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ABSTRACT

Efficient tools are indispensable in the battle against
software bugs during both development and main-
tenance. In this short paper, we introduce two tech-
niques that target different phases of an interactive
and iterative debugging session. To help fault diag-
nosis, we split the costly computation of backward
slicing into online and offline, and employ incre-
mental updates after program edits. The result is a
vast reduction of slicing cost. For the benchmarks
we tested, slices can be computed in the range of
seconds, which is 0.3%˜5% of the unmodified slic-
ing algorithm.

The possibility of running slicing in situ and with
instant response time gives rise to the possibility of
editing-time validation, which we call dryrun. The
idea is that a pair of slices, one forward from root
cause and one backward from the bug site, defines
the scope to validate a fix. This localization makes
it possible to invoke symbolic execution and con-
straint solving that are otherwise too expensive to
use in an interactive debugging environment.

1 INTRODUCTION

Debugging is both black art and tough business.
There does not appear to be a silver bullet that ad-
dresses all the major pain points of a developer. In
part, this is because debugging itself involves phas-
es that are qualitatively different.

Consider a typical debugging session after a bug
report is submitted. Assuming that the fault site has
been clearly identified, the first phase is to trace
back towards the root cause by reasoning about the
causality chains. This phase may itself be iterative,
as the developer adds new logs and/or mutates in-
puts to collect additional evidence. Once the root
cause is discovered, the developer must select a-
mong a number of candidate fixes and apply the
best one. Typically, the patched program needs to
be compiled and re-run against test cases. Before the
patch is officially released, peer review is required.

The most expensive resource in this whole pro-
cess is the human time. However, for large soft-
ware packages and especially in the cloud comput-
ing era, securing hardware resources and perform
re-deployment, re-execution and log collection also
entail non trivial cost.

It is evident that different tools are needed in
these different phases, although they share the com-
mon objective to reduce primarily the human time.
For example, during the phase of analyzing the root
cause, the most effective tool should address the te-
dious issue of causality reasoning. Today, most if
not all debugging start with printed logs. Logs can
be valuable as they represent a snapshot of execu-
tion path as well as selected concrete values of cer-
tain states. Logs, however, can be both incomplete
and voluminous. The fact that reasoning with logs
remains the dominant practice suggests that effec-
tive and practical tools in causality reasoning have
not matured to the point of adoption.

The best tool to identify causality chains is slic-
ing, which constructs a collection of codes called a
slice [9]. Basically, starting from a selected state-
ment, a forward slice is the collection of program
statements that this statement has effect on, and a
backward slice is the collection of program state-
ments that affects this statement. Taken together,
they are powerful concepts to reveal data depen-
dency. Slicing can be further divided into dynamic
and static slicing. Dynamic slicing [1, 17], which
records the exact execution path, requires heavy in-
strumentation, imposes high runtime overhead, and
is therefore seldom used in practice. Static slicing
is typically done at compile time and has zero run-
time overhead. Lacking enough dynamic informa-
tion, however, static slicing can be ambiguous.

In our previous work [16], we show that logging
and slicing can complement each other: log entries
can prune uncertainties of slices; slices, on the oth-
er hand, represent the developer’s focus in her rea-
soning about the bugs, and thus can prune irrelevant
logs. Moreover, new log entries can be suggested or



even automatically inserted to improve slicing pre-
cision, and help to zoom in the root cause in an in-
teractive manner.

While the approach appears promising, it has
made the assumption that static slicing can be in-
tegrated in the interactive and iterative debugging
process, instead of being a one-time offline process;
any new updates will render previous computed s-
lices stale. Such updates should be done in situ and
instantaneously. Unfortunately, our previous exper-
iments have shown that employing classic slicing
method is prohibitively slow: one of the Hadoop bug
that we identified took 10 minutes to produce the s-
lice.

Our first contribution is the implementation of
online slicing, bringing down slicing updates to sec-
onds, instead of minutes. The magnitude of perfor-
mance improvement makes it possible to use slicing
as a primary tool at debugging time, in a responsive
and interactive manner. This is achieved by splitting
slicing into offline and online portion, and employs
a combination of techniques to make updates incre-
mental and local.

Once a fix is applied, the updated software must
be thoroughly tested. Doing so requires both re-
source and also human time. Worse yet, if a partial
fix is prematurely released, the cost is even higher;
for security bug, the incomplete fix actually reveals
the vulnerability even further. One would argue that
the process of understanding the root cause and de-
vising the fixes has intrinsically performed the vali-
dation. However, as bugs become more complex, so
do their patches. Nearly 70% of patches are buggy
in their first release [8]; and 14.8% ˜ 24.4% of fixes
released out in large OSes are reportedly bad patch-
es [11]. Clearly, we need some way to validate the
patches as early as possible.

In the same spirit of bringing slicing online, we
propose the idea of editing-time patch validation us-
ing a concept called dryrun. Conceptually, the for-
ward slice rooted at the (supposedly) root cause will
intersect the backward slice rooted at the bug site.
The resulting set, called RB-scope, defines the im-
pact scope of the patch. The basic idea is that, for a
patch to be effective it must satisfy two conditions.
First, it must be located inside the RB-scope. Sec-
ond, it should disable conditions that has led to the
original failure. Thus, by using symbolic execution

and constraint solving (and possibly symbolic mod-
el checking), we can perform a step of patch val-
idation even before the code is compiled. This is a
concept that is still being developed. However, man-
ual inspection upon a few bugs reveals that this may
be a new and promising direction.

The rest of the paper is organized as follows.
Section 2 gives an overview, followed by descrip-
tion of online slicing and dryrun validation. We
present preliminary result in Section 3, along with
a short discussion. Section 4 covers related work,
and we conclude with Section 5.

2 SYSTEM ARCHITECTURE

Our system provides a set of fundamental services
to support bug diagnosis and patch validation (Fig-
ure 1). These services, in turn, rely on a number
of building blocks. By themselves, these building
blocks perform classic static analysis. However, we
pay particular attention in making them rapidly re-
sponsive in an iterative and interactive debugging
session.
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Figure 1: System overview.

Our system is split into offline and online por-
tion. The offline engine performs expensive but
(more) precise static analysis, and stores the results
in a database, which are loaded into an in-memory
cache at the beginning of the session. Online slic-
ing (see Section 2.1) is triggered by developer for
bug diagnosis or new edits for patches, the result-
s can be committed to the database at user’s con-
trol. Online slicing also feeds the slices to the dryrun
engine, which calls symbolic execution and/or con-
straint solver to perform in-edit validation (see Sec-



tion 2.2). Finally, log information are collected dur-
ing runtime to help refine the precision.

2.1 Online Slicing

In our system, slicing plays an important role, it
needs to be as fast as possible, and at the same time
maintain precision. Program slicing essentially i-
dentifies the slice of a variable at given program
points by analyzing both data and control dependen-
cies from program dependence program (PDG) [4].
Data dependency can be computed from reaching
definitions analysis, while control dependency can
be derived from control flow graph (CFG) by build-
ing post-dominator trees. In our current approach,
we focus on the data dependencies and leave control
dependencies for future work, but compensate the
loss of precision partially by incorporating log en-
tries. Compared with computing the CFGs and call
graph (CG), data flow analysis is generally much
more expensive and thus takes a dominant part of
the runtime of slicing.

As is the case for most static analysis, speed
and precision is a difficult tradeoff: improving pre-
cision requires more extensive analysis, and thus
takes longer to complete. Therefore, in order to
achieve online slicing, we separate the analysis into
online and offline parts. Intuitively, the most time-
consuming but relatively stable analysis is comput-
ed once offline, and the results are stored in the
database and loaded on-demand.

In our system, we put the entire program inter-
mediate representation as well as the corresponding
CFGs and CG into disk in binary format like ELF1;
alternatively we can store the semantic information
in BDB thus using bddbddb [10] to query the result.
More importantly we also put the analysis results of
alias, reaching definitions, as well as the resulting
PDG into the offline database. We do not keep slic-
ing results since the slicing criterion is selected by
the user and unknown a priori.

Given up-to-date PDGs and CG, computing both
backward slice and forward slice is straightforward
and cheap. This happens at the beginning of the
debugging session. The challenge arises when new
edits are introduced.

1http://en.wikipedia.org/wiki/
Executable_and_Linkable_Format

We investigated and implemented two approach-
es, demand-driven [3] and incremental [5] data flow
analysis. Due to space limitation, we will describe
the second approach. We first decompose edits in-
to the set of structural ones that changes CFGs and
CG of the program, and non-structural ones that do
not. Updating CFGs and CG is generally cheap. We
then incrementally re-compute the data flow analy-
sis. The data flow algorithm is iterative in nature,
potentially touching the entire program variables
and points. Provided that the edits are local, how-
ever, by propagating those changes outwards from
edit sites, the data flow analysis can typically arrive
fix point earlier [5].

As described in our previous work [16], slicing
and log analysis can complement each other. In par-
ticular, online slicing can leverage log entries to re-
fine related parts in graphs (both CFGs and CG)
(e.g. which branch has been taken).

2.2 Dryrun Validation

Once a patch is applied, it needs to be validated. Ex-
isting practises entail a chain of events: compilation,
deployment and running against test cases, submis-
sion for peer reviews and then release. Some of the
steps are costly and time-consuming. Worse yet, in-
complete patches will trigger the whole debugging
processes all over again, while exposing vulnerabil-
ity in between.

Dryrun follows our principle of applying static
analysis in situ, but doing so instantaneously at the
bug fixing time as soon as an edit is inserted. Its
goal is to do as much validation as possible before
the code even starts to get built.

In a nutshell, the intuition is that the intersection
of forward slice at the root cause with backward s-
lice starting at the bug site has defined the scope of
bug fixing and validation. We call the intersection
of the two slices the RB-scope. This “localization”
limits the scope of applying expensive but powerful
static analysis such as symbolic execution and con-
straint solving, and does so only on relevant states
identified by the slices.

The basic intuition behind dryrun is that, for
a patch to be valid it must satisfy two condi-
tions. First, it must lie in the RB-scope described
above. Second, the patch must disable some old
conditions and/or enforce the right constraints, such



1 /* fs/xfs/linux-2.6/xfs_acl.c */
2 static struct posix_acl *
3 xfs_acl_from_disk(struct xfs_acl *aclp)
4 {
5 const size_t size;
6 /* New patch */
7 - int count, i;
8 + unsigned int count, i;
9

10 count = be32_to_cpu(aclp->acl_cnt);
11 /* Partial Patch */
12 + if (count > XFS_ACL_MAX_ENTRIES)
13 + return ERR_PTR(-EFSCORRUPTED);
14 acl = posix_acl_alloc(count, flag);
15 ...
16 for (i = 0; i < count; i++) {
17 /* initialize the content of acl here. */
18 acl_e = &acl->a_entries[i];
19 ...
20 }
21 ...
22 }
23

24 /* fs/posix_acl.c */
25 struct posix_acl *
26 posix_acl_alloc(int count, gfp_t flags)
27 {
28 size_t size = sizeof(struct posix_acl) +
29 count * sizeof(struct posix_acl_entry);
30 struct posix_acl *acl = kmalloc(size, flags);
31 ...
32 }

Figure 2: Dryrun example from XFS filesystem.

that the bug will not manifest. A comprehensive
patch should disable all the violation of constraints,
whereas a partial patch disables only part of them.

We will illustrate the idea of dryrun with a bug of
integer overflow in the Linux kernel’s XFS filesys-
tem2, shown in Figure 2. Note that count is convert-
ed from aclp → acl cnt, which is directly read from
disk in line 10 thus can be any signed value. Given
a large count with positive value (e.g. 0x080000FF)
and both sizeof operations returns 16, integer over-
flow would occur at the multiply operation (line 27
in posix acl alloc). As a result, kmalloc() in line
28 allocates a smaller memory (i.e. 141) than count
dictates. It is worth to note that the two functions are
located at different files under different directories.

A patch was devised (line 12-13) that enforces a
upbound of count. The problem is that the attacker
can submit a negative value, completely bypass the
sanity check and yet still causes integer overflow,
leading to possible memory corruption.

2https://bugzilla.redhat.com/show_bug.
cgi?id=773280

We note that with program analysis, at the time
when count is used, we can derive a constraint:
count < SIZE MAX/sizeof (struct posix acl entry)
(from kmalloc()), and count > 0 (from the loop con-
straint in line 16). A forward symbolic execution a-
long the slice of count from line 12 shows that, with-
out the patch, no constraint is imposed. Further, it
indicates that the patch still leaves one side of the
constraints unsatisfied, indicating that the patch is
incomplete. An additional patch is added at line 7
˜ line 8. As evident in this example, the RB-scope
is small, consisting the intersection of forward slice
on count at line 10, and the backward slice on count
at line 16.

We have also found that in some other cases
symbolic execution and constraint solving are not
enough, since multiple paths (and hence slices) can
reach the bug site in non-deterministic fashion. As
such, symbolic model checking will show a con-
crete order of interleaving. The sweetspot is when
the distance between root cause and bug site is suf-
ficiently far such that pure mental reasoning is hard,
and yet close enough such that using slicing, thus
local application of symbolic execution, constraint
solving and model checking is cheap and effective.

3 IMPLEMENTATION AND PRELIMINARY
RESULTS

We have implemented most of the components of
online slicing as described in Section 2.1. For the
time being, we used an in-memory data structure to
implement the database. We leveraged Soot analysis
framework3 for constructing CFG, CG, and PDG.

We have integrated the slicing with log prun-
ing [16]. As program edits may invalidate the log
information, log pruning and log-based hybrid slic-
ing are only performed in the first iteration of slic-
ing. How to reuse valid logs across edits is one of
our future work. We are in the process of investigat-
ing more details of dryrun, and integrating symbol-
ic execution, constraint solving and symbolic model
checking.

We use Apache Velocity4 (88K LOC) and A-
pache Hadoop Common5 (174K LOC) as the

3http://www.sable.mcgill.ca/soot/
4http://velocity.apache.org/
5http://hadoop.apache.org/common/



benchmarks. We selected four bug reports for eval-
uation (three from Velocity and one from Hadoop
Common). The selection criterion is based on the re-
producibility of failures, clear identification of root
causes, and the size of patches.

The evaluation on Velocity is performed on a
typical developer’s machine with 2.80GHz dual-
core CPU and 4GB memory, running Windows 7.
The Hadoop case is run on a machine with 96GB
memory, running Ubuntu Linux, since its analysis
results are far bigger.

Initial Update &
Program Bug No. Offline Slicing Slicing

625 78.63 0.12 0.22
Velocity 685 71.28 3.80 3.71

651 74.42 1.87 2.06
Hadoop 4288 280.14 14.91 15.06

Table 1: Average run time of each step (sec.)

3.1 Results

We performed the following three steps and report
their running times. 1) Offline analysis; including
building CFGs and CG, exhaustive data flow anal-
ysis, and PDG construction. This the most time-
consuming step. 2) Online backwards slicing; to
prepare the developer for causality reasoning. The
slicing is rooted at the bug site, and takes the PDGs
and CG that is computed offline. 3) Slicing after
edits; it simulates the impromptu program edits,
based on the patches in the bug report. A patch for
bug fix may not represent the actual sequence of
edits during the debugging session, but we believe
that this is a reasonable approximation. We decom-
pose the changes into elementary edits and then per-
form the corresponding incremental updates on the
information computed by the offline step. The up-
dated PDGs and CG drive the re-computation of
online slicing: backward slicing to continue aiding
causality reasoning, and forward slicing in helping
dryrun-based validation.

Table 1 shows the analysis time of each step.
As expected, the offline part is the most time-
consuming, whereas the online part, especially the
incremental update, is significantly faster. This is
mainly due to the fact that the patches in these
bug cases are local and thus the incremental update
can complete very quickly. Slicing has to transi-

tively track dependencies (some of which are inter-
procedural), they are more expensive than the incre-
mental update, but they are quick enough to support
interactive debugging, where developers are likely
to make code inspection or edits between iterations
of slicing.

Since Hadoop Common is much larger and com-
plex than Velocity, its runtime is also much longer.
The call graph in Hadoop is 800% more than Veloc-
ity (408,038 versus 50,271), thus slicing has to take
into account more inter-procedure dependencies.

3.2 Discussion

Our results are encouraging. However, there are
many places to improve, some of them more im-
mediate than others. The use of a high performing
disk-based database will eliminate the need of large
memory, especially for large-scale packages such
as Hadoop. Similarly, slices could have been pre-
computed and/or cached. Also, to fully develop the
idea of dryrun, we need to look into more bug cases.

We have also learned a number of hard lessons,
resolving them comprise our longer term agenda.
Most of the lessons belong to the classic issue of
trading off precision with cost. The problem is al-
l the more significant for us, since running analy-
sis is directly on the critical path. Controlling the
aggressiveness of slicing, for instance the choice of
when to use context-sensitive slicing, whether con-
trol dependencies are important (several bug cases
show that they do), may take the path of learning
the surface features from empirical data in order to
be adaptive.

4 RELATED WORK

There is a large body of research work related to
our system, in the field of failure diagnosis and
test-driven development. In terms of failure diag-
nosis, there are broadly speaking three major direc-
tions: execution comparison [7, 8, 15], source code
and runtime information correlation [12, 13, 14, 2],
and slicing [9, 1]. All these works entail a tradeof-
f between cost and precision in various ways. Our
general approach combines runtime information to
make slicing more precise. However, we recognize
the need to integrate log-assisted slicing into an in-
teractive and iterative debugging experience, and
hence the challenge of handling slicing quickly.



Our technique of performing online slicing bor-
rows ideas from incremental data flow analysis [5]
and demand driven data flow analysis [3]. Most of
these ideas were proposed nearly two decades ago,
and were never tested in real settings. The complex
landscape of modern software as well the advance-
ment of hardware has made this line of work both
relevant and practical. As far as we know, this is
the first serious attempt to implement the algorithm-
s. As we have shown, while our results are encour-
aging, by exercising the algorithms in real, we have
uncovered a number of new research problems, such
as how to combine the algorithms in the best syn-
ergistical way, and how to improve precision while
keeping the cost down for practical use.

Development and testing are usually thought as
two closely related but temporally separate phases.
However, there have been proposals that integrate
the two more closely, such as continuous testing [6].
The idea is to integrate testing harness in IDE so as
to run test asynchronously, and notify developers if
regression exists. The hope is to improve the qual-
ity of a programming task. Dryrun shares the same
philosophy that validation should happen as early as
possible. However, dryrun focuses directly on vali-
dating whether a fix is sound, and does so by using
an array of powerful and sophisticated static analy-
sis tools such as symbolic execution and constraint
solver, and yet limit their expense by defining the
scope where the tools are applied. This novel ap-
proach potentially opens a new direction where ad-
vanced static tools can be applied.

5 CONCLUSION AND FUTURE WORK

Given that developers spend much of their time find-
ing bugs and fixing them iteratively and interactive-
ly in an IDE, we believe it’s time to bring more so-
phisticated analysis tool into editing time. We devel-
oped online slicing to rapidly response to program
change, and further leverage its power to perform
editing-time validation of fixes. While the prelim-
inary results are encouraging, much work remain-
s. Our future work includes optimizations to on-

line slicing to make better tradeoffs between pre-
cision and cost strategically, and to develop dryrun
methodology fully.
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