists x : s = x \rightarrow EF(a = x))</td>
<td>√</td>
<td>×</td>
</tr>
<tr>
<td>P8 2x : EF(s = x \rightarrow AG(a = x))</td>
<td>√</td>
<td>×</td>
</tr>
<tr>
<td>EF(\exists x : s = x \rightarrow AG(a = x))</td>
<td>×</td>
<td>√</td>
</tr>
<tr>
<td>P9 3x : AG(a = x \rightarrow AF(r = 1))</td>
<td>√</td>
<td>×</td>
</tr>
<tr>
<td>AG(\exists x : a = x \rightarrow AF(r = 1))</td>
<td>×</td>
<td>√</td>
</tr>
<tr>
<td>P10 \forall x : EF(a = x \rightarrow AG(r \neq 1))</td>
<td>T/O</td>
<td>×</td>
</tr>
<tr>
<td>EF(\exists x : a = x \rightarrow EG(r \neq 1))</td>
<td>T/O</td>
<td>×</td>
</tr>
<tr>
<td>P11 2x : AG(a = x \rightarrow EF(r = 1))</td>
<td>√</td>
<td>×</td>
</tr>
<tr>
<td>AG(\exists x : a = x \rightarrow EF(r = 1))</td>
<td>×</td>
<td>√</td>
</tr>
<tr>
<td>P12 2x : EF(a = x \rightarrow AG(r \neq 1))</td>
<td>√</td>
<td>×</td>
</tr>
<tr>
<td>EF(\exists x : a = x \rightarrow AG(r \neq 1))</td>
<td>×</td>
<td>√</td>
</tr>
<tr>
<td>P13 2x : AF(\neg u \lor AF(r = u))</td>
<td>√</td>
<td>×</td>
</tr>
<tr>
<td>EF(\exists x : a \neq EF(\neg u \lor AF(r = u)))</td>
<td>×</td>
<td>√</td>
</tr>
<tr>
<td>P14 2x : EG(\neg u \lor AG(r = u))</td>
<td>√</td>
<td>×</td>
</tr>
<tr>
<td>EF(\exists x : a \neq EG(\neg u \lor AG(r = u)))</td>
<td>×</td>
<td>√</td>
</tr>
</tbody>
</table>

proven. We have modified the given properties to lift the CTL formula to CTL+FO. As example, consider the property \(AG(a = 1 \rightarrow AF(r = 1)) \). One modified property to check could be \(3x : AG(a = x \rightarrow AF(r = 1)) \), and another one is \(AG(\exists x : (a = x \rightarrow AF(r = 1))) \). By doing similar satisfiability-preserving transformations of the properties for all the example programs, we get a set programs whose properties are specified in CTL+FO as shown in Table 1. For each pair of a program and CTL+FO property, we generated two verification tasks: proving \(\phi \) and proving \(\neg \phi \). While the existence of a proof for a property \(\phi \) implies that \(\neg \phi \) is violated by the same program, we consider both properties to show the correctness of our tool.

We report the results in Table 1. √ (resp. ×) marks the cases where CTLFO was able to prove (resp. disprove) a CTL+FO property. T/O marks the cases where CTLFO was not able to find either a solution or a counter-example in 600 seconds.

5. Conclusion

This paper presented an automated method for proving program properties written in the temporal logic CTL+FO, which combines universal and existential quantification over time and data. Our approach relies on a constraint generation algorithm that follows the formula structure to produce constraints in the form of Horn constraints with forall/exists quantifier alternation. The obtained constraints can be solved using an off-the-shelf constraint solver, thus resulting in an automatic verifier.

6. References