FiConn: Using Backup Port for Server
Interconnection in Data Centers

Dan Li*, Chuanxiong Guo*, Haitao Wu*, Kun Tan*, Yongguang Zhang*, Songwu Lu'

*Microsoft Research, Asia, TUniversity of California, Los Angeles

Abstract—1t is challenging to interconnect the large and
rapidly growing number of servers in data centers with low
cost. In current practice, tree is used and expensive high-speed
switches are required in top levels of the tree. As an alternative
solution, interconnection intelligence can be put on servers.

Commodity servers in data centers often have two NIC ports,
but only one is used for operation in current practice and the
other is for backup. In this paper, we design FiConn, a structure
for server interconnection in data centers which exploits the
backup port on servers and eliminates the requirement of any
switches other than the lowest-level commodity ones. Although
with the server node degree of only two, FiConn is highly scalable
to encompass hundreds of thousands of servers, while at the same
time has low diameter and high bisection width. In addition,
routing in FiConn makes a balancing use of different levels of
links.

To further utilize the link capacities according to traffic states,
we design fraffic-aware routing in FiConn with little control
overhead. The traffic-aware path is computed hop-by-hop by each
intermediate server based on the available bandwidths of its two
outgoing links. Simulation results demonstrate that the traffic-
aware routing indeed achieves high networking throughput.

I. INTRODUCTION

The number of servers in today’s data centers is very large.
It is reported that companies such as Google, Yahoo! and
Microsoft have built data centers composed of hundreds of
thousands of servers, and the number is still increasing [1], [2],
[3]. It is also not unusual that some universities or institutions
have thousands of servers or even more [7] in their data
centers. These servers need to be interconnected because of
large volumes of data exchange among them, from running
on-line applications such as search, gaming, web mail, to
providing infrastructure services such as GFS [4], map-reduce
[5] and Dryad [6]. Considering that the cost of interconnection
structure is among the major budgets for building a data center,
it is desirable to design a networking structure with low cost.

In current practice, tree is used for interconnection. Each
server uses one NIC port to connect to a lowest-level com-
modity switch, and higher-speed switches are placed on higher
levels to interconnect the lower-level ones. It is well under-
stood that the tree structure has many disadvantages [7], [8].
First, the top-level switches are the bandwidth bottlenecks.
As a result, expensive high-end switches are demanded for
encompassing tens of thousands or even hundreds of thousands
of servers. Second, a high-level switch is the single-fault point
for the sub-tree rooted from it. Using redundant switches does
not intrinsically solve the problem, but brings even higher cost.

As an alternative solution other than high-end switches, we
can put interconnection intelligence on servers. Commodity

servers in data centers often have two on-board NIC ports [9],
but only one is used for operation in current practice and the
other is for backup. It gives us hint that we can exploit the
backup port for server interconnection. In this way, we do not
bring much deploying cost on servers. However, there is no
structure in the literature with the server node degree of two
that can scale to tens of thousands or even hundreds of thou-
sands of servers with acceptable diameter and bisection width.
In this paper, we design such an interconnection structure for
data centers, which we call FiConn. Each server in FiConn
uses two NIC ports, one connecting to a commodity switch
(the original operation port) and one connecting to another
FiConn server (the original backup port). Hence, switches
other than the lowest-level commodity ones are unnecessary.

FiConn is recursively defined. A high-level FiConn is con-
structed by many low-level FiConns. When constructing a
higher-level FiConn, the lower-level FiConns use half of their
available backup ports for interconnection and they form a
mesh. In this way, the total number of servers in FiConn, N,
grows double-exponentially with FiConn levels. For example,
if 48-port switches are used, a 2-level FiConn can support
361200 servers. The diameter of FiConn is O(logN'), which
is small and can thus support applications with real-time
requirement. The bisection width of FiConn is O(N/logN),
indicating that FiConn can well tolerate port/link faults. In-
terestingly, the basic routing algorithm in FiConn can make a
balancing use of different levels of links. Note that although
we use the backup port of each server, the server’s reliability
is not sacrificed because when one port fails, it can still work
using the other port.

To further utilize the link capacities according to traffic
states, we design traffic-aware routing in FiConn based on
the basic routing algorithm. Because of the large number of
servers, we do not depend on any central server(s) for traffic
scheduling nor exchange traffic states among FiConn servers.
Instead, the traffic-aware path is computed hop-by-hop by
each intermediate server based on the available bandwidths
of its two outgoing links. Simulation results demonstrate
that the traffic-aware routing performs similar to the basic
routing algorithm for random traffic, while achieves much
higher throughput for burst traffic between two subsets of
FiConn severs, which is common in data centers produced by
computation models such as map-reduce. In other words, the
traffic-aware routing can indeed well exploit the link capacities
of FiConn to improve the networking throughput.

In summary, the primary contribution of this paper lies in
two-folds. First, we propose FiConn, a novel structure using

backup port for server interconnection in data centers. FiConn
is highly scalable with the server node degree of two, while
at the same time has low diameter and high bisection width.
Second, we design traffic-aware routing in FiConn that well
exploits the link capacities based on traffic states so as to
improve the networking throughput.

Compared with tree structure, FiConn introduces some addi-
tional overheads. First, servers in FiConn participates in packet
forwarding thus more CPU resource is consumed. Second, the
wiring effort is higher since each server uses two NIC ports.
However, these overheads are well justified because multi-core
is getting popular, and the use of two NIC ports can provide
higher end-to-end throughput than using only one port.

The rest of this paper is organized as follows. Section
IT introduces the related work. Section III describes the in-
terconnection structure of FiConn and the basic properties.
Section IV designs the traffic-aware routing in FiConn. Section
V conducts simulations to evaluate the traffic-aware routing.
Finally, Section VI concludes the whole paper.

II. RELATED WORK
A. Interconnection Structure for Data Centers

Due to the well understood limitations of tree structure, new
structures are recently proposed for server interconnection in
data centers, such as Fat-Tree [7] and DCell [8].

In the Fat-Tree structure, commodity GigE switches are
used to interconnect the servers and there is no requirement
of 10GigE or faster switches. Fig.1 illustrates the topology,
which has three levels of switches. There are n pods (in this
example, n = 4), each containing two levels of n/2 switches,
i.e., edge level and aggregation level. Every n-port switch in
the edge level uses n/2 ports to connect the n/2 servers, while
uses the remaining n/2 ports to connect the n/2 aggregation-
level switches in the pod. At the core level, there are (n/2)?
n-port switches and each switch has one port connecting to
one pod. Therefore, the total number of servers the Fat-Tree
structure supports is n®/4. Given a typical value n = 48, the
number of servers there is 27648.

FiConn differs from Fat-Tree in several aspects. First, Fi-
Conn puts the interconnection intelligence on servers instead
of on switches, so the number of switches used are much
less than in Fat-Tree. Given the total number of servers is
N and the n-port switches are used, the number of switches
needed in Fat-Tree is 5N/n, while that required in FiConn is
N/n. In other words, FiConn reduces the cost on switches
by 80% compared with Fat-Tree. Second, the number of
servers Fat-Tree supports is restricted by the number of switch
ports. FiConn does not have the limitation and can extend to
very large number of servers with the server node degree of
two. Third, Fat-Tree depends on central server(s) for traffic
scheduling in the present design, but the traffic-aware routing
in FiConn distributedly computes the routing path with little
control overhead.

As we show in Fig.2, DCell is a level-based structure. In
DCelly, n servers are connected to a commodity n-port switch.
Given there are totally ¢ servers in a DCellg, t + 1 DCellgs
are used to build a DCellg4; and the ¢ servers in a DCelly,

Fig. 1. A Fat-Tree structure with n = 4. It has three levels of switches.

DCellg[0}

oeelia] (7 DCell1]

DCelly[2]

DCelly[3]

Fig. 2. A DCelly structure with n = 4. It is composed of 5 DCellgs.

connect to the other ¢ DCellys respectively. In this way, DCell
achieves high scalability and high bisection width.

FiConn shares the same principle as DCell to put the
interconnection intelligence on servers. However, they are
quite different. First, the server node degree in a DCell, is
k+1, but that of FiConn is always two. As a result, FiConn just
needs to take use of the existing backup port on each server for
interconnection, and no other hardware cost or deploying issue
on servers is introduced. Second, the wiring effort in FiConn
is less than that of DCell because each server uses only two
ports. Third, routing in FiConn makes a balancing use of links
in different levels. Traffic-aware routing is further designed to
exploit the link capacities according to traffic states. On the
contrary, DCell does not have the balancing property and there
is no traffic-aware routing in it.

B. Interconnection Structure in Other Areas

Besides in data centers, interconnection structures are
widely studied in various areas, such as parallel computing
[13], [14], [15], on-chip network [12], and switching fabric
[16]. Proposed structures include Ring [15], HyperCube [10],
[11], Butterfly [14], Torus [15], De Bruijin [17], Flattened
Butterfly [18] and DragonFly [19]. However, these structures
target at other scenarios, and are not specifically designed to
meet the requirements of data centers, such as high scalability
for supporting large number of nodes, small node degree
for low wiring cost and high bisection width for tolerating
link/node faults.

Among these structures, only Ring [15] has the constant
node degree of two, which is similar to FiConn. However,
the diameter of Ring is 2 and the bisection width is N/2,

Core level

Aggregation level

Edge level

where N is the total number of nodes. On the contrary,
FiConn has the diameter of O(logN) and the bisection width
of O(N/logN). Undoubtedly, FiConn is more desirable for
server interconnection in data centers where IV is very large.

III. FICONN: A NOVEL INTERCONNECTION STRUCTURE
FOR DATA CENTERS

In this section we design the interconnection rule of FiConn
and a basic routing algorithm in the structure.

A. Interconnection Rule

FiConn is a recursively defined structure. A high-level Fi-
Conn is constructed by many low-level FiConns. We denote a
level-k FiConn as FiConny,. FiConng is the basic construction
unit, which is composed of n servers and an n-port commodity
switch connecting them. Typically, n is an even number such
as 16, 32, or 48. The speed of the switch ports is unnecessary
faster than that of the server ports (usually 1G). Every server
in FiConn has one port connected to the switch in FiConng,
and we call this port level-O port. The link connecting a
level-0 port and the switch is called level-0 link. Level-0 port
can be regarded as the original operation port on servers in
current practice. If the backup port of a server is not connected
to another server, we call it an available backup port. For
instance, there are initially n servers with available backup
port in a FiConng.

Now we focus on how to construct FiConny (k > 0) upon
FiConng_1s by interconnecting the backup ports of servers
in FiConny_js. If there are totally b servers with available
backup ports in a FiConng_1, the number of FiConng_1s
in a FiConng, g, is equal to b/2 + 1. In each FiConny_1,
b/2 servers out of the b servers with available backup ports
are selected to connect the other b/2 FiConny_1s using their
backup ports, each for one FiConng_;. The b/2 selected
servers are called level-k servers, the backup ports of the level-
k servers are called level-k ports, and the links connecting two
level-k ports are called level-k links. If we take FiConny_; as
a virtual server, FiConn,, is in fact a mesh over FiConnj_1s
connected by level-k links.

We can use a sequential number, uy, to identify a server
s in FiConng. Assume the total number of servers in a
FiConny, is N, there is 0 < up < Ng. In addition, s can
be identified by a (k + 1)-tuple, [a,...,a1,a0], where ag
identifies s in its FiConng, and a; (1 < [< k) identifies
the FiConn;_; comprising s in its FiConn;. Obviously, there
1S ug = ag + Zle(al * N;_1). For ease of expression, s can
also be identified by [ak, ug—1], [ak, Gk—1,ur—2], and etc.

Algorithm 1 shows the construction of a FiConng (k > 0)
upon gi FiConng_1s. In each FiConng_; (Line 2), the servers
satisfying (ux—1 — 2871 4 1) mod 2F == 0 are selected as
level-k servers (Line 3), and they are interconnected as Lines
4-6 instruct.

We take Fig.3 as an example to illustrate the FiConn
interconnection rule, in which n = 4 and £ = 2. FiConng
is composed of 4 servers and a 4-port switch. The number of
FiConngs to construct FiConn; is 4/2 + 1 = 3. The servers
[0,0], [0,2], [1,0], [1,2], [2,0] and [2, 2] are selected as level-1

01 FiConnConstruct(k){
02 for(i1 = 0;41 < gk;i1 ++)
03 for(ji = i1+ 2" + 271 — 1,51 < Ni_1551 = j1 +2%)

04 12 :(j1—2k_1+1)/2k+1
05 o =iygx2F 2R 1 1

06 connect [i1, j1] with [i2, j2]
07 return

08 }

Algorithm 1: Constructing FiConny, upon g FiConng_1s.

servers and we connect [0, 0] with [1, 0], [0, 2] with [2,0], and
[1,2] with [2,2].

In each FiConn;, there are 6 servers with available backup
ports, so the number of FiConnys in a FiConny is 6/2+1 = 4.
We connect the selected level-2 servers as follows, [0,0, 1]
with [1,0,1], [0,1,1] with [2,0,1], [0,2,1] with [3,0,1],
[1,1,1] with [2,1,1], [1,2,1] with [3,1,1], and [2,2,1] with
[3,2,1].

Based on the interconnection rule of FiConn, we discuss
some of its properties.

Theorem 1: If we denote the total number of servers in a
FiConny, as Ny, there is N, > 2F+2 « (n/4)2k (for n > 4),
where n is the number of servers in FiConng.

Proof: Based on the interconnection rule, a FiConny_1
has Ny_;/28~1 servers with available backup ports. When it
is used to construct FiConny, half of the servers with available
backup ports are selected as level-k servers to connect other
FiConny_1s. Hence, there is g = Nk_l/Qk + 1. We have:

N[it k=0
P Np—1 gk = Ny s (Ne—y /28 +1), if k>0

We validate the correctness of Theorem 1.

i) If k=0, there is Ny = 4 * (n/4) = n.

ii) If Nj_q > 26+1s(n/4)2" ", then we have N}, = Ny_q
(Np—1/2% +1) > N2_ /28 > 22642 4 (n/4)2" J2F = 2k+2 4
(n/4)%". n

Fig.4 illustrates the total number of servers in FiConn versus
the level k. We use log10(log10Ny) in y axis. The figure shows
clearly the linear relationship between log1(log10Ny) and k,
which implies that Ny grows double-exponentially with k. For
a typical value of n = 48 and k£ = 2, the number of servers
in FiConn is 361200. If we choose n = 16 and k = 3, the
number becomes 3553776.

Theorem 2: The average server node degree in FiConny, is
2 —1/2k,

Proof: Assume there are totally N servers in FiConng.
All servers have one level-0 link. In addition, Ny / 2t servers
have a level-i link (1 < 7 < k). As a result, the average
server node degree in FiConny, is (N, +Zf:1 (Ni/2%))/Ny =
2 —1/2k,]

Theorem 2 tells that the average server node degree of
FiConn approaches to 2 when k grows, but never reaches 2.
In other words, FiConn is always incomplete in the sense that
there are always servers with available backup ports in it. In
fact, it is just the incompleteness characteristic of FiConn that
makes it highly scalable with the server node degree of two.

——————— Level-0 Link

. 10231 10,607 0.5,
— Level-1 Link

i [0,2,2]
—_——— Level-2 Link r

13231 13601 3,07
13,221

231 1,600 (1,01

[1,2,2]

FiConn,[2]

Fig. 3. A FiConnz with n = 4. The FiConng is composed of 4 FiConn;s, and each FiConn; is composed of 3 FiConngs. A level-0 link connects one server
port (the original operation port) to a switch, denoted by dot-dashed line. A Level-1 or Level-2 link connects the other port (the original backup port) of two
servers, denoted by solid line and dashed line respectively. The path from [0,2,1] to [1,2,1] using level-recursive routing is ([0,2,1], [0,2,0], [0,0,2], [0,0,1],

[1,0,1], [1,0,2], [1,2,0], [L,2,1])

Theorem 3: Suppose L; denote the number of level-/ links
in FiConng, there is
4*Ll+1, if I[=0

Ll{ 2% Ly, if 0<I<k

Proof: First we prove Ly = 4 % L1, and we only need
to prove it holds in a FiConn;. Each server in a FiConn; has
one level-0 link, so there is Ly = ;. Half of the servers in
FiConn; are selected as level-1 servers and every two level-1
servers share one level-1 link. Hence, we have L; = N;/4.
As a result, there is Lo = 4 * L.

Then we prove for any 0 < [< k, L; = 2 % L;;;. Again,
we only need to prove it holds in a FiConn;4 ;. In a FiConny,
the number of level-l servers is N;/2' and the number of
level-l links is thus NZ/QZ“. Hence In FiConnjyq, L; =
giy1 * N;/2!F1. Similarly, the number of level-(I + 1) links in
FiConn;; is Lj11 = Nyy1/2!72. Note that Ny = g1 % Ny,
so we have Ly =2 L. |

The relationship among the numbers of links in different
levels disclosed in Theorem 3 matches the basic routing
designed below in FiConn, which is in favor of making a
balancing use of FiConn links. It will be further explained in
the following subsection.

B. Level-Recursive Routing

We design a basic routing algorithm in FiConn which takes
advantage of the level-based characteristic of FiConn. For
any pair of servers, if the lowest common level of FiConn
they belong to is FiConn;, the routing path between them
is constrained to the two FiConn;_j;s comprising the two
servers respectively, and the level-/ link connecting the two

0.9

0.8 s
+ 7
07F > A / q
/
0.6 / ~ i
// /9/
-
05 - e 1
B w7
8 04r // //// |
E)
S -
- ~
0.3) / s | 1
L / —%—n=16
02§~ —a—n=32|
g —+—n=48
01 / 4
ob 1
01
05 1 15 2 25 3

Fig. 4. The relationship between the total number of servers N and the
FiConn level k. The y-axis is log10(log1o0Ng)-

FiConn,_1s. Hence, the routing path between two servers can
be recursively calculated. We call this basic routing algorithm
level-recursive routing.

Algorithm 2 shows how the level-recursive routing works
on a server s to route a packet destined to dst. The function
LRRoute() returns the next-hop server. First of all, the lowest
common FiConn level of s and dst is found based on their
identifiers, say, [(Line 2). If [is zero (Line 3), it means
the destination server is within the same FiConng as s, and
the function returns dst (Line 4). Next, we get the level-I
link connecting the two FiConn;_;s comprising s and dst
respectively, say, (i1,%2) (Line 5). If 4; is s itself (Line 6), then
io is returned (Line 7). Otherwise, we recursively compute and

return the next-hop server from s towards ¢; (Line 8).

/*s: current server.

dst: destination server of the packet to be routed.
*/

01 LRRoute(s, dst){

02 [= lowestCommonLevel(s, dst)

03 if(l==0)

04 return dst

05 (i1,%2) = getLink(s, dst,[)

06 if(i;y ==s)

07 return i,
08 return LRRoute(s, 1)
09 }

Algorithm 2: Level-recursive routing in FiConn.

Take Fig. 3 as an example. The path from source server
[0,2,1] to destination server [1,2,1] using level-recursive rout-
ing is ([0,2,1], [0,2,0], [0,0,2], [0,0,1], [1,0,1], [1,0,2], [1,2,0],
[1,2,1]), which takes 7 hops.

From the level-recursive routing, the number of level-/ links
(0 < I < k) in a typical routing path in FiConny is twice
that of level-({ + 1) links, and the number of level-0 links is
four times that of level-1 links (note that one hop in FiConng
includes two links since it crosses the switch). Meanwhile,
Theorem 3 tells that in FiConny, the total number of level-I
links (0 < I < k) is twice that of level-(I + 1) links, and
the number of level-0 links is four times that of level-1 links.
Therefore, the level-recursive routing makes a balancing use
of different levels of FiConn links, which helps improve the
aggregate throughput, especially in random traffic pattern.

Leveraging the level-recursive routing, we can calculate the
diameter and bisection width of FiConn.

Theorem 4: The upper bound of the diameter of FiConny
is 2FF1 — 1.

Proof: Using the level-recursive routing, the longest
routing path between any two serves in FiConny, takes 1 level-
k hop, 2 level-(k — 1) hops, ..., 2k=1 Jevel-I hops, ..., and
2% level-0 hops. Hence, the upper bound of the diameter of
FiConny, is 1 + 2+ ... + 2F = 2k+1 _ 1,]

In combination with Theorem 1, the diameter of FiConn
is O(logNy), where Ny is the total number of servers in
FiConny. Obviously, the diameter of FiConn is small consid-
ering the total number of servers, benefiting applications with
real-time requirement.

Theorem 5: The lower bound of the bisection width of
FiConny, is Nj/(4 * 2¥), where N}, is the total number of
servers in FiConng.

Proof: In all-to-all communication, the number of flows
on the FiConn, link that carries the most flows is about 2%
Ny, times of that in its embedding complete graph. Based on
[14], the lower bound of the bisection width of FiConny is
1/(2% * Ny,) times of that of complete graph, that is, (1/(2% *
Ni)) * (N2/4) = Ni. /(4 % 2F). |

Considering Theorem 1, the bisection width of FiConny
is also O(Ny/logNy). The high bisection width of FiConn
implies that there are many possible paths between a pair
of servers, resulting from which FiConn can well tolerate
port/link faults and it is possible for multi-path routing.

IV. TRAFFIC-AWARE ROUTING IN FICONN

Level-recursive routing makes a balancing use of different
levels of FiConn links and we take it as the basis for FiConn
routing. However, it has some limitations. Firstly, a pair
of servers cannot take advantage of two ports on each to
improve their end-to-end throughput in level-recursive routing.
Secondly, level-recursive routing cannot further utilize the link
capacities according to traffic states to improve the networking
throughput. To overcome these limitations, we design traffic-
aware routing in FiConn.

A. Basic Design and Challenges

Because of the large number of servers in data centers, we
do not depend on central server(s) for traffic scheduling, nor
exchange traffic states among all the FiConn servers. Instead,
we target at distributedly computing the routing path with little
control overhead.

We use a greedy approach to hop-by-hop setup the traffic-
aware path on each intermediate server, that is, each server
tries to balance the traffic between its two outgoing links.
Specifically, the source server always chooses the outgoing
link with higher available bandwidth to send the traffic. For
a level-l (I > 0) intermediate server, if the outgoing link
based on level-recursive routing is its level-l link and the
available bandwidth of its level-O link is higher, its level-I
link is bypassed by randomly selecting a third FiConn;_; in
the FiConn; to relay the traffic; otherwise, the traffic is routed
by level-recursive routing.

When the level-l server s selecting a third FiConn;_;
for relay, a possible choice except random selection is to
exchange traffic states among all the level-I servers within each
FiConn;_1, and so s can choose the third FiConn;_; to which
the level-/ link has the highest available bandwidth. However,
we do not adopt this method because when [is high, the
number of level-l servers in a FiConn;_; may be too large and
it brings considerable overhead to exchange traffic states with
each other. One may argue that traffic states can be exchanged
within a smaller range, such as FiConng or FiConn;. But there
may be few or even no level-/ servers in such a range if [is
high, and so the candidate third FiConn;_;s are very limited.
As a result, in the present design we let server s randomly
select a third FiConn;_; in the FiConn; for relay, which avoids
traffic state exchange and retains a wide candidate set of third
FiConn;_s.

In fact, our idea of traffic-aware routing can be easily
extended to handle port/link faults, which is common in data
centers. When a port or link fails, it can be regarded as that
the available bandwidth of the link becomes zero, so the traffic
will always be routed by the other link of the server. In this
sense, port/link fault handling is just an extreme case of traffic-
aware routing. The only extension is that when a level-/ server
s receives traffic from its level-/ link but its level-O link fails,
s routes the traffic back to its level-s neighboring server to
bypass the level-/ link as if the level-l link fails.

To limit the control overhead, we do not compute the traffic-
aware path on packet basis. Instead, we target at flow basis
and dynamically setup the traffic-aware path for a flow using

FiConno[0] @
/,"' > .

[2,3] [0,0]

@ [2,2]
.\'\, \w

[1.2] i

i
e
_,.’-"@ FiConng[1]

FiConng[2]
= Level-0 link
— Level-1 link
Fig. 5. Tllustration for traffic-aware path setup. There is already one flow in

the level-1 link from [2,0] to [0,2] and all other links carry no traffic. Now
[2,1] initiates a flow towards [0,1]. The path using level-recursive routing is
([2,1], [2,0], [0,2], [0,1]). The path using traffic-aware routing is ([2,1], [2,2],
[1,2], [1,01, [0,01, [0,1]).

a special path-probing packet. When a flow is initiated on
the source server, it is intercepted by the FiConn routing
module of the source server, and a path-probing packet for
the flow is sent out towards the destination server. Each
intermediate server routes the path-probing packet based on
local traffic states as stated above, and establishes the routing
entry for the flow, which includes the previous hop and the
next hop. When the destination server receives the path-
probing packet, it replies the packet by sending another path-
probing packet back towards the source server, in which the
source and destination fields are exchanged, and the return
path is accordingly setup. After the source server receives the
replied path-probing packet, it sends out the corresponding
intercepted flow. Intermediate servers forward the flow based
on established routing entries. During the session time of a
flow, path-probing packets for the flow are periodically sent
out to update the routing path based on dynamic traffic states.

We illustrate the basic design of traffic-aware routing in the
example of Fig.5. There is already one flow in the level-1 link
from [2,0] to [0,2] and all other links carry no traffic. Now
server [2,1] initiates a flow towards server [0,1]. Obviously,
the path using level-recursive routing is ([2,1], [2,0], [0,2],
[0,1]). Under traffic-aware routing, when [2,0] receives the
path-probing packet from [2,1], it finds that its level-1 outgoing
link to [0,2] has less available bandwidth than its level-O
outgoing link, and then randomly selects a third FiConng in the
FiConn; for relay. In this case, FiConng[1] is selected. Finally
the packet is routed to [0,1] by the relay of FiConng[1].

However, we should address some challenges in the basic
design of traffic-aware routing.

Routing back: When an intermediate server chooses to
bypass its level-l (I > 0) link and routes the path-probing
packet to a next-hop server in the same FiConng, the next-
hop server may route the packet back using level-recursive
routing. For example in Fig.5, when [2,2] receives the path-
probing packet from [2,0], it routes the packet back to [2,0]
using level-recursive routing unless otherwise specified.

Multiple bypassing: When one level-l (I > 0) link is
bypassed, a third FiConn;_; is chosen for relay and two other
level-l links in the current FiConn; will be passed through. But
the two level-/ links may be needed to bypass again according
to the basic design. It can iteratively occurs and thus routing
in the FiConn; takes too long a path, or even falls into a loop.
For example in Fig.5, supposing the level-1 link from [2,2] to
[1,2] should also be bypassed because there is a flow in it, the
routing falls into a loop between [2,0] and [2,2]. Solution is
needed to limit the bypassing times and avoid path loops.

Path redundancy: A redundant path means there are in-
termediate servers that can be removed from the path without
reducing the throughput of the path. For example in Fig.5,
[2,0] can be removed from the traffic-aware path and thus
[2,1] sends the packet to [2,2] directly.

Imbalance Trap: Assume a level-/ server s routes a flow
using its level-/ outgoing link and there is no traffic in its
level-0 outgoing link. All subsequent flows that arrive from
its level-0 incoming link will bypass its level-/ link because
the available bandwidth of its level-0 outgoing link is always
higher. In this case, the outgoing bandwidth of its level-/ link
cannot be well utilized even though the other level-l links
in the FiConn; are heavily-loaded. For example in Fig.5, all
subsequent flows from FiConng[2] to FiConng[0] will bypass
the level-1 link of [2,0]. In fact, the problem results from
the basic idea that our traffic-aware routing tries to balance
the local outgoing links of a server, not links among servers.
We call it an imbalance trap problem and corresponding
mechanism is demanded.

In the following three subsections, we address the first two
problems by Progressive Route (PR), the third problem by
Source ReRoute (SRR), and the last problem by Virtual Flow
(VF).

B. Progressive Route

Progressive Route (PR) solves both the routing back prob-
lem and the multiple bypassing problem by making the
intermediate servers aware of the routing context. When the
source server sends the path-probing packet, it adds a PR field
in the packet header and the PR field can be modified by
intermediate servers. PR field has m entries, where m is the
lowest common level of the source and destination servers.
We use PR; (1 < I < m) to denote the [*" entry of PR
field. Each PR; plays two roles. First, when bypassing a level-
[link, the level-l server in the selected third FiConn;_; is
chosen as the proxy server and is set in PR;. Intermediate
servers check the PR field and route the packet to the lowest-
level proxy server. Hence, the path-probing packet will not
be routed back. Second, PR; can carry information about the
bypassing times in the current FiConn;. If the number of
bypassing times exceeds a threshold, the packet jumps out
of the current FiConn; and chooses a third FiConn; for relay.
One can see that the higher the threshold of bypassing times is,
the more likely that the path-probing packet finds a balancing
path. But the tradeoff is the path length and probing time. In
the present design, we set the threshold as 1, which means
only one level-/ link can be bypassed in a FiConn;.

Since the threshold of bypassing times is 1, we design two
special identifiers different from server identifiers for a PRy,
BYZERO and BYONE. BYZERO indicates no level-/ link is
bypassed in the current FiConny, so it is set in PR; when the
packet is initialized or after crossing a level-i link if ¢ > [.
BYONE means there is already one level-/ link bypassed in
the current FiConn;, and it is set in PR; after traversing the
level-l proxy server in the current FiConn;. PR; is set as the
identifier of the level-I proxy server between the selection of
the proxy server and the arrival to the proxy server.

Take Fig.5 as the instance. The source server [2,1] initializes
PR entries (in this case, m = 1) as BYZERO. When [2,0]
selects [1,2] as the level-1 proxy server, it modifies PR; as
[1,2] and sends the packet to [2,2]. [2,2] checks the PR field,
finds [1,2] is the lowest-level proxy server, and sends the
packet towards [1,2] (in this case, [1,2] is just its neighboring
server). [1,2] receives the packet and finds PR; is the identifier
of its own, so it modifies PR; as BYONE before sending it to
the next hop [1,0]. Therefore, using PR, the traffic-aware path
in this example is ([2,1], [2,0], [2,2], [1,2], [1,0], [0,0], [O,1]).

C. Source ReRoute

As aforementioned, the server [2,0] can be removed from
the path using PR in the example above. We use Source
ReRoute (SRR) to achieve this. When a server s decides to
bypass its level-l (I > 0) link and chooses a proxy server, it
modifies the PR field and then routes the path-probing packet
back to the previous hop from which it received the packet.
Then the original intermediate servers from the source server
to s will all receive the path-probing packet from the next
hop for the flow in the routing table, and they just send the
packet to the previous hop for the flow in the routing table and
clear the corresponding routing entry. After the source server
receives the packet, it also clears the routing entry for the flow,
and reroutes the packet towards the lowest-level proxy server
in PR field.

In the example above, when [2,0] selects [1,2] as the level-
1 proxy server, it modifies PRy as [1,2], and sends the path-
probing packet to the previous hop of this packet, [2,1]. [2,1]
checks the routing table, finding that it receives the packet
from the next hop of the flow it once routed to, which is an
indication of SRR processing; but the previous hop of the flow
is NULL, which implies that it is the source server. Therefore,
[2,1] clears the corresponding routing entry, checks that PR; is
[1,2], and then selects [2,2] as the next hop. In this way, [2,0]
is removed from the path, and the traffic-aware path becomes
(12,11, [2,2], [1,2], [1,0], [0,0], [O,1]).

D. Virtual Flow

To alleviate the imbalance trap problem, we use Virtual
Flow (VF) to compare the available bandwidth between two
outgoing links. Virtual flows for a server s indicate the flows
that once arrive at s from its level-O link but are not routed
by s because of bypassing (s is removed from the path by
SRR). Each server initiates a Virtual Flow Counter (VFC) as
zero. When a flow bypasses its level-l link, VFC is added
by one. When a flow is routed by its level-O outgoing link,

[*s: current server.

[: the level of s. (I > 0)

RTable: the routing table of s, maintaining the previous hop
(.prevhop) and next hop (.nexthop) for a flow.

hb: the available bandwidth of the level-l link of s.

zb: the available bandwidth of the level-0 link of s.

hn: the level-l neighboring server of s.

vfe: virtual flow counter of s.

pkt: the path-probing packet to be routed, including flow id
(.flow), source (.src), destination (.dst), previous hop (.phop),
and PR field (.pr).

01 TARoute(s, pkt){
02 if(pkt.dst == s) /*This the destination*/
03 return NULL /*Deliver pkt to upper layer*/
04 if(pkt.phop == RTable[pkt.flow].nexthop) I*SRR*/
05 nhop = RTable[pkt. flow].prevhop
06 RTable[pkt. flow] = NULL
07 if(nhop # NULL) /*This is not source server*/
08 return nhop
09 if(s == pkt.pr[l]) /*This is the proxy server*/
10 pkt.pr(l] = BYONE
11 ldst = getPRDest(pkt) /*Check PR for proxy server*/
12 nhop = LRRoute(s, ldst)
13 if(s == pkt.src and nhop # hn and hb > zb)
14 nhop = hn
15 if(pkt.phop == hn and nhop # hn)
or (pkt.phop # hn and hb > zb)
16 resetPR(pkt.pr, 1)
17 RTable[pkt. flow] = (pkt.phop, nhop)
18 if(nhop # hn and vfc > 0)
19 vfc=wvfc—1/*VF¥
20 return nhop
21 fwdhop = nhop
22 while(fwdhop == nhop)
23 fwdhop = bypassLink(s, pkt, [)/*Try to bypass*/
24 if(fwdhop == NULL) /*Cannot find a bypassing path*/
25 resetPR(pkt.pr, 1)
26 RTable[pkt. flow] = (pkt.phop, nhop)
27 return nhop
28 wfc=wvfc+ 1 /*VF¥
29 return pkt.phop /*Proxy found, SRR*/

Algorithm 3: Traffic-aware routing in FiConn.

VEC is reduced by one given it is a positive value. When
evaluating the available bandwidth of an outgoing link, not
only the current routed flows are counted, but the virtual flows
for the level-0 link are also considered. The traffic volume of
a virtual flow is set as the average traffic volume of routed
flows. In this way, the imbalance trap problem is overcome.

E. Algorithm

Taking the solutions above together, we design the algorithm
of traffic-aware routing in FiConn, as illustrated in Algorithm
3. The function TARoute() returns the next-hop server when
a level-l server s routes the path-probing packet pkt.

Lines 2-3 handle the case when the path-probing packet
arrives at the destination server s. The packet is delivered to
the upper layer.

Lines 4-8 are the SRR processing. If s once routed the path-
probing packet and now receives the packet from the next hop
of the flow in the routing table (Line 4), it is an indication that

this is the SRR processing. s then gets the original previous
hop of the flow (Line 5), and erases the routing entry (Line 6).
If s is not the source server for the flow (Line 7), it just routes
the path-probing packet to the original previous hop (Line 8).

Lines 9-10 are for the case when s is the level-l proxy server
in the current FiConn; (line 9). It modifies PR; as BYONE.

Lines 11-12 get the next hop by level-recursive routing. First
we find the next destination server (Line 11). The function
getPRDest() returns the lowest-level proxy server in PR field
of the packet; if there is no proxy server, it returns the
destination server of the packet. Then we compute the next
hop towards the next destination server using level-recursive
routing (Line 12).

Lines 13-14 process the special case for source server to
compute the next hop. The difference for a source server from
other intermediate servers is that if the next hop using level-
recursive routing is within the same FiConng but the available
bandwidth of its level-/ link is higher than that of its level-0
link (Line 13), its level-/ neighboring server is selected as the
next hop (Line 14). Note that virtual flows are considered to
compute the available bandwidth.

Lines 15-20 are responsible for the cases that do not need to
bypass the level- link. The first case is that the previous hop
is the level-I neighboring server and the next hop is not the
same. Note that the next hop based on level-recursive routing
may be the same as the previous hop if the previous hop is
the source server. The second case is that the previous hop
is from the same FiConng and the available bandwidth of the
level-l link is not less than that of the level-O link. Line 15
makes the judgement. Lines 16-17 reduces v fc by one if this
flow is to be routed by level-0 link. Before returning the next
hop (line 20), s resets the PR field (line 21) and updates the
routing table. The function resetPR() resets all PR;s (¢ < [) as
BYZERO.

Lines 21-29 deal with how to bypass the level-l link. The
function bypassLink() in Line 23 finds a proxy server to bypass
the level-/ link of s, updates the PR field and returns the next
hop towards the proxy server; but if it cannot find a proxy
server, it returns NULL. Therefore, if bypassLink() returns
NULL (Line 24), level-l link is not bypassed (Line 25-27);
otherwise, the level-/ link is bypassed and the packet is sent
to the previous hop of the flow for SRR processing (Line 29),
before which v fc is added by one.

Based on the traffic-aware routing designed above, we can
calculate the maximum length of routing path in traffic-aware
routing.

Theorem 6: In traffic-aware routing, the maximum length of
routing path between any two servers in FiConny, is 2% 3% — 1.

Proof: Assume the maximum length of a routing path
between two servers in a FiConn; based on traffic-aware
routing is My, the longest traffic-aware routing path between
two servers in a FiConny4; traverses three FiConngs and two
level-k links between them. Hence there is M1 = 3% My +2,
and My = 1. As a result, we have M), = 2% 3F — 1. []

V. EVALUATION

We have analyzed the basic properties of FiConn in Section
III, such as the high scalability, low diameter, high bisection

8000

7000F c - o oo oo oo oo oo o

6000 -

— — — Level-Recursive Routing|
Traffic-Aware Routing

I3

o

=3

=)
T

w

S

=3

=}
T

Aggregate Throughput (G)
B
(=3
o
o

2000 -

1000

0 50 100 150 200 250 300
time (s)

Fig. 6. Aggregate throughput in FiConn for random traffic.

10

— — — Level-Recursive Routing|
Traffic-Aware Routing

Average Path Length
o

.
0 50 100 150 200 250 300
time (s)

Fig. 7. Average path length in FiConn for random traffic.

width, as well as the balancing use of different levels of links
in routing. In this section, we conduct simulations to evaluate
the traffic-aware routing in FiConn.

Two types of traffic patterns are considered. One is random
traffic, and the other is burst traffic between two subsets of
FiConn servers produced by computation models such as map-
reduce. We run the simulation on a FiConny in which n = 32,
thus there are in total N = 74528 servers. The speed of all
the NIC ports and links are 1G. For the random traffic, we
randomly choose N /2 pairs of servers from all the servers and
there is one flow between each pair. So there are altogether
37264 flows in the network. For the burst traffic, we randomly
choose two FiConn;s. For every server in one FiConn;, there
is a flow from it to every server in the other FiConn;. Hence,
there are totally 295936 flows in the network. All the flows
are initiated sequentially in the first 30 seconds, and the path-
probing packet in traffic-aware routing is sent every 30 seconds
for a flow. We compute the aggregate throughput and average
path length of traffic-aware routing and level-recursive routing
respectively.

Random Traffic: Fig.6 and Fig.7 illustrate the aggregate
throughput and the average path length respectively for ran-
dom traffic.

From Fig.6, we see that the aggregate throughputs of traffic-
aware routing and level-recursive routing are very close. At the
end of the first 30 seconds, the throughput of level-recursive

100

90r

80

70+ — — — Level-Recursive Routing|
Traffic-Aware Routing

60

50

40

Aggregate Throughput (G)

30

20

10

0 50 100 150 200 250 300
time (s)

Fig. 8. Aggregate throughput in FiConn for burst traffic.

10

— — — Level-Recursive Routing
Traffic-Aware Routing

Average Path Length
[l
T

0
0 50 100 150 200 250 300
time (s)

Fig. 9. Average path length in FiConn for burst traffic.

routing is about 8.5% higher than that of traffic-aware routing.
However, after several rounds of dynamical adjustment, the
difference between them is within 2.5%. The slight advance
of level-recursive routing comes from its shorter routing path,
which benefits improving the aggregate throughput when traf-
fic is randomly distributed.

Fig.7 shows that the average path length of traffic-aware
routing is always more than that of level-recursive routing, but
within 1.5 hops in steady state. In combination with Fig.6, we
also find that the traffic-aware routing can dynamically adapt
to traffic states and improve the throughput as well as reduce
the path length.

Burst Traffic: Fig.8 and Fig.9 show the aggregate through-
put and the average path length respectively for burst traffic.

From Fig.8 we find that the aggregate throughput of level-
recursive routing is only 1G, resulting from the bottleneck
level-2 link that connects the two selected FiConn;s. How-
ever, by exploiting the links beyond the two Ficonn;s and
the bottleneck level-2 link, traffic-aware routing achieves an
aggregate throughput of 99.5G, which shows a tremendous
improvement over level-recursive routing.

The result of Fig.9 also tells that the average path length
of traffic-aware routing is longer than that of level-recursive
routing, but the difference is within three hops.

Taking the two groups of simulations together, we draw
the following conclusions. First, our traffic-aware routing can

adapt to dynamical networking conditions to improve the
throughput as well as reduce the routing path length. Second,
the average path length in traffic-aware routing is always more
than that in level-recursive routing, but the difference is no
more than 1-3 hops in the FiConns. Third, the aggregate
throughput of traffic-aware routing is quite similar to level-
recursive routing in uniform traffic, but much higher than level-
recursive routing in burst traffic that is common in data centers.
In other words, the traffic-aware routing can indeed well ex-
ploit the link capacities of FiConn to improve the networking
throughput. Considering the little control overhead, our traffic-
aware routing is especially suitable for FiConn.

VI. CONCLUSION

In this paper we propose FiConn, a novel interconnection
structure for data centers, and design traffic-aware routing in
FiConn. FiConn is desirable for server interconnections in data
centers in the following aspects. First, FiConn eliminates the
use of expensive high-end switches. Second, FiConn can take
use of the existing backup port on each server for interconnec-
tion because the server node degree is only two. Third, FiConn
is highly scalable to encompass very large number of servers,
while at the same time has low diameter and high bisection
width. Fourth, traffic-aware routing in FiConn is designed to
utilize the link capacities according to traffic states, which
helps improve the aggregate throughput of data centers.

REFERENCES

[1] T. Hoff, “Google
architecture, Jul 2007

[2] L. Rabbe, “Powering the Yahoo! network™, http://yodel.yahoo.com
/2006/11/27/powering-the-yahoo-network, Nov 2006

[3] A. Carter, “Do It Green: Media Interview with Michael Manos”,
http://edge.technet.com/Media/Doing-IT-Green/, Dec 2007

[4] S. Ghemawat, H. Gobio, and S. Leungm, “The Google File System”, In
Proceedings of ACM SOSP’03, 2003

[5] J. Dean and S. Ghemawat, “MapReduce: Simplified Data Processing on
Large Clusters”, In Proceedings of OSDI’04, 2004

[6] M. Isard, M. Budiu, Y. Yu and etc., “Dryad: Distributed Data-Parallel
Programs from Sequential Building Blocks”, In Proceedings of ACM
EuroSys’07, 2007.

[7] M. Al-Fares, A. Loukissas and A. Vahdat, “A Scalable, Commodity Data
Center Network Architecture”, In Proceedings of ACM SIGCOMM’08,
Aug 2008

[8] C. Guo, H. Wu, K. Tan, L. Shi, Y. Zhang and Songwu Lu, “DCell:
A Scalable and Fault-Tolerant Network Structure for Data Centers”, In
Proceedings of ACM SIGCOMM’08, Aug 2008

[9] Dell Powerage Servers. http://www.dell.com/content/products/category.aspx
/servers

[10] H. Sullivan and T. R. Bashkow, “A large scale, homogeneous, fully
distributed parallel machine 1", In Proceediings of ISCA’77, Mar 1977

[11] L. Bhuyan and D. Agrawal, “Generalized Hypercube and Hyperbus
Structures for a Computer Network”, In IEEE TRANSACTIONS ON
COMPUTERS, 33(4):323-333, Apr 1984

[12] W. Dally and B. Towles, “Route Packets, Not Wires: On-Chip Intercon-
nection Networks”, In Proceedings of DAC’01, Jun 2001

[13] L. Bhuyan and D. Agrawal, “A general class of processor interconnec-
tion strategies”, In Proceedings of ISCA’S82, Apr 1982

[14] F. Leighton, “Introduction to Parallel Algorithms and Architectures:
Arrays. Trees. Hypercubes”, Morgan Kaufmann, 1992

[15] B. Parhami, “Introduction to Parallel Processing: Algorithms and Archi-
tectures”, Kluwer Academic, 2002

[16] W. Dally, P. Carvey and L. Dennison, “The Avici Terabit Switch/Router”,
In Proceedings of Hot Interconnects’98, Aug 1998

[17] D. Loguinov, A. Kumar, V. Rai and S. Ganesh, “Graph-Theoretic
Analysis of Structured Peer-to-Peer Systems: Routing Distances and Fault
Resilience”, In Proceedings of ACM SIGCOMM’03, Aug 2003

Architecture”, http://highscalability.com/google-

[18] J Kim, W. Dally and D. Abts, “Flattened Butterfly: A Cost-Efficient
Topology for High-Radix Networks”, In Proceedings of ISCA’07, Jun
2007

[19] J Kim, W. Dally, S. Scott and D. Abts, “Technology-Driven, Highly-
Scalable Dragonfly Topology”, In Proceedings of ISCA’08, Jun 2008

