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Abstract. Parallelization of unit propagation in SAT solvers is a com-
pelling way of obtaining an efficient parallel decision procedure for the
propositional satisfiability problem. However, due to the P-completeness
of unit propagation, it is challenging to achieve good efficiency in prac-
tice. In this article, we present two methods for unit propagation on
multi-core systems and their implementation. We throughly evaluate
these techniques by comparison to a simulation that estimates a baseline
efficiency and by experimental evaluation of an implementation on com-
petition benchmarks. We thereby demonstrate that achieving a speed-up
linear in the number of cores is indeed challenging in practice, but also
that unit propagation on multi-core systems is feasible in practice.

1 Introduction

Modern SAT Solvers based on Conflict-Driven Clause Learning (CDCL) employ
unit propagation (also called Boolean constraint propagation) to determine the
consequences of fixing the value of one or more variables in the problem. The
Unit Propagation Algorithm computes all implied literals of a partial assignment
to the variables in a formula. While computing this unit closure, the algorithm
repeatedly iterates through a large number of clauses in the formula, resulting
in high memory bandwidth utilization. The solver spends a significant portion,
often 90 % and more [6], of its run time propagating units. Fast computation of
the closure is therefore of paramount importance to the efficiency of the solver.

Modern computers host increasing numbers of CPUs and cores. Therefore,
parallelization of the unit propagation has received increasing interest recently
(see, e.g, [8]). However, many parallelization techniques require expensive syn-
chronization which increases the burden on the memory bus, and it is not clear
how much speed-up, if any, can be obtained by parallelizing unit propagation.
Given that the problem is P-complete [3], it is clear that parallelizing unit prop-
agation efficiently is challenging in theory.

In this article, we study parallelizations of the unit propagation algorithm
using a natural parallelization model and a realistic, fast implementation based
on the widely used SAT solver MiniSat (version 2.2.0) (see [2]). We show that
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parallel unit propagation is feasible in practice and that it does deliver speed-ups
on competition-type benchmarks. At the same time we show that the challenges
set by complexity theory do indeed translate to practical applications and that
it becomes increasingly difficult to achieve linear speed-ups as the number of
Processors grows.

2 Preliminaries

Let « be a Boolean variable and —x its negation. Given a set V' of Boolean
variables, the set {z, ~x | € V'} is the set of literals. A clause is a disjunction of
literals and a propositional formula is a conjunction of clauses. When convenient,
the clauses are interpreted as sets of literals. No clause contains two literals over
same variable. A truth assignment 7 is a set of literals such that for no variable z,
both z and —x are in 7. If the assignment contains a literal over every variable in
a formula, it is called complete, otherwise it is called partial. A given formula ¢
is satisfiable if there is a truth assignment 7 such that each clause of ¢ contains a
literal in 7, and unsatisfiable otherwise. The propositional satisfiability problem
(SAT) is to determine whether a formula ¢ is satisfiable. If [ is in 7 then [ is said
to be true and —l false, whereas literals [ such that 7 contains neither [ nor =i,
are unassigned.

A Conflict-Driven Clause Learning (CDCL) SAT solver determines the sat-
isfiability of a given formula ¢ by searching for a satisfying truth assignment
or showing that no such assignment exists. During the search, a CDCL solver
derives new clauses that are guaranteed to implied by ¢. A central part of the
CDCL search is to extend a truth assignment candidate 7 by unit propagation.
The extension UP(7,¢) is the smallest set of literals containing 7 such that
UP(t,¢) contains every literal for which (¢ A7) = I. Such literals are called
implied, and the unit propagation process, effectively determining the implied
literals, constitutes the majority of the run time of a SAT solver (cf. e.g. [6]).

3 Sequential Unit Propagation Closure

The unit propagation closure computation employed in modern SAT solvers
iteratively identifies implied literals by analyzing a set of clauses against a par-
tial truth assignment. As the number of clauses in a formula can be large. For
instance, the benchmark problems used for the application track of the SAT
competition in 20092 had, on average, just under 900,000 clauses. Most unit
propagation algorithms therefore try to minimize the number of clause evalua-
tions while computing the closure.

A typical unit propagation closure algorithm is shown in Fig. 1. The algo-
rithm keeps a propagation queue UP(Q) containing literals that are to be added
to the partial assignment 7. Typically, UPQ contains a single (assumed) literal
when the algorithm is started, and implied literals are appended to the end of
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the queue when they are identified during execution. In every iteration, the al-
gorithm removes a literal from the head of the queue, and determines whether
the removed literal results in new implied literals under the current partial as-
signment 7.

Most modern CDCL solvers (see, e.g, [2, 6, 1] use unit propagation algorithms
based on lazy data structures like watched literal schemes [11], where some (usu-
ally two) literals in each clause are being ‘watched’. When a literal p is taken
from UPQ, a clause containing —p becomes unit, when all but one of the literals
in the clause have their negation in 7, i.e., the remaining literal is forced to be
assigned to true if the formula is to be satisfied. The watched literal scheme helps
to optimize this deduction, because it minimizes both the number of clauses and
literals that need to be investigated to determine implied literals. To investigate
properties of the algorithm, we divide the clauses into three categories:

a) clauses that contain at least one unassigned literal [ which is not watched,
b) clauses where only the watched literals [y, [y are unassigned in 7, and
¢) clauses that do not contain any unassigned literals.

Note that case a) is simple unit propagation, case b) detects the implication of
{; when —ly is assigned and case c) constitutes a conflict if all literals in the
clause are assigned to false.

Each literal [ is associated with a (possibly empty) watch list WL[!] of clauses
that have [ as one of their watches. Once [ is taken from the unit propagation
queue, all the clauses in WL[~I] are inspected for a new, unassigned literal ,, to
be watched. If one can be found, the clause is removed from the current watch
list and added to WL[l,,]. If no such literal can be found, the clause is unit and
the other watched literal is pushed onto the unit propagation queue. The unit
propagation closure algorithm terminates once the unit propagation queue is
empty or when some implied literal cannot be assigned because its negation has
already been assigned.

Many solvers implement variations of the algorithm depicted in Alg. 1 and
incorporate further optimizations. For example, in MiniSat, the watch list entries
contain one literal from the clause ¢ and a pointer to the clause. If this literal
is assigned to true, the clause is not inspected at all, potentially avoiding a
superfluous memory lookup. Also, most implementations of the two-watched
literal scheme keep the watches as the two first literals of the clause. Thereby, no
additional storage is required for remembering which of the literals are watched.
Note that, other parts of the CDCL algorithm, e.g., conflict analysis, may require
the possibility of recovery of the order in which the literals were assigned, after
the unit propagation closure has been computed.

4 Parallel Unit Propagation Closure

A straightforward parallelization of unit propagation is obtained by simply in-
structing multiple worker threads to obtain literals from the propagation queue,
such that every thread propagates a different literal at any time. The downside



Algorithm 1 Unit Propagation Closure using a two-watched literal scheme

Vars
a (non-empty) unit propagation queue UPQ;
an array of watch lists WLJJ;
a truth assignment 7
Function propagate():
1 while UPQ is not empty:
2 remove a literal p from UPQ
3 for each clause ¢ in WL[-p]:
4 let —¢ be the other watch of ¢
5 if ¢ contains an literal [ # —g that is unassigned in 7:
6 remove ¢ from WL[-p]
7 append ¢ to WL[l]
8 replace —p by [ as the new watch of ¢

9 else if g is unassigned:
10 add —q to T

11 append —¢q to UPQ
12 else:

13 return conflict

14 return no conflict

of this approach is that a significant amount of expensive synchronization is re-
quired to avoid rendering the state of the algorithm inconsistent. Manthey [8]
therefore proposes to partition the clause database, such that every thread has
exclusive access to its partition. It is clear that this partitioning has a significant
influence on the speed-up of the parallelization. Some partitioning schemes have
been suggested (e.g., [7]), but no general consensus about what constitutes a
‘good’ partitioning scheme exists.

Here, we explore a variation of the algorithm that does not partition the
formula. Instead, we propose to parallelize unit propagation using light-weight
synchronization primitives like lock-free data structures [5,10] and hardware
memory barriers [9]. In particular, the unit propagation queue, the truth assign-
ment, each watch list and each clause either need to be guarded by a lock or
replaced with lock free data structures. Furthermore, when two watch lists are
being accessed simultaneously (lines 3 and 6 in Alg. 1 read from watch lists and
line 7 writes to a watch list), a more elaborate locking scheme is required to
avoid deadlocks.

This approach is expected to result in good load balancing between the
threads as long as a sufficient amount of work is available in the unit propa-
gation queue at all times. Furthermore, the contention is expected to be low in
the clauses and the watch lists since it is fairly unlikely that two threads would
request access to the same locks due to the high number of clauses and literals
in typical application formulas.



Algorithm 2 depicts the top-level strategy of this approach, using the pro-
cedures given in Figures 3, 1, and 2. The main loop of the algorithm (Alg. 2)
starts IV threads and ensures the thread group is able to detect termination,
propagate, and avoid deadlocks as mentioned above. Each thread is in one of
the states idle, busy or conflict. The states, initialized to busy (line 1), are stored
in THJ]. The parallel part of the algorithm is on lines 2 — 15. Once a thread has
finished executing (line 6), the thread waits for other threads on line 15. After
each thread reaches line 15, the main thread continues execution and determines
the exit value of the unit propagation closure. The value is conflict if at least
one of the threads found a conflict and no conflict otherwise.

Algorithm 2 Parallel Unit Propagation

Vars
id, the current thread identity
TH][i] states for each thread 4
Function parallelPropagate():
1 let TH[i] = busy for each thread ¢
2 begin parallel:

3 while true:

4 let p = getWork()

5 ifp= L

6 break

7 let TMP = a thread-local empty list
8 let state = litPropagate(p, TMP)

9 lock(TH]])

10 let TH[id] = state

11 release(TH[])

12 restore Watches(TMP)

15 end parallel

16 if TH[i] = conflict for some thread i:
17  return conflict

18 else return busy

The termination of the unit propagation closure algorithm is detected on lines
4-6, and the corresponding function getWork() is shown in Alg. 3. The function
first checks if one of the threads has found a conflict and returns immediately
if this is the case. New work is extracted in the critical sections on lines 17-
29, first from the unit propagation queue and then from the inner propagation
queue (see below for definition). If no work is found, the state of other threads is
checked on lines 32-37 and if all threads are in state idle, the final thread sets the
variable cont to false to indicate that the unit propagation closure is computed.
Otherwise, the thread sets its state to busy on lines 43-46. Once a thread has
set its state, it exits the critical section. If work was found or termination was



detected, the respective result is returned on lines 14 or 41. Otherwise the thread
repeats the procedure.

Unit propagation for a single literal is handled on lines 7-8 in Alg. 2, and
the corresponding function litPropagate() is shown in Alg. 1. The function starts
by locking the watch list of —p on line 1 and inspects all the watched clauses
on lines 2-26. Each clause ¢ is locked to avoid two threads changing the same
clause simultaneously. The case where ¢ contains an unassigned non-watch is
handled on lines 5-12. To avoid the deadlock, an attempt to lock the new watch
list is done on line 7. If the watch was not locked, the new clause is updated
to the watch list. Otherwise the watch is stored in the thread local list TMP
on line 11. The watch is then updated on line 12. The case where ¢ does not
contain an unassigned non-watch is handled on lines 13-25. If the other watch
—q is unassigned, it is assigned, implied and added to the unit propagation queue
on lines 15 — 20. Otherwise either a conflict is detected or the other watch was
already assigned true. In the former case the algorithm returns on line 26. In the
latter case the algorithm studies the next clause in the watch list.

The third parallel phase in the unit propagation closure of Alg. 2 is described
on lines 9-12. If propagating the literal on line 8 resulted in a conflict this is
recorded to the state of the thread on lines 9 — 11. The function litPropagate()
stored the watches that it could not immediately update to TMP. These are
restored on line 12 with the restore Watches() function described in Fig. 2. The
function restore Watches() takes an entry from the thread local list TMP and
attempts to place it in the corresponding watch list on lines 2-6. If the function
litPropagate() has already been called for the literal =, then it is possible that the
clause ¢ was still in TMP. Therefore —l is placed on the inner propagation queue,
where it will be found by the function getWork() later. Finally the function
returns once all clauses have been removed from TMP.

4.1 Implementing the Parallel Algorithm

To improve overall performance, some optimizations may be made in an imple-
mentation of the parallel unit propagation algorithm:

The locking system in the Alg. 2 can be more light-weight as in many cases
the contention is expected to be low. Furthermore, many of the operations can
be performed with a single, atomic call to InterlockedCompare Exchange() or the
CompareAndSwap() instruction provided by most operating systems. In particu-
lar, lines 9-11 of Alg. 2 may be replaced by Interlocked Compare Exchange(); and
in Alg. 3, lines 2—6 needs no locking, lines 21-29 need no locking as long as there
is a memory barrier on line 30.

The locks for the watch lists, represented by the respective literals (for ex-
ample, line 1 in Fig. 1), can be implemented as spin locks on the watch data
structure. A similar approach can be taken for the locks of clauses.

The operations on the truth assignment can be implemented without locks
on lines 14-21 using atomic InterlockedCompareEzchange().
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Algorithm 3 Termination detection and work retrieval algorithm

Literal getWork(UPQ /+ wunit propagation queue %/,
IPQ /% inner propagation queue */,
id /* thread identity =/,
THf] /x thread states x/) {
Literal r = 1.
while (true) {
lock (TH[]);
bool conflict = false;
if (TH[i] is conflict for some thread i)
conflict = true;
release (TH[]);

if (conflict) {
return | ;
}

else {
lock (UPQ);
if (UPQ non—empty) {
r= a literal from UPQ;
remove r from UPQ;
}
release (UPQ);
if (r=1) {
lock (IPQ);
if (IPQ non—empty) {
r= a literal from IPQ;
remove r from IPQ;

}
release (IPQ);

}
if (r=1) {
lock (TH[]);
THfid] = idle;
if (THfi/=1idle for all threads i) {
cont = false;

}
release (THJ]);
}

if (cont= false)
return | ;

else if (p#1) {
lock (TH[]);
TH[id] = busy;
release (TH[]);
return r;




Vars
WL[l], the watch lists for each literal I; UPQ, the unit propagation queue
Function litPropagate(p, TMP):
1 lock(—p)
2 for each clause ¢ in WL[-p]:
3 lock(c)
4 let —¢ be the other watch of ¢
5 if ¢ contains an unassigned literal | # —gq:
6 remove ¢ from WL[—p]
7 if trylock(l):
8 append ¢ to WL[(]

9 release(l)

10 else:

11 append (l,c) to TMP

12 replace —p by [ as the new watch of ¢
13  else:

14 lock the truth assignment

15 if g is unassigned:

16 lock(UPQ)

17 assign —q to true

18 append —¢q to UPQ

19 release(UPQ)

20 else if —q is assigned false:

21 release the truth assignment
22 release(c)

23 release(—p)

24 return conflict

25 release the truth assignment

26 release(c)
27 release(—p)
28 return no conflict

Fig. 1. The Literal Propagation Algorithm



Vars

WL[l], the watch lists for each literal I; IPQ, the inner propagation queue;
Function restore Watches(p, TMP):
1 while TMP is not empty:

2 let (I, ¢) be a pair in TMP
3 if trylock(l):

4 append ¢ to WLJI]

5 remove (I, c) from TMP

6 release(l)

7 if | has been propagated:
8 lock(IPQ)

9 append [ to IPQ

10 release(IPQ)

11 return

Fig. 2. The watch restoration algorithm

Extra work is avoided by checking the clauses ¢ on lines 2-26 in Fig. 1 if
the literal p is from the inner propagation queue by storing the index of the last
clause that was inspected in each watch list.

5 Experimental Results

To assess the efficacy of our algorithms we evaluate them on instances from the
application track of the SAT competition 2009*. Our implementation is based on
MiniSat (with SatELite preprocessing (simp) and without (core) as indicated).
We do not compare to other parallel SAT solving approaches as the goal of this
work is to assess the feasibility of parallel unit propagation and not to achieve
larger speed-ups than other methods. We would like to note that the speed-ups
of our parallelization are far inferior to those achieved, e.g., by portfolio-based
parallel SAT solvers (cf. e.g. [4]).

5.1 Simulation Experiments

Before assessing our implementation, we are interested in a worst-case model for
unit propagation. We therefore present an evaluation of a simulation based on
worst-case assumptions to provide baseline data to compare actual implementa-
tions to. The distributions for queue sizes and memory jumps, and the memory
sizes are obtained from the benchmark files.

Our simulation is a program which holds a memory of size M which is then
accessed by N threads. At each iteration, a number n, of literals is selected from a
propagation queue size distribution. Each thread removes literals from the queue

4 http://www.satcompetition.org/



one at the time until the queue is empty, and makes a non-atomic memory swap
operation between the previous location and a location from a memory access
difference distribution. The memory accesses of each thread are randomized using
different seeds to avoid threads looking at the same locations and hence giving
the parallel code unfair speedup by cache locality. This corresponds roughly to
a case where each literal in the propagation queue watches a single clause.

Figure 3 shows characteristics for the unit propagation queue size for the
instances. The left-hand side graph shows the average and maximum number
of propagations in unit propagation closure computation. This number is mis-
leading in this context, as typically all the propagations cannot be done si-
multaneously since the unit propagation closure computation involves chains of
propagations. The right-hand side graph shows a more realistic figure, where the
size of the propagation queue is measured at the end of each chain
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Fig. 3. Unit propagation queue sizes in unit propagation closure (left) and at a given
parallelizable snapshot (right)

Figure 4 (right) shows the time used in computing a unit propagation closure.
This is the time that the threads can be running simultaneously and hence should
be parallilized to obtain speedup.

The results in Fig. 5 are obtained using the previously collected distributions
(sample size is 1000 for both memory jumps and queue sizes). Each simulation
starts by running a sequential version of the code for 10 minutes and computing
the number of performed swaps. Then the parallel code performs the same num-
ber of swaps. The sequential time (10 minutes) is then divided by the wall-clock
time used by the parallel execution resulting in the reported speedup figures.
Based on the figures, it seems that in majority of the cases the parallelization
results in significant slowdown of the execution in the worst-case model used in
the experiments.
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As the number of literals in the propagation queue is the main factor limiting
the parallelization in the model, it is interesting to study what results would be
obtained if the size of the queue was larger. Figure 6 shows the effet of multiplying
the queue size by 1.7.
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Fig. 6. Simulation speedup for two-decision solver where overlap is 0.3

5.2 Experiments on the Implementation

Figure 7 shows the speedups obtained by running the parallel algorithm de-
scribed in Sect. 3. The left-hand side graph illustrates the effect of using two
cores instead of a single core for executing the same code. In most cases there
seems again to be a slowdown, which is roughly in line with the results from the
simulations. It would however seem that in the more difficult instances there are
some gains and the slowdown is not as significant. As the locking in the code
results in slowdown also in sequential case, it is useful to compare the results
against the unaltered MiniSat in the right-hand side graph.

6 Conclusions

6.1 Future Work

The operations on the inner propagation queue can be implemented using a
lockless queue. The same is true for the unit propagation queue, but then either
the atomicity of the assignment and appending the implied literal on lines 17
and 18 in Fig. 1 need to be ensured or the assignment order needs to be stored
in the truth assignment so that the order can later be recovered for the conflict
analysis in other parts of the CDCL algorithm.
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Fig. 7. Speedup obtained with the implementation (two threads)

It feels likely that the clause level synchronization could be avoided in many
cases by storing short clauses only in watch lists. At least binary clauses should
fit into this nicely.

In the current implementation there is a somewhat rare assertion failure in
memory management which has never been observed in sequential code, once in
300 instances in two-threaded version and seven times in four-threaded version.
This could either result from memory exhaustion or a race condition in MiniSat
internal memory management.

It would be interesting to work more on the simulation model, as clearly the
assumption that each watch list contains only a single clause is invalid. Perhaps
more insight could be obtained by studying realistic watch list sizes and their
effects to the speedups. This could give further insight in how to improve the
parallel unit propagation.
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