Analysis of Boolean Programs

Patrice Godefroid

Microsoft Research
pg@microsoft.com

Abstract

Boolean programs are a popular abstract domain for static-analysis-
based software model checking. Yet little is known about the com-
plexity of model checking for this model of computation. This pa-
per aims to fill this void by providing a comprehensive study of
the worst-case complexity of several basic analyses of Boolean
programs, including reachability analysis, cycle detection, LTL,
CTL, and CTL* model checking. We present algorithms for these
problems and show that our algorithms are all optimal by provid-
ing matching lower bounds. We also identify particular classes of
Boolean programs which are easier to analyse, and compare our re-
sults to prior work on context-free and pushdown model checking.

1. Introduction

Boolean programs are programs in which all variables have Boolean
type and which can contain recursive procedures. They are a popu-
lar abstract domain for static-analysis-based software model check-
ing, pioneered by the SLAM project [4]. SLAM verifies control-
flow dominated properties of Windows device drivers by abstract-
ing a C program with a Boolean program generated using pred-
icate abstraction (e.g., [20]). The Boolean program contains the
same procedures and control flow as the original program, but uses
Boolean variables to keep track of the values of predicates over
variables of the original program, abstracting its “data part”. The
level of abstraction can be adjusted iteratively and automatically by
changing the finite set of predicates being tracked, using a process
sometimes called “Counter-Example Guided Abstraction Refine-
ment” (CEGAR). Since SLAM, other tools have adopted Boolean
programs as an abstract domain for software model checking, such
as BLAST [22], YASM [21], TERMINATOR [15] and YOGI [19].

The main advantage of Boolean programs compared to finite-
state transition systems is that their stack allows a precise repre-
sentation of procedure calls, including recursion, while providing
a model of computation for which many interesting properties are
still decidable. Indeed, Boolean programs have the same expres-
siveness as pushdown systems [3], for which many properties of
interest, such as reachability and temporal-logic model checking,
are decidable [7], even though their set of reachable states can be
infinite.

Several algorithms for reachability analysis of Boolean pro-
grams have been proposed in the literature. For instance, [3] dis-
cusses a symbolic model checker for safety properties (reachability

[Copyright notice will appear here once ’preprint’ option is removed.]

Mihalis Yannakakis

Columbia University
mihalis@cs.columbia.edu

analysis) using BDDs as procedure summaries. [17] extends the
previous results to Linear Temporal Logic (LTL) model checking,
which can also check liveness properties with fairness constraints.
[24] discusses how to reduce reachability analysis of Boolean pro-
grams to SAT solving. More recently, [6] investigates how to use
SAT encodings, instead of BDDs, to represent procedures sum-
maries and to use a QBF solver for reachability analysis.

Yet, despite this prior work, little is known about the complexity
of model checking for Boolean programs. Indeed, all the algorithms
for analyzing Boolean programs discussed in prior work run in
time exponential in the size of the Boolean program, or worse —
sometimes runtime complexity is discussed explicitly, sometimes
such a discussion is omitted altogether. Moreover, no lower bounds
are discussed in prior work on analyzing Boolean programs, to the
best of our knowledge.

In contrast, the complexity of model checking for pushdown
automata, context-free processes and recursive state machines has
been studied extensively in the literature (e.g., [2, 7, 8]). However,
Boolean programs can be exponentially more succinct than ordi-
nary pushdown systems or recursive state machines. Therefore, the
program complexity of model checking for Boolean programs does
not follow directly from prior work on model checking for push-
down systems.

This paper aims to fill this void by providing a comprehen-
sive study of the worst-case complexity of several basic analyses
of Boolean programs, including reachability analysis, cycle detec-
tion, LTL, CTL and CTL* model checking. We present algorithms
(upper bounds) as well as matching lower bounds for all those
problems. In other words, all the algorithms presented in this pa-
per are optimal in the complexity-theoretic sense. For instance, we
show that reachability analysis for Boolean programs is EXPTIME-
complete. We also study precisely the program complexity of LTL,
CTL and CTL* model checking. Moreover, we identify particular
classes of Boolean programs which are easier to analyse.

This paper is organized as follows. In Section 2, we formally
define Boolean programs and compare them to other models of
computation. In Section 3, we study the complexity of reachability
analysis for Boolean programs. We also identify particular program
classes for which the complexity is lower, illustrating how vari-
ous features of Boolean programs contribute to the overall problem
complexity. We then discuss cycle detection and LTL model check-
ing in Section 4. In Section 5, we turn to the complexity of model
checking for branching-time properties expressed in the temporal
logics CTL and CTL*. Section 6 summarizes and discusses insights
gained by this work. We conclude in Section 7.

2. Boolean Programs

Boolean programs are imperative programs with the usual con-
structs of languages like C, that have Boolean variables, and which
can use nondeterminism and recursion. [4] describes in detail their
syntax and defines their semantics using their control flow graphs.

2012/7/10

Boolean programs are essentially recursive state machines ex-
tended with a finite set of Boolean variables. Therefore, we will
use the terms “Boolean program” and “Extended Recursive State
Machine” (ERSM) interchangeably in this paper.

2.1 Syntax

Formally, a (Boolean) Extended Recursive State Machine (ERSM)
A over a finite alphabet X is defined by a tuple (A1, ..., Ag, V),
where V is a finite set of global Boolean variables and each proce-
dure A; consists of the following pieces:

* A finite set V; of Boolean variables that are local to the pro-
cedure A;, a tuple V;'" C V; of input variables and a tuple
Veut C V; of output variables.

e A finite set IN; of nodes and a (disjoint) finite set B; of boxes,
or call sites.

e A labeling Y; : B; — {1,...,k} that assigns to every box
an index of one of the procedures (component machines),
A1, ..., Ay, and a pair of mappings 5i™, 37** which assign

to each box b € B; two tuples 3" (b), 3°“*(b) of variables in

Vi that are respectively the input and output arguments of the re-

cursive call represented by the box b, where | 3:™ (b)| = |V{,:”(wl

and 37" (b)| = [V, .

e A set of entry nodes En, C N,;, and a set of exit nodes

e A transition relation §;, where transitions are of the form
(u,G,0,C,v) where (1) the source u is either a node of
N; \ Ez;, or a pair (b,z), where b is a box in B; and z is an
exit node in Ex; for j = Y;(b); (2) the guard G is a Boolean
predicate on the variables in V; U V; (3) the label o is in 3; (4)
the command C' assigns new Boolean values to the variables in
V; UV as a function of the old values; and (5) the destination
v is either a node in N; or a pair (b, €), where b is a box in B;
and e is an entry node in En; for j = Y;(b).

We will use the term ports to refer to pairs (b, e), (b,) consist-
ing of a box b of a procedure A; and corresponding entry nodes e
and exit nodes x of the procedure A; called by b. We will use the
term vertices of A; to refer to its nodes and the ports of its boxes
that participate in some transition. We will often refer to a vertex
(b, e) as a call vertex and (b, x) as a return vertex.

We define the size |A| of an ERSM A to be the sum of the total
numbers of nodes, boxes, transitions and variables of A.

Remarks: 1. In the above definition we have allowed procedures
to have multiple entries (initial nodes) and exits (final nodes). In
the presence of variables, this is strictly speaking not necessary,
i.e., ERSMs where every procedure has a single entry and exit
are equally expressive, because we can use extra input and out-
put variables to specify different entries and exits. In fact, in a
straightforward translation of the code of a Boolean program to
an ERSM, the procedures will have a single entry and exit. A state-
ment like z := A;(y) in a procedure A; corresponds to a box b
with Y;(b) = j, 8:"(b) = y, and 52“*(b) = . We have allowed
multiple entries and exits here for consistency with the definition
of standard RSMs that do not have variables [2], where the multi-
plicity of entries and exits is essential.

2. It is convenient syntactically for procedures to receive inputs and
return outputs, although in the presence of global variables it is not
really essential to have explicitly input and output variables: a value
passed as argument to a procedure can be modeled using a global
variable which is assigned the argument value just before the pro-
cedure call and then copied immediately after the start of the called
procedure into a local variable of that procedure. Similarly, a return
value of a procedure can be modeled with a global variable which

is assigned the return value just before the return and then copied
immediately after the return into the local state of the calling pro-
cedure.

3. The syntax of the guards and commands of the transitions in
the definition is left flexible. For the complexity upper bounds, we
assume that the guards and commands are arbitrary predicates and
functions respectively that can be evaluated in polynomial time. For
the lower bound constructions, the guards are simple equality con-
ditions, and the commands are simple assignments.

4. In the above definition, all variables are Boolean. More gener-
ally, we could define ERSMs whose variables have other domains.
If all the variables have finite domains then we can clearly encode
them with Boolean variables, and the results of the paper apply.

2.2 Semantics

To define the executions of ERSMs, we first define the global states
and transitions associated with an ERSM. Let X denote a mapping
that associates a value to each variable in a set X of variables. We
assume all Boolean variables have a unique default initial value.
A (global) state of an ERSM A = (Aq,... A, V) is a tuple
(b1, 171)7 ooy (bry \7,), (u, \/711, ‘7)) where b1, ..., b, are boxes,
17'1, RPN 17;«, V,«:.l are value assignments to local variables, u is a
node, and V assigns a value to every global variable. Equivalently,
a state can be viewed as a string, and the set @ of global states of
Ais (B x V')*(N x V' x V), where B = U; B;, V' = U, V; and
N = U;N;. Consider a state (b1, ‘7'1), vy (b, \7}), (u, Vr:»l, V))
such that b; € B;, for 1 <4 < rand u € N;. Such a state is well-
formed if Y;,(b;) = jiy1 and V; = Vj, for 1 < 4 < r, and if
Y, (br) = j and Vip1 = Vj. A well-formed state of this form
corresponds to the case when the control is inside the component
A, which was entered via box b, of component A;, (the box b,_1
gives the context in which A, was entered, and so on). Henceforth,
we assume states to be well-formed.

We assume a call-by-value model for the procedure calls. We
define a (global) transition relation § among the global states of
A as follows. Let s = (b1, V4),..., (br, V3), (u, Vii1,V)) be a
state with u € N; and b, € By,. Then, (s, 0,s’) € § iff one of the
following holds:

1. (u,G,0,C,u') € &; for a node u' of A;, G(Viyr1,V)
evaluates to true, C(V,:H,V) = (V;_H/,V’), and s° =

<(b17 ‘71)7 SRR (bTa ‘77‘)7 (U/, VT_-;-llv Vl)>

2. (u,G,0,C,(b,e)) € & for a box b of Aj, G(Vii1,V)
evaluates to true, C(V,11,V) = (V:H,J_/"), and s =
- - ’ -/ -/ = -/
<(b17 ‘/1)7) (bT7 ‘/7‘)7 (b s Vit)7 (67 Vit , V)),Where Vita
denotes an initial value assignment for the local variables in
Vy; vy of the procedure corresponding to box b, in which the

input variables V};”(b,) have value equal to the value of the
variables ﬁ;-"(b’) in V,;ll.

3. u is an exit-node of Aj, ((br,u),G,0,C,u’) € &y for
a node u’ of A,,, V, is the assignment to the local vari-
ables of A, in which the variables of 32"*(b,) have value

equal to that of the output variables Vf“t of A; in Vi
and the rest of the variables have the same value as in V.,
G(V,., V) evaluates to true, C(V,., V) = (V}/, V'), and s’ =
(b1, VA), .., (be1, Vi 1), (W, Vi V).

4. u is an exit-node of A;, ((br,u),G,0,C, (b ,e)) € o
for a box b of A, VT is the assignment to the local vari-
ables of A,, in which the variables of 35“*(b,) have value

equal to that of the output variables \/}O“t of A; in Vit

2012/7/10

int[8] x; // 8—bit integer global variable

procedure foo() // Boolean Program 1

{
print(‘‘a’’);
if (x>0)
X = x—1;
foo ();
print(‘‘b’’);
return ;
}
procedure bar(int[8] y) // Boolean Program 2
{
print(‘‘a’’);
if (y>0)
bar (y—1);

print(‘‘b’’);
return ;

Figure 1. Simple examples of Boolean programs.

-

and the rest of the variables have the same value as in V.,
G(V,, V) evaluates to true, C(V,, V) = (‘7}/, V'), and 5" =
(b1, Vi), oy (brea Vii1), (', V), (e, Vigd , V7)), where
V,ll, denotes an initial value assignment for the local vari-
ables in Vy,, (»r) of the procedure corresponding to box b’, in
which the input variables V" /) have value equal to the value

of the variables 327 (b') in V..

Case 1 is when the control stays within the component A;, case 2 is
when a new component is entered via a box of Aj, case 3 is when
the control exits A; and returns back to A,,, and case 4 is when the
control exits A; and enters a new component via a box of A,,.
The Labeled Transition System (LTS) Ta = (Q,%,9) is
called the “unfolding” of A. The set @) of reachable states can
be infinite. Given a state ((bi,V4), ..., (bs, Vi), (u, Vig1, V),
we will sometimes refer to ((b1, V1), ..., (br,V,)) as the call
stack, or stack, in that state. For a state s of the LTS T4 and
a node v of A, s = wv denotes that s can reach some state

(b1, V), ..., (br, Vi), (v, Vi1, V)) in T4 whose node is v.

2.3 Examples

In what follows, we will represent ERSMs using pseudo-code, as
illustrated in Figure 1. For notational convenience, we will also
sometimes use non-boolean variables with bounded domains. For
example, the Boolean program composed of procedure foo shown
in Figure 1 uses an 8-bit integer variable named x. Given an initial
value n for variable x, this program will print the string a™b" using
n recursive calls to procedure foo. Similarly, the second Boolean
program composed of procedure bar in Figure 1 will also print the
string a™b™ given an initial call to bar with value n as argument.
These two Boolean programs represent similar ERSMs, with 8
Boolean variables each. The only difference is that the first one
uses a global variable x while the second uses a local variable y.

By definition, the semantics for local and global variables are
different: the values of local variables are saved in the stack at each
procedure call (they multiply the “stack alphabet”) while the values
of global variables are never stored on the stack (they multiply the
“set of control states”).

2.4 Special Cases

ERSMs generalize several other well-known models of computa-
tion.

® A Recursive State Machine (RSM) is an ERSM with no Boolean
variables, i.e., where V" and the sets V; are all empty, the guards
G are all vacuously true, and the commands C' do not modify
the value of any variable.

e An Extended Hierarchical State Machine (EHSM) is an ERSM
with no cycle of recursive calls between the procedures, i.e.,
where every procedure A; can only call a procedure A; with
j > i,ie.,wehave Vi : Vb € B; : Y;(b) > i.

e A Hierarchical State Machine (HSM) is an EHSM with no
Boolean variables.

e An Extended Finite State Machine (EFSM) is an ERSM (or
EHSM) with a single procedure A; and no boxes.

e A Finite State Machine (FSM) is an EFSM with no Boolean
variables.

A procedure or machine A; is called single-entry when it has a
single entry node e, i.e., when En; = {e}. Similarly, a procedure
or machine A; is called single-exit when it has a single exit node
z, i.e., when Ex; = {x}. An ERSM is single-entry or single-
exit if all its procedures are. As mentioned earlier, any ERSM can
be transformed to an equivalent single-entry, single-exit ERSM by
introducing additional variables. This is not the case for RSMs.

A procedure is called input/output bounded, or I/0 bounded for
short, if the number of its input and output variables, the number
of entries and exits, and the number of global variables are all
upper bounded by a fixed constant (independent of the size of the
program). A program (ERSM) is I/O bounded if all its procedures
are I/0 bounded. This property characterizes programs where there
is a constant amount of information communicated between the
different procedures.

A procedure A; is called acyclic if the graph (N; U B;, E;)
is acyclic, where E; contains an edge from a node u or box b
to another node u’ or box b iff §; contains a transition from u
or a vertex of b to u’ or a vertex of b’ (regardless of the guard
and command of the transition). An ERSM is acyclic iff all its
procedures are.

A procedure is called deterministic if, for all its vertices, the
guards of all its transitions at that vertex are mutually exclusive. In
that case, each state of that procedure can have at most one suc-
cessor state. A program is deterministic if all its procedures are de-
terministic. Usual programs (without abstraction) are deterministic.
This is the case for the two Boolean programs shown in Figure 1.

2.5 Expansion of an ERSM

Given an ERSM A = (A4,... A, V), we can construct an RSM
A’ = (Af,...A}) (without variables) that is equivalent to A,
in the sense that their unfoldings 7'4 and T4/ are identical. The
RSM A’ is in general exponentially larger than A. In particular, if
m = max; |V U V| then the size | A’| of the RSM A’ is (at most)
|A]-2™.

The translation from an ERSM A to a RSM A’ is similar to the
standard translation from EFSMs to FSMs, except that call sites
and returns have to be taken into account. Let A be an ERSM
as previously defined. Define the scope of a procedure A; to be
scope(A;) = V U V;. The RSM A’ has one procedure A; for each
procedure A; of A. The node set N of A} is the Cartesian product
of the node set N; of A; and the set of valuations of all variables in
scope(A;). The set of entries En; is the Cartesian product of the
entry set En; of A; and the set of valuations for all variables in
scope where all non-input local variables are assigned their initial
value. The set Bz} of exits is the product of the exit set Fx; of A;

2012/7/10

and the set of valuations of all variables in scope(A;). The set of
boxes B of Aj is the product of B; and the set of valuations of V;
(only the local variables).

The transition relation J, of A} is generated from the transition
relation d; of A; as follows. Let (u, G, o, C,v) be a transition of
0;. We distinguish cases depending on whether u, v are nodes or
ports of a box.

Case 1. If u,v € N;, and 7, 6 are valuations of scope(A;) such that
G(n) is true and C(n) = 6, then ((u,n), o0, (v, 0)) is a transition
of &;.

Case 2. Suppose u € N; and v = (b,e) is a call vertex of
a box b that is mapped to A;. Then §; includes a transition
((u,m), a,((b,n'), (e, 0))) provided the following hold: 7 is a val-
uation of V U V; such that G(n) is true, § = C/(n), ' is a valuation
of V; such that n/[Vi] = [V;], and 0 is a valuation of V U V;
such that 6[V] = 9[V], o[v;"] = 0[3" (b)), and 0 assigns to the
non-input local variables of A; their initial values.

Case 3. Suppose u = (b, z) is a return vertex of a box b that is
mapped to Aj, and v € N; is a node. Then §; includes a tran-
sition (((b,n), (z,7n')), o, (v,0)) provided the following hold: 7
is a valuation of V;, i is a valuation of V U V}, # is a valuation
of V U V; such that #[V] = »'[V], A[B7“*(b)] = #'[V;"**], and
AV \ B2 (b)] = nlVa \ 577 (b)), () s true, and 0 = C(i).
Case 4. Suppose u = (b, z) is a return vertex of a box b mapped
to A;, and v = (b, e) is a call vertex of a box b’ mapped to A;.
Then &; includes a transition (((b,7), (z,7")),a, ((',0)(e,0")))
provided the following hold: 7 is a valuation of V;, n’ is a valuation
of V.U Vj, 7 is a valuation of V' U V; such that #[V] = 7[V],
ALBZ)] = af[VE™]. and A4[Vi \ B4 (5)] = Vi \ B2 (b)),
G(n) is true, 8 = C(7)), 6 is a valuation of V; such that 8[V;] =
0[Vi], and @' is a valuation of V U V; such that 6'[V] = V],
0’V = 9[BI"(b')], and ' assigns to the non-input local vari-
ables of A; their initial values.

We call A’ the expanded RSM corresponding to A. It is easy to
verify the following from the definitions.

PROPOSITION 1. The ERSM A and the RSM A’ have the same
unfoldings, T'a = T ss.

3. Reachability

Let Init denote a given set of initial states, consisting of some entry
nodes together with specified valuations for the variables in the
scope of their procedures. Given an ERSM A = (Ay,... A, V)
and such a set Init, let Init = v denote that for some s € Init,
s = v. Our goal in simple reachability analysis is to determine
whether a specific target node ¢ is in the set {v | Init = v} of
reachable vertices. In this section, we study the complexity of the
reachability analysis problem for ERSMs and several special cases.

3.1 General Case

THEOREM 2. Reachability analysis for ERSMs is EXPTIME-
complete. Furthermore, this holds even for deterministic, acyclic
ERSMss.

Proof: Membership in EXPTIME follows essentially from pre-
vious work (e.g., [2, 3]). Given a ERSM A, we can construct the
corresponding expanded RSM A’, which has size (at most) expo-
nential in A. Since reachability analysis for RSMs can be solved
in polynomial time (cubic in the general case, and linear for single-
entry or single-exit RSMs to be precise [2]), we obtain an algorithm
with EXPTIME complexity overall. (The expansion and reachabil-
ity analysis can be done together, on the fly, so that only the reach-
able parts of A’ are generated.)

procedure Top ()

if Acc(qo, 0, Initial Tape)
then print(‘‘M accepts’’);

}

bool Acc(state q, head location h, Tape T)

if (q in Qr) then return true;
if (q in Q) then return false;

bool res;
if (q in Q3) then res = false;
else res = true; // case (q in Qv)

for each (q’,s,D) in dp7(q,T[h])
{

compute the new tape location h’ and tape T’;
if (q in Q3) then res = res V Acc(q’,h’,T’);
else res = res A Acc(q’,h’,T’);

}

return res,;

}

Figure 2. A Boolean program simulating an alternating PSPACE
machine M.

For the hardness part, we reduce the acceptance problem for 1-
tape alternating polynomial space machines, which is known to be
EXPTIME-complete [10], to reachability analysis of ERSMs. An
(1-tape) alternating PSPACE machine M is a tuple (X, @, o, 0as)
where ¥ is a finite tape alphabet, Q@ = Qv U Q3 U Qr UQFr isa
finite set of states, where Qv denotes a finite set of universal states,
(3 denotes a finite set of existential states, Q7 denotes a finite set
of accepting states, and @ r denotes a finite set of rejecting states,
the sets Qv, @3, @1, QF are all disjoint, go is an initial state in
Q, and 0y is the transition relation which maps every pair (g, a)
with ¢ € Qv U Q3 and a € X (q is the current state and a the
symbol in the cell under the tape head) to one or more tuples of
the form (q’,a’, D), where ¢’ € Q is the next state, a’ € I is
the symbol written in the tape cell under the tape head (the other
cells are unchanged), and D € {L, R} is the direction of the next
movement of the tape head (one step left or one step right). A
configuration of M is a tuple (g, h, T') where ¢ is the state, h is the
location of the tape head and 1" the contents of the tape. In the initial
configuration, the state is qo, the head is at cell 0 and the initial
tape content Tp consists of the given input = followed by blanks.
The acceptance problem for an alternating PSPACE machine M is:
Given an input z, decide whether M accepts z. It is known that
this problem is EXPTIME-complete even for 1-tape linear-space
bounded machines.

Given any (1-tape) alternating machine M that uses space ¢ - n
and input x of length n we can build, in polynomial time (in fact,
linear) in the size of M and z, a Boolean program A that simu-
lates M on input z precisely. Figure 2 shows what such a Boolean
program looks like. The program uses variables to keep track of
the state, the location of the head and the contents of the tape.
Initially, the program starts by executing procedure Top, which
then calls procedure Acc with the initial configuration (qo, 1, 7o)
as arguments. The procedure Acc(q, h, T') determines whether the
machine M accepts when it starts at state g, with the head lo-
cated at cell h and the tape contents given by 7. In procedure
Acc, the boolean value true is returned if the current state q is
accepting, and false is returned if state ¢ is rejecting. Other-
wise, the procedure Acc is recursively called with each succes-
sor configuration (q’, h’, T") of (q, h, T) as defined by each tuple

2012/7/10

(¢',s,D) € 6nm(q, T[h]) of the transition relation, i.e., b’ = h —1
ifD=L,h =h+1if D=R,T'[h] =sand T'[j] = T[j] for
all j # h.If ¢ € Q3, Acc returns the disjunction, and if ¢ € Qv the
conjunction, over the results obtained from all the recursive calls.
The Boolean program shown in the figure is generic: for a partic-
ular M and z, a particular instantiation of A can be generated in
time O(|M|n), where generic statements like ¢ € Qr, “for each
(¢',T") € 5r(q,T)”, the computation of the new location h’ and
tape T etc. will be explicitly expanded in explicit switch/case state-
ments. The constructed program has size O(|M|n). It is easy to see
that the Boolean program A will reach the statement print “M ac-
cepts” if and only if M has an accepting computation.

The Boolean program of Figure 2 is deterministic and acyclic,
so these features do not make any difference in the complexity of
ERSM reachability analysis. ll

Note that the procedure Acc in the program of Figure 2 is
recursive and passes a linear amount of information in each call.
We now show that restricting the use of recursion or the amount of
I/0O information reduces the complexity to a lower class.

3.2 Special Cases

In the hierarchical case, reachability analysis becomes PSPACE-
complete, thus, no worse than simple EFSMs.

THEOREM 3. Reachability analysis for EHSMs is PSPACE-complete.

Furthermore, the problem remains PSPACE-complete for deter-
ministic, acyclic EHSMs.

Proof: Membership in PSPACE follows from nondeterministically
simulating a computation that reaches the target node. In a EHSM
A = (A, ... Ay, V), the stack of any computation has at all times
polynomial size: the stack consists of a stack of records, one for
each procedure that is currently active. The number of active pro-
cedures at any time is at most the height & of the hierarchy (so lin-
ear), and each record consists of a program location (a box) and the
values of the local variables of the procedure at the time it made the
recursive call, so all this information can be recorded in polynomial
space. Therefore, the reachability problem is in Nondeterministic
PSPACE, which is the same as PSPACE by Savitch’s theorem.

It is known that reachability analysis is already PSPACE-hard
for EFSMs. Hence, PSPACE-hardness for the more general EHSMs
follows immediately. We show now that the problem remains
PSPACE-complete for EHSMs that are deterministic and acyclic
(whereas the problem is in NP for acyclic EFSMs, see below, and
hence probably not PSPACE-complete). For this purpose, we re-
duce Quantified Boolean Formula (QBF) satisfiability (QSAT),
known to be PSPACE-complete, to EHSM reachability.

Figure 3 shows a deterministic acyclic hierarchical Boolean pro-
gram for checking the satisfiability of a QBF formula v of the form
Jz1Veedzs ... Qrnd(x1,. .., Tyn). The program has n + 1 proce-
dures named SAT[i] for 0 < ¢ < n, and a main top-level pro-
cedure Top. Each of the SAT[i] procedures takes ¢ Boolean argu-
ments as inputs. For ¢ = n, SAT[n](z1,...,z,) evaluates ¢ on
its input and returns the value. For odd ¢ < n, SAT[i](z1,...,2s)
calls SAT[i+1] with (z1,...,%;,0) and (z1,...,x;, 1), and re-
turns the conjunction A of their values, since x;41 is universally
quantified in the given QBF formula . Similarly, for even ¢ <
n, SAT[il(x1,...,x;) calls SAT[i+1] with (z1,...,2;,0) and
(z1,...,wi, 1), and returns the disjunction V of their values. Given
any QBF formula ¢/, we can build such a Boolean program in poly-
nomial time in the size of the formula. It is easy to see that the
Boolean program will reach the statement print “¢) is SAT” if and
only if the formula ¢ is satisfiable. H

If we are given a bound on the depth d of the hierarchy, then the
complexity of reachability analysis for acyclic EHSMs is reduced
further to NP-complete.

procedure Top ()

if SAT[O0]()
then print(‘‘ey is SAT’’);

}

bool SAT[n](bool zi1,...,25) // n inputs

return (¢(z1,...,2n)); // evaluate ¢

// if i is odd, z;41 is V—quantified in ¢
bool SAT[i](bool z1,...,2;) // i inputs

return (SAT[i+1](z1,...,2;,0)
A SAT[i+1](z1,...,%5,1));
}

// if i is even, x;41 is F-quantified in %
bool SAT[i](bool z1,...,z;) // i inputs

return (SAT[i+1](z1,...,%40)
V SAT[i+1](x1,...,24,1));

}

Figure 3. A Boolean program for checking satisfiability of the
QBF formula ¢ = Jz1VzoTzs ... Qrnd(x1, ..., Tn).

THEOREM 4. Reachability analysis for acyclic EHSMs of bounded
depth is NP-complete.

Proof: To prove membership in NP, we can guess an input assign-
ment and follow the execution of the acyclic EHSM of bounded
depth d (if the EHSM is nondeterministic, we also guess the non-
deterministic choices along the way); since the EHSM is acyclic
and hierarchical, the length of this execution path is bounded by n®
where n is the maximum number of nodes and boxes in a procedure
and d is the bound of the hierarchy.

To prove the problem is NP-hard, we can reduce propositional
logic satisfiability (3SAT) to EFSM reachability. Already for an
ordinary nonhierarchical acyclic EFSM, we can construct in lin-
ear time an EFSM with no input arguments, which first nondeter-
ministically guesses and assigns values to the variables of a given
Boolean formula and then goes on to verify that the assignment
satisfies the formula. Alternatively, the EFSM can be deterministic
and read as input a variable assignment, which is then evaluated
and verified. H

We now consider the particular case of I/O bounded Boolean
programs. This means that there is a limit on how much informa-
tion can pass to and from each procedure of the program. Each
procedure may however have an arbitrary number of internal vari-
ables and may be arbitrarily large. We prove that the complexity
of reachability analysis for I/O bounded programs is lower than for
non-I/O bounded programs.

THEOREM 5. Reachability analysis for 1/O bounded deterministic
acyclic EHSMs is in P.

Proof: For deterministic acyclic programs, only a bound on the
number of possible values of the input information for each proce-
dure is sufficient for the result. The input information consists of
the values of the input variables and the global variables, and the
choice of entry node.

We can prove membership in P using a simple dynamic-
programming bottom-up algorithm (we can do it also top-down).
Starting from procedures at the deepest level, we consider one by
one each possible input assignment, and run the procedure to com-
pute the resulting output information that it will produce (i.e., final

2012/7/10

values of the global and output variables, and the final exit node).
Since the procedure is deterministic, there is exactly one return
value for each input, and because of the acyclicity, it takes a num-
ber of steps which is at most linear in the number of transitions
in the procedure. These computed input-output pairs are tabulated.
Moreover, the number of possible inputs to consider is bounded,
by the I/0 bounded hypothesis. For higher-level procedures, all the
calls to lower-level procedures are replaced by the corresponding
single input-output transition that was previously computed and
tabulated. Overall, we obtain an algorithm for reachability analysis
whose running time is linear in the product of the I/O bound times
the number of transitions in the deterministic acyclic EHSM, i.e.,
polynomial in the size of the EHSM. ll

THEOREM 6. Reachability analysis for I/0 bounded nondetermin-
istic acyclic EHSMs is NP-complete.

Proof: To show membership in NP, we can nondeterministically
guess an execution path from the (or one) initial node to a given
target node. However, the length of such a path can be exponential
in the size of the EHSM, even if the EHSM is acyclic, because
this path may contain many repetitions of identical subpaths that
correspond to different procedure calls along the way to the same
procedure with the same arguments. So instead of writing all these
repetitions of subpaths, we only guess and write once every such
subpath that is used by the accepting computation. Checking that
this compact encoding of an execution path leads to the target node
can be done in time linear in the product of the I/O bound times the
number of transitions in the acyclic EHSM, i.e., polynomial in the
size of the EHSM.

For the NP-hardness, we previously showed in the proof of
Theorem 4 that satisfiability of propositional logic can be reduced
to reachability for acyclic EFSMs that have no input (or output). l

THEOREM 7. Reachability analysis for I/0 bounded cyclic EHSMs
is PSPACE-complete.

Proof: Membership in PSPACE follows from Theorem 3 for
the general case. Since EFSM reachability is already PSPACE-
complete, PSPACE-hardness follows immediately. ll

We now show that, in the world of I/O bounded programs,
reachability analysis for ERSMs is not more expensive than for
EHSMs or just EFSMs.

THEOREM 8. Reachability analysis for 1/O bounded ERSMs is
PSPACE-complete.

Proof: That the problem is PSPACE-hard is again immediate since
EFSM reachability is already PSPACE-complete.

We now show that the problem is in PSPACE. The algorithm
is as follows. Let C' be the ERSM obtained from A by replacing
in each component A; every entry node e by a set of entry nodes
{(e,n)|n a valuation to V' U V;"}, and every exit node z by a set
of exit nodes {(z,7)|n a valuation to V U V;°**}; the boxes and
their labeling stay the same, but now have more call and return ver-
tices, and the transitions are adjusted appropriately. Since A is I/O
bounded, the size of C'is polynomial in |A|. Remove all the boxes
from all the components of C' and replace them by just their call and
return vertices. Now we have a collection of EFSMs C1, ..., C}.
Then we discover iteratively reachabilities between the entries and
exits of the EFSMs, and add corresponding “summary edges” be-
tween the corresponding call and return vertices in other compo-
nents. Initially, there are no summary edges. In each iteration, we
consider one component EFSM C; and apply the PSPACE algo-
rithm for EFSMs to compute all the entry-exit reachabilities. If
there are any new reachabilities discovered, we add them as sum-
mary edges to connect the call and return nodes of all the boxes that

correspond to C} in all the components. We iterate until there are
no more new entry-exit reachabilities for any component, at which
point we have the complete entry-exit reachability information. The
number of iterations is at most the number of entry-exit pairs in all
the components. To compute all the nodes of the ERSM reachable
from the initial set Init, construct an EFSM C which is the union
of all the C; together with transitions from each call vertex (b, €) of
each box b to the corresponding entry e of C’{,i (v)> and compute the

set of nodes that are reachable from Init in this EFSM C. Clearly,
the algorithm uses polynomial space.

|

Most of the results of this section are summarized in Figure 4.

4. LTL Model Checking

We now consider linear time properties expressed in Linear Tem-
poral Logic (LTL) or using Biichi automata. Formulas of LTL are
built from a finite set Prop of atomic propositions using the usual
Boolean operators —, V, A, the unary temporal operators X (next),
and the binary operator U (until), with the following semantics: A
computation satisfies X ¢ in a step 1 iff it satisfies ¢ in the next step
i+ 1, and it satisfies U in a step 1, if it satisfies ¢ in some step
j > i and it satisfies ¢ in all intermediate step k with ¢ < k < j.
Computations are considered to be infinite (with finite computa-
tions repeating their final state forever). A Biichi automaton is a
finite (nondeterministic) automaton on infinite words that accepts
a word w iff it has a run on w that visits the subset of accepting
states infinitely often. Every LTL formula ¢ can be translated to
an equivalent Biichi automaton Dy over the alphabet ¥ = 277°P
(the translation may increase exponentially the size in general). The
LTL or automaton model checking problem is to determine whether
all computations of a given Kripke structure 7" (starting from desig-
nated initial states) satisfy a given LTL formula ¢ or are accepted by
a Biichi automaton D. We refer to [12] for detailed background on
LTL, automata and model checking. In our case the Kripke struc-
ture is the unfolding T'4 of a given ERSM A over 3 = 2F7°P,

All the results for reachability of the last section extend to model
checking of all linear time properties, with the same dependency of
the complexity on the size of the program (this is called the pro-
gram complexity) in all the cases, i.e., for general ERSMs as well
as for their subclasses. Roughly speaking, LTL model checking in-
volves forming the product ERSM A of the ERSM with an au-
tomaton D- representing the negation of the property, and testing
whether (the unfolding of) A has a reachable cycle that contains
an accepting state or has an accepting computation path where the
stack grows without bound. Both of these can be solved using suit-
able reachability problems. The dependence of the complexity on
the size of the specification is polynomial for automata specifica-
tions and exponential for LTL (as is the case for model checking of
even nonrecursive finite state structures). Rather than list the indi-
vidual results, we state them collectively in the following:

THEOREM 9. The program complexity of model checking linear
time properties of ERSMs is the same as that given for reachability
analysis in the last section, for all the considered classes of ERSMs.

The proof for some of the classes is easy and similar to reach-
ability. For example, for general ERSMs, we can expand the given
ERSM A to the exponentially larger RSM A’ (only the reachable
part has to be generated) and use the polynomial-time algorithm
for LTL model checking of RSMs from [2]. For others classes, the
proof requires some additional work. Due to space limitations, we
will not go through all the special cases. We will just sketch here
for illustration only the algorithm for the model checking of I/O
bounded ERSM in PSPACE.

2012/7/10

Class of Program Restriction General Case | 1/0O Bounded
ERSM EXPTIME PSPACE
EHSM PSPACE PSPACE
EHSM nondeterministic acyclic PSPACE NP
EHSM deterministic acyclic PSPACE P

Figure 4. Complexity of reachability analysis.

Let A be an I/O bounded ERSM and ¢ an LTL formula. We
first construct the automaton D = D- for the negation —¢ of the
specification. Then we construct the product A = A x D of the
ERSM A and the automaton D, as follows. A is an ERSM, with
the same number of components as A, and the same global and
local variables for each component. The nodes, entries and exits of
each component Ai are the cartesian products of the nodes, entries,
and exits respectively of A with the states of D, while the boxes
B; are the same as B; with the same labeling Y; and mappings

in and 5244, The transition relation 5; is obtained by combining
transitions of A; and D with the same label o € ¥X. Thus, if
A; has a transition (u, G, 0, C,v) where u,v € N; and D has a
transition (g, o, 7) then A; has a transition ((u, ¢), G, o, C, (v, 7));
if u € N; and v = (b, e) is a call vertex, then A; has a transition
((u,q),G,0,C, (b, (e,r))); similarly if u is a return vertex of a
box. Let F' be the set of nodes (u, q) where ¢ € F is an accepting
state of the automaton D. The given ERSM A violates the property
@ iff A has a computation that is accepted by D and this happens
iff the ERSM A has a computation that visits F' infinitely often.

Note that the ERSM A is also /O bounded (its bound is the
product of the bound for A and the number of states of D). From
the ERSM A we construct another ERSM C as in the proof of The-
orem 8 where the entries and exits of the components are combined
with the input and output valuations. We construct a collection of
EFSMs Cf, ..., C}, , and we perform iteratively reachability com-
putations as before in each EFSM to discover the reachable ver-
tices from each entry, and for each entry-exit reachability we add
corresponding summary edges. In addition to this, we determine it-
eratively for each entry e of each EFSM C; which vertices of the
component it can reach through a path (in the unfolding, i.e., tak-
ing into account the variables) that goes through a node in F (in
the same or in another component); if there is such a path from an
entry to an exit, then we mark the corresponding summary edges as
“special”.

If the ERSM A has a computation that visits 3 infinitely often,
then either the stack stays bounded throughout the computation, or
the stack grows without bound. One can show that the first case
happens iff for some EFSM Cj there is a cycle (in its unfolding)
that contains either a node of F or a special summary edge, and
which is reachable from the initial states Init of the ERSM; we
can test this condition in PSPACE. The second case happens iff
the following (ordinary) graph H contains a cycle that includes
a special edge: The graph H contains the reachable (from Init)
entries of all the components of A and all the corresponding call
vertices of boxes, it has an edge from each call vertex of each box b
to the corresponding entry of the component to which b is mapped,
and has an edge from each entry e of each component to all the
call vertices v in the same component that it can reach, with the
edge marked ’special’ if e can reach v via a path that goes through
a node in £'. With the previously computed information, we can
build the graph H and test this condition in polynomial time. Thus,
the overall algorithm runs in PSPACE.

5. Branching-Time Properties

We now consider the verification of properties expressed in the
branching-time logic CTL [11]. CTL allows quantification over
computations of a system, such as “along some computation, even-
tually p” or “along all computations, eventually p”. The temporal
logic CTL uses the temporal operators U (until), X (nexttime) and
the existential path quantifier £, in addition to the operators — (not)
and V (or). We use the standard abbreviations A (for all paths) for
—E-, Fp (eventually p) for trueUp, and Gp (always p) for —F —p.
See [12] for a detailed description of the syntax and semantics of
CTL.

The CTL model checking problem is to decide whether a Kripke
structure satisfies a CTL formula [11]. In our context, unfoldings
of ERSMs will be used as Kripke structures.

THEOREM 10. The program complexity of CTL model checking for
ERSMs is 2EXPTIME-complete.

Proof: Given an ERSM A, we can build an exponentially larger
RSM A’ such that their unfoldings T4 and T4/ are identical,
following the construction used in the proof of Proposition 1. Then,
we can use the CTL model checking algorithm for RSMs discussed
in [2], whose running time can be exponential in the size of the
RSMs. Overall, we thus obtain an algorithm with 2EXPTIME
complexity.

To prove 2EXPTIME-hardness, we reduce the acceptance prob-
lem for 1-tape alternating exponential space machines, which is
known to be 2EXPTIME-complete [10], to CTL model checking
of ERSMs.

Let M be a 1-tape alternating machine that uses space 2" on
inputs of length n and let = be a given input of length n. We want
to determine if M accepts x. Let M = (X, @, o, dnr) wWhere &
is the tape alphabet, Q = Qv U Q3 U Q1 U QF is the set of
states, go the initial state and d5s the transition relation. (See the
proof of Theorem 2 for the definition of an alternating machine.)
Initially M is in state qo, the head is in cell 0, and the tape holds
z followed by blanks. We let z; denote the content of cell j in the
initial tape, i.e., x; is the j-th symbol of x for j = 0,...,n—1 and
z; is blank for 7 > n. We construct the Boolean program shown
in Figure 5. The program nondeterministically simulates possible
executions of M. It generalizes the Boolean program simulating
an alternating PSPACE machine of Figure 2. However, it is more
complicated because now the exponentially large tape cannot be
passed as argument to procedure Next, otherwise the reduction
would not be polynomial in the size of x.

The main idea to deal with the exponentially large tape is to
store the tape content on the stack of the Boolean program. Given
the current state g, tape head location h, and symbol s read at loca-
tion i from the current tape content 7', each call to Next(q, h, s, d)
computes the next successor configurations: for each such config-
uration, it computes its next state ¢’, the next value s’ to be stored
at location h and defining the next tape content 7", and the next
tape head location h’, following the transition relation dy; of M.
However, Next does not copy the content for all the tape cells at lo-
cations other than h: instead, it nondeterministically guesses those
values, which should all be unchanged in the new tape content 7"’

2012/7/10

Global variables:
g-s, g-s’, s_new: previous/next/temporary symbol in X (log(|X]|) bits)
g-q’: current state (log(|Q]) bits)

, g-h’: previous/next location for the tape head (n bits)

g-h
g-d: depth (is either 0, 1, 2)
j:

cell location (n bits) or UNDEF

T[j1.T°[j]: symbol in X (log(|X|) bits) or UNDEF // 2 symbols, not arrays
OK=false , CheckMode=false , Success=false: boolean variables (false by default)

Top ()

j=UNDEF; T[j]=UNDEF; T’[j]=UNDEF;
if Next(gop,0,z0,0) then Success=true
STOP;

bool Next(state q, headLocation h, symbol s, depth d)

{
C:if (nondeterminism) then CheckMode=true; // in C:, EX(CheckMode N AF(OK)) must hold

}

if (CheckMode) // start CheckMode — this is executed at most once!

{ // we check that the last 2 tape contents T and T (last) are dpy—compatible
if (d==0) then { OK=true; STOP; } // nothing to check
j= nondeterministically pick a cell location // 0<j < 2" — V—nondeterminism due to AF(OK)
return false; // dummy return value in this mode; start popping to get T’[j] and T[j]

if (q in Qr) then return true;
if (q in Q) then return false;

boolean result;
if (q in Q3) then result=false;
else result=true; // case where q in Qv

boolean ret;

for each (q’,s’,D) in dap(q,s) // with s=T[h]

{
if (D==L) then h ’= h—1 else h’ = h+1; // set h’ = new head location
if (d<2) then g.d’=d+1; // note: d is either 0, 1 or 2
else g.d’=d;
gq’ =q’; g-h’ =h’; // global variables for next call of Next()
g.s =s’; g-h = h; /! global variables for this call of Next()

if (g-h==0) s_new = g_s;
else s.new = nondeterministically pick a symbol in X; // JF—nondeterminism

ret=GuessNextTapeCell (0,s_new);
if (CheckMode)
if (T[j]!=UNDEF A T’[j]==UNDEF) then // we got T’[j]

T [i1=TL]1:
if (d>0) then return false; // continue popping to get T[j]
else { T[jl=z;; h’=h; }

// we are ready to check dp—compatibility at position j

if ((j!'=h’) A T’[j]==T[j]) then OK=true; // the tape cell content must be unchanged
if (j==h’) then OK=true; // nothing to check — case enforced by construction
STOP;

if (q in Q3) then result = result V ret;
else result = result A ret;

}

return result;

bool GuessNextTapeCell (tapeLocation i, symbol s)

{

boolean ret;
if (g-h’==i) then g.s’ = s; // record in g_s’ the next symbol read from the next location h’
if (i<@2"n —1))

if (g-h==i+1) then s_.new = g_s; // new symbol just written at the previous location h
else s_.new = nondeterministically pick a symbol in ¥; // 3—nondeterminism
ret=GuessNextTapeCell (i+1,s_.new); // put s_.new on the stack of the ERSM

}

else

ret=Next(g-q’,g-h’,g-s’,g.d’);
if (CheckMode A i==j) then T[j]=s;
return ret;

Figure 5. A nondeterministic Boolean program simulating the computations of an alternating EXPSPACE machine M.
3 2012/7/10

compared to the previous one 7. These guesses are marked by “3-
nondeterminism” in the code of Figure 5 and made just before and
inside the procedure GuessNextTapeCell. This procedure takes
a tape location and a symbol as arguments. If the tape location
is different from the last tape head location, a symbol is nonde-
terministically guessed and passed as argument to another call to
GuessNextTapeCell. This way, all cell contents of all tape con-
tents are recorded on the stack of the Boolean program.

At any time during any execution of the Boolean program, its
stack content will thus be a prefix of the regular expression

Top() (Next(q,h,s,d) GuessNextTapeCell(i,s) 2")"

At the beginning of every call of Next (), at the program location
marked “C:”, the Boolean program can nondeterministically decide
to stop the current computation and to start a CheckMode in order to
check whether the last 2 tape contents 7" and 7" (which are on the
stack) are compatible with the transition relation 7. When starting
a CheckMode, the stack of the Boolean program will be of the form

(prefix) ... Next1(...) T Next2(...) T' Next3(...)

if the depth d argument to Next3 is greater than 1. (The depth
parameter is used to deal with the special cases of the initial state
with d = 0 and when there is a single tape content on the stack with
d = 1.) In the above expression, T"and T” are thus encoded each by
exactly 2" calls to GuessNextTapeCell(i,s) (with0 < i < n).
A check started in Next3 checks whether the 2 tape contents 7" and
T’ are §pr-compatible: at any location j other than the tape head
location A during the call to Next2, the content T[j] of jth cell of
T should be identical to the content T’ [j] of jth cell of T". Note
that cell location h during the call to Next?2 is the value of b’ at the
call to Next1; this is the only location where T and 7" may vary,
and there is no need for a check at that location since the new value
T’ [h] is computed in Next2 directly from dps and is thus correct
by construction.

Th dar-compatibility check is performed ar one location by
nondeterministically picking one location j (in Next3) among the
2" possible tape locations, then popping off the stack 2™ calls to
GuessNextTapeCell(i,s) while grabbing the value T’ [j] when
popping the call where i==j, then popping Next2, then popping
off the stack another 2" calls to GuessNextTapeCell(i,s) while
grabbing this time the value T [j], and then checking back in Next1
whether T’ [j1==T[j]. If this test passes, a Boolean variable 0K
is set to true, otherwise it remains false, and the execution of the
Boolean program stops.

To check whether T' and 7" contain the same values at all
locations (other than h in Next2), we use a CTL formula where
all possible locations are universally quantified: the check passes at
all locations (other than h in Next2) if and only if the CTL formula
AF(0K) holds when the CheckMode starts (i.e., when the Boolean
variable CheckMode becomes true).

Overall, we can prove the following:

The EXPSPACE alternating machine M accepts the input
if and only if the Boolean program of Figure 5 satisfies (in
its initial configuration) the CTL formula

E(C — EX(CheckMode A AF(0K)) U Success)

In the formula, C denotes a Boolean variable which is true iff the
program is currently at its node marked by “C:”, while CheckMode,
0K and Success refer to Boolean variables used in Figure 5, and
— denotes logic implication.

This CTL formula holds if and only if (1) there is a computation
of the Boolean program that leads to Success (this would be the
computation that does the traversal of the accepting tree of the
alternating machine M with all the correct configurations), and (2)

in this computation, all the states have the property that if we did a
check it would be OK.

As before, the Boolean program shown in Figure 5 is generic:
for a particular M and x, a particular instantiation A of this
Boolean program can be generated in time linear in the size of
M and x, where generic statements like “for each successor (q’,T")
in dar(q,s)” will be explicitly expanded in (linear size) explicit
switch/case statements. ll

The 2EXPTIME-hardness proof relies on the Boolean program
of Figure 5 to be nondeterministic. Indeed, we now prove that
CTL model checking for deterministic Boolean programs is “only”
EXPTIME-complete.

THEOREM 11. The program complexity of CTL model checking for
deterministic ERSMs is EXPTIME-complete.

Proof: EXPTIME-hardness is immediate since reachability analy-
sis of a target node n; in a deterministic ERSM can be reduced to
model checking of the CTL formula EF(n:) on the same ERSM,
and since Theorem 2 already established that ERSM reachability
analysis is EXPTIME-hard, regardless of whether the ERSM is de-
terministic or not.

We can prove membership in EXPTIME in two ways: One
way is to exploit the determinism of the ERSM to reduce CTL
to LTL model checking and use the algorithm from Section 4.
A second, and better way, which we describe below, is to show
that a deterministic ERSM A can be translated into an equivalent
but possibly exponentially larger single-exit RSM A”. Since CTL
model checking for single-exit RSMs can be done in time linear in
the size of the RSM [2], we obtain an algorithm with EXPTIME
complexity in the size of the ERSM. This approach is also better
for reachability and LTL model checking of deterministic ERSM,
as the running time is linear in the number of reachable vertices of
the expanded RSM, rather than cubic as in the general algorithms
of Sections 3, 4. We describe the translation of the ERSM A to
a single-exit RSM A” below in 3 separate steps for simplicity,
although in practice we would perform the steps together, on the
fly, to generate only the reachable part, in linear time in its size.

Step 1. We first expand the ERSM A into an equivalent
exponentially-larger RSM A’ as in Proposition 1. Since the ERSM
A is deterministic, so is the resulting RSM A’. This means that
every state in every FSM component of the RSM A’ has at most
one successor. This also implies that each entry node can reach at
most one exit node.

Step 2. Next, we make a pass over the RSM A’, starting at
each initial vertex, to determine the vertices that are reachable and
compute for each one of them whether it can reach an exit node, and
if so, which one. At all times, reached vertices in each component
form a forest (except possibly in the last step when a cycle closes).
The edges of the forest include ordinary edges and possibly some
summary edges. The roots of the trees are either (i) exit nodes, or
(ii) call ports of boxes (the vertices that are on the stack), or (iii)
the current vertex. The leaves are entry nodes. Each vertex has (i)
a mark bit to mark it when the search reaches it (initially =0), (ii)
a label field to label it with an exit when we determine that it can
reach an exit of its component and which one (initially = nil), (iii)
list of its immediate predecessors in the forest, if any. Initially, only
the start node is marked, and there is only the trivial tree with just
this node.

The main loop is as follows. Let u be the current vertex.

Case 1. v has an edge (u, v) (ordinary edge or a summary edge).

Subcase 1a. mark[v]=0 and v is not an exit node. Set mark[v]=1
and set the current vertex to v.

Subcase 1b. (mark[v]=1 and label[v]=x for some exit x) or v
is an exit node x. If v = =z is an unmarked exit node then mark
it (mark[v]=1) and label it = (label[v]=x). In either case, label u

2012/7/10

and all the nodes in its tree by z (i.e., use the predecessor links to
perform a backward search from u and label all the nodes it its tree).
If the stack is empty, terminate, else pop the top element (b, €) form
the stack, add the summary edge ((b,), (b,)), and let the current
vertex be (b, e).

Subcase 1c. mark[v]=1 and label[v]=nil. Pop all the elements
from the stack and terminate. (In this case we know that the com-
putation does not terminate. Vertices u, v, all their predecessors and
all the vertices on the stack and all their predecessors cannot exit.
All these vertices have mark=1 and label=nil, which characterizes
at the end the vertices that cannot exit.)

Case 2. u is a call vertex (b, e) with no summary edge.

Subcase 2a. mark[e]=0. Push u on the stack, set mark[e]=1 and
set the new current vertex to e.

Subcase 2b. mark[e]=1 and label[e]=x for some exit x. Add the
summary edge ((b, e), (b, z)). Current vertex stays u = (b, e) but
now it has an edge and it will follow Case 1.

Subcase 2c. mark[e]=1 and label[e]=nil. Pop all the elements
from the stack and terminate. (As in case lc, we know that the
computation does not terminate. So e, u, all the predecessors of u,
and all vertices on the stack and their predecessors cannot exit.)

Clearly, every reachable vertex is processed once or twice, SO
the time is linear in the number of reachable vertices (apart from
initialization).

Step 3. We construct a new single-exit RSM A’ that contains
one component A}, for each reachable exit node z of each com-
ponent A; of the given RSM A’; the component A, contains all
vertices of Aj that can reach the exit node z. Thus, each A}, has
a single exit node x and possibly many entry nodes. In addition, if
a component A} of the RSM A’ contains reachable nodes that can-
not exit, then A” contains another component A7, that contains
all such vertices; this component has no exit nodes. Each reachable
box b of an original component A} is replaced by one or more boxes
in the components A7, and A7 of the new RSM A", namely one
box for each reachable return port of the box b contained in the
appropriate component A7, and A, (depending on whether the
return port can reach an exit of A}, and if so which one), and pos-
sibly one more box in A7, if there are reachable call vertices (b, €)
such that the entry e cannot exit its component. Every reachable
vertex and edge of the RSM A’ belongs to exactly one component
of the new RSM A", and A” has no other vertices or edges. Thus,
the total size of A" (number of all vertices and edges) is bounded
by the number of reachable vertices and edges of A’. (Note that we
only include in A” as vertices the call ports that have some inci-
dent edges for this to be true. Moreover, we do not create separate
components for each reachable entry of a component A because if
many entries reach the same exit then we would replicate the ver-
tices and edges of the component A; for each entry and the size
would become quadratic.)

By construction, the reachable parts of the unfoldings T4, T4/
and T4 are all identical. H

The three steps of the algorithm used in the previous proof could
be interleaved and optimized in practice. First, we do not need to
construct the expanded RSM A’ explicitly. Instead, starting from
the initial nodes we explore the RSM on the fly. Second, with
an implicit representation of the ERSM, we would use a search
structure R for the reachable vertices instead of the mark-bit array
(for example a hash table or a search tree) and just generate the
reachable vertices on the fly as needed and insert them into R. Note
that we do the reachability search top down in Step 2 (rather than
bottom up). The running time of the algorithm is proportional to
the number of reachable vertices of A’, which for a typical ERSM
will be probably a fraction of all the vertices since most of the
combinations of variable values are likely not reachable.

The algorithm of Theorem 11 is useful also to reduce the com-
plexity of reachability and LTL model checking for deterministic
ERSM, from cubic to linear in the number of (reachable) expanded
vertices. (Of course we cannot expect an exponential reduction in
view of Theorem 2.)

Thanks to the construction used in Steps 2 and 3 of the previous
algorithm, it is easy to prove the following.

THEOREM 12. CTL model checking for deterministic multi-exit
RSMs can be done in time linear in the size of the structure.

Proof: Using Step 2 and Step 3 of the proof of Theorem 11, we
can translate a deterministic multi-exit RSM A’ into an equivalent
single-exit RSM A" is linear time, and then use the linear-time
CTL model checking algorithm for single-exit RSMs of [2] on A”.
|

Obviously, this means that CTL model checking of determinis-
tic multi-exit HSMs can also be done in linear time (since HSMs are
special RSMs), in contrast with the general case of nondetermin-
istic multi-exit HSMs for which the program complexity of CTL
model checking is known to be PSPACE-complete [1].

In the case of EHSMs, we can show that determinism does not
help reduce the program complexity of CTL model checking com-
pared to the nondeterministic case. However, and perhaps surpris-
ingly, the program complexity of CTL model checking for EHSMs
is the same as for HSMs: it is also PSPACE-complete.

THEOREM 13. The program complexity of CTL model checking for
EHSMs is PSPACE-complete.

Proof: Since CTL model checking is more general than reach-
ability analysis and the latter is PSPACE-complete by Theo-
rem 3,the program complexity of CTL model checking for EHSMs
is PSPACE-hard.

To prove membership in PSPACE, a key observation is that
we can build a fully expanded FSM corresponding to an EHSM
such that the FSM has singly exponential size: a state of the FSM
consists of a stack of suspended calls and the current vertex and
tuple of variable values of the EHSM. The stack has depth at most
d, which is the nesting depth of the EHSM (the height of the
hierarchy), and each record on the stack consists of the box for
the call and the values for the local variables of the component at
the time of the call. So if there is a total of n vertices and boxes
in the EHSM and k Boolean variables, then a state description for
the expanded FSM needs d(log(n) + k) bits, i.e., polynomial space
(and the number of states is n? - 2¢%). The successor states of any
state of the FSM can also be computed in polynomial space. By
using the space efficient CTL model checking algorithm of [23] on
the expanded FSM (which runs in NLOGSPACE in the size of the
FSM), we obtain an algorithm with PSPACE complexity overall. l
Since EFSMs are special cases of EHSMs, the previous PSPACE
upper bound carries over to EFSMs, and we have the following.

COROLLARY 14. The program complexity of CTL model checking
for EFSMs is PSPACE-complete.

Proof: Follows from Theorem 13 and since EFSM reachability

analysis is already PSPACE-complete. ll

Since EFSMs are standard, the last result might be already known,

but we do not know if it is stated somewhere in the literature.
Finally we note that all the algorithms of this section apply also

to the more powerful branching time logic CTL* (see [12] for a

definition) with exactly the same complexity:

THEOREM 15. The program complexity of CTL* model checking
is as follows:

1. For ERSMs it is 2EXPTIME-complete.

2. For deterministic ERSMs it is EXPTIME-complete.

3. For EHSMs it is PSPACE-complete.

2012/7/10

Class of Program | Restriction LTL CTL
FSM Linear Linear
EFSM PSPACE PSPACE
HSM Linear PSPACE
HSM deterministic Linear Linear
EHSM PSPACE PSPACE
EHSM deterministic PSPACE PSPACE
RSM Cubic EXPTIME
RSM deterministic Linear Linear
ERSM EXPTIME | 2-EXPTIME
ERSM deterministic || EXPTIME EXPTIME

Figure 6. Complexity bounds in the size of the program. The new bounds from this paper are highlighted in bold.

6. Discussion
6.1 Summary of Results

Figure 4 summarizes the results for reachability and linear time
properties. For general Boolean programs (ERSMs) the problems
are EXPTIME-complete which means that the analysis provably re-
quires exponential time in the worst-case. Since even reachability
of simple EFSMs (which have no recursion) is PSPACE-complete,
we cannot hope for better than PSPACE for programs with vari-
ables that include EFSMs. As we see, PSPACE sulffices for impor-
tant subclasses including EHSM (hierarchical recursion) and 1/0
bounded ERSM (bounded communication). For the I/O bounded
class, the complexity is reduced further in more restricted cases.

Figure 6 summarizes the results regarding the program com-
plexity of LTL and CTL (and CTL*) model checking for general
(nondeterministic) and deterministic ERSMs and EHSMs and their
counterparts RSM, HSM that have no variables. New results from
this work are highlighted in bold.

From Figure 6, we observe that the program complexity of CTL
model checking for deterministic programs is exponentially better
than for nondeterministic ones, except for EHSMs where the com-
plexity does not change. In practice, this means that whenever it is
possible to hoist nondeterministic choices in a Boolean programs
to its initial states, then the program effectively becomes determin-
istic and CTL model checking can be exponentially faster in the
size of the program.

Figure 7 compares the program complexity of LTL and CTL
model checking for the main (no restriction) classes of programs
considered in Figure 6. From this figure, we make the following
observations.

e Adding Boolean variables (extension “E”) to programs in-
creases the program complexity of model checking except for
HSMs and CTL model checking.

e Adding hierarchy to EFSMs does not increase the program
complexity of model checking for LTL or CTL.

e For a fixed program class, CTL model checking can be expo-
nentially more expensive in the size of the program than LTL
model checking, except in the case of EFSMs and EHSMs
(where the complexity remains PSPACE-complete) and in the
FSM case (where the complexity is linear in both cases).

6.2 Comparison with Pushdown Model Checking

In [2], it is shown that every RSM is bisimilar to a pushdown system
(also called pushdown automaton), while every single-exit RSM is
bisimilar to a context-free system, which is defined as a pushdown
system with only one control state. From [9], this implies that
there exist multi-exit RSMs whose unfolding is not bisimilar to any
single-exit RSM or context-free system. It is also shown in [2] that

e the LTL model checking problem for RSMs and for pushdown
systems are inter-reducible in linear time and logarithmic space,
and similarly for CTL and CTL*;

e the LTL model checking problem for single-exit RSMs and
for context-free systems are inter-reducible in linear time and
logarithmic space, and similarly for CTL and CTL*.

Therefore, the program complexity of model checking for RSMs
and pushdown systems is the same, and so is the program com-
plexity of model checking for single-exit RSMs and context-free
systems.

Since Boolean programs can be exponentially more succinct
than ordinary pushdown systems or recursive state machines, the
program complexity of model checking for Boolean programs does
not follow directly from prior work on model checking for tradi-
tional pushdown systems.

[17] defines “symbolic pushdown systems”, which are push-
down systems extended with variables in the control states and the
stack symbols, it shows how to derive such a system from a Boolean
program, and gives an algorithm for LTL model checking (the al-
gorithm has exponential complexity). No lower bound is given on
the complexity of the problem.

6.3 Impact on Logic Encodings

The complexity results presented in our work also shed new light
on how to represent classes of Boolean programs using logic, and
the abilities and limitations of different logics in this respect.

An approach to symbolic program analysis consists in repre-
senting the program by a logic formula, possibly generated in-
crementally, and then reducing reachability analysis and property
checking to a satisfiability or validity check for the corresponding
logic performed using a SAT or SMT solver. This is the method-
ology used in verification-condition generation [5, 16, 18] and
SAT/SMT-based bounded model checking [13, 14].

For a polynomial-size logic encoding of a specific class of
programs, it is necessary to encode in a sufficiently-expressive
logic. For instance, consider the EHSM case. Theorem 3 states
that reachability analysis for EHSMs is PSPACE-complete. This
suggests that a polynomial-size encoding for EHSMs is possible
using a logic like QBF since satisfiability for QBF is also PSPACE-
complete. (Such an encoding is indeed possible.) This also proves
that a polynomial-size encoding in a less expressive logic, such
as propositional logic, is impossible: a (precise) translation from
EHSMs to propositional logic may result in formulas that are ex-
ponentially larger than the program. In contrast, Theorems 4 and 6
identify specific classes of EHSMs for which reachability analy-
sis is “only” NP-complete and for which precise polynomial-size
encodings to propositional logic are possible (as satisfiability for
propositional logic is NP-complete).

2012/7/10

LTL

EXPTIME

PSPACE

PSPACE

EFSM

exp

EXPTIME

2-EXPTIME

Figure 7. Visual summary for the program complexity of LTL and CTL model checking.

7. Conclusion

Boolean programs are a simple, natural and popular abstract do-
main for static-analysis-based software model checking. This paper
presents the first comprehensive study of the worst-case complex-
ity of several basic analyses of Boolean programs, including reach-
ability analysis, cycle detection, and model checking for the tem-
poral logics LTL, CTL and CTL*. We presented lower and upper
bounds for all those problems. We also identified specific classes of
Boolean programs which are easier to analyze. These results help
explain what features of Boolean programs contribute to the overall
worst-case complexity. For instance, nondeterminism does not im-
pact drastically the complexity of reachability analysis for Boolean
programs (it increases it only polynomially, see Sections 3 and 5)
while it impacts much more significantly (exponentially) the pro-
gram complexity of CTL model checking (see Section 5).

References

[1] R. Alur and M. Yannakakis. Model Checking of Hierarchical State
Machines. ACM TOPLAS, 23(3):273-303, 2001.

[2] R. Alur, M. Benedikt, K. Etessami, P. Godefroid, T. Reps, and M. Yan-
nakakis. Analysis of Recursive State Machines. ACM Trans. on Pro-
gramming Languages and Systems (TOPLAS), 27(4):786-818, 2005.

T. Ball and S. Rajamani. Bebop: A Symbolic Model Checker for
Boolean Programs. In Proceedings of the 7th SPIN Workshop, pages
113-130, 2000.

T. Ball and S. Rajamani. The SLAM Toolkit. In Proceedings of
CAV’2001, volume 2102 of Lecture Notes in Computer Science, pages
260-264, Paris, July 2001. Springer-Verlag.

M. Barnett and K. R. M. Leino. Weakest Precondition of Unstruc-
tured Programs. In Proceedings of PASTE 05 (Program Analysis For
Software Tools and Engineering), pages 82—87, 2005.

G. Basler, D. Kroening, and G. Weissenbacher. SAT-based Summa-

rization for Boolean Programs . In Proceedings of SPIN’2007, number
4595 in Lecture Notes in Computer Science, pages 131-148, 2007.

—
©

[4

=

[5]

[6

[7

—

A. Bouajjani, J. Esparza, and O. Maler. Reachability Analysis of
Pushdown Automata: Application to Model-Checking. In Proceedings
of CONCUR’97, volume 1243 of Lecture Notes in Computer Science,
pages 135-150. Springer-Verlag, 1997.

O. Burkart and B. Steffen. Model Checking for Context-Free Pro-
cesses. In Proceedings of CONCUR’92, volume 630 of Lecture Notes
in Computer Science, pages 123-137. Springer-Verlag, 1992.

B. Caucal and R. Monfort. On the Transition Graphs of Automata
and Grammars. In Graph Theoretic Concepts in Computer Science,
volume 484 of Lecture Notes in Computer Science, pages 311-337.
Springer-Verlag, 1990.

[9

—

[10] A. K. Chandra, D. C. Kozen, and L. J. Stockmeyer.
Journal of the ACM, 28(1):114-133, 1981.

[11] E. M. Clarke and E. A. Emerson. Design and Synthesis of Syn-
chronization Skeletons using Branching-Time Temporal Logic. In
D. Kozen, editor, Proceedings of the Workshop on Logic of Programs,
Yorktown Heights, volume 131 of Lecture Notes in Computer Science,
pages 52-71. Springer-Verlag, 1981.

[12] E. M. Clarke, O. Grumberg, and D. A. Peled. Model Checking. MIT
Press, 1999.

[13] E. M. Clarke, A. Biere, R. Raimi, and Y. Zhu. Bounded Model
Checking Using Satisfiability Solving. Formal Methods in System
Design, 19(1):7-34, 2001.

[14] E. M. Clarke, D. Kroening, and K. Yorav. Behavioral Consistency of
C and Verilog Programs using Bounded Model Checking. In Design
Automation Conference (DAC), pages 368-371. ACM, 2003.

[15] B. Cook, A. Podelski, and A. Rybalchenko. Termination Proofs for
Systems Code. In Proceedings of PLDI’2006, pages 415-426, 2006.

[16] E. W. Dijkstra. Guarded commands, nondeterminacy and formal
derivation of programs. Comm. of the ACM, 18:453-457, 1975.

[17] J. Esparza and S. Schwoon. A BDD-based Model Checker for Recur-
sive Programs. In Proceedings of CAV’2001, volume 2102 of Lecture
Notes in Computer Science, Paris, July 2001. Springer-Verlag.

[18] C. Flanagan, K. R. M. Leino, M. Lillibridge, G. Nelson, J. B. Saxe,
and R. Stata. Extended Static Checking for Java. In Proceedings of
PLDI’2002, pages 234-245, 2002.

[19] P. Godefroid, A. Nori, S. Rajamani, and S. Tetali. Compositional May-
Must Program Analysis: Unleashing The Power of Alternation. In
Proceedings of POPL’2010, pages 43-55, Madrid, January 2010.

[20] S. Graf and H. Saidi. Construction of Abstract State Graphs with PVS.
In Proceedings of CAV’97, volume 1254 of Lecture Notes in Computer
Science, pages 72—83, Haifa, June 1997. Springer-Verlag.

[21] A. Gurfinkel, O. Wei, and M. Chechik. Yasm: A Software Model
Checker for Verification and Refutation. In Proceedings of CAV’2006,
volume 4144 of Lecture Notes in Computer Science, pages 170-174,
Seattle, Aug. 2006. Springer-Verlag.

[22] T. Henzinger, R. Jhala, R. Majumdar, and G. Sutre. Lazy Abstraction.
In Proceedings of POPL’2002, pages 5870, Portland, January 2002.

[23] O. Kupferman, M. Y. Vardi, and P. Wolper. An Automata-Theoretic
Approach to Branching-Time Model Checking. Journal of the ACM,
47(2):312-360, March 2000.

[24] K. R. M. Leino. A SAT Characterization of Boolean Program Cor-
rectness . In Proceedings of SPIN’2003, 2003.

Alternation.

2012/7/10

