
Universally Composable Adaptive Priced
Oblivious Transfer

Alfredo Rial, Markulf Kohlweiss, and Bart Preneel

Katholieke Universiteit Leuven, ESAT/SCD/COSIC and IBBT
{alfredo.rialduran,markulf.kohlweiss}@esat.kuleuven.be

bart.preneel@esat.kuleuven.be

Abstract. An adaptive k-out-of-N Priced Oblivious Transfer (POT)
scheme is a two-party protocol between a vendor and a buyer. The vendor
sells a set of messages m1, . . . ,mN with prices p1, . . . , pN . In each transfer
phase i = 1, . . . , k, the buyer chooses a selection value σi ∈ {1, . . . ,N }
and interacts with the vendor to buy message mσi in such a way that
the vendor does not learn σi and the buyer does not get any information
about the other messages.
We present a POT scheme secure under pairing-related assumptions in
the standard model. Our scheme is universally composable and thus, un-
like previous results, preserves security when it is executed with multiple
protocol instances that run concurrently in an adversarially controlled
way. Furthermore, after an initialization phase of complexity O(N), each
transfer phase is optimal in terms of rounds of communication and it has
constant computational and communication cost. To achieve these prop-
erties, we design the first efficient non-interactive proof of knowledge that
a value lies in a given interval we are aware of.

Keywords: Universally composable security, priced oblivious transfer,
bilinear maps, non-interactive range proofs of knowledge.

1 Introduction

A number of studies [1] show that transaction security and privacy concerns
are among the main reasons that discourage the use of e-commerce. Although
sometimes it is argued that users who claim to be worried about their privacy do
not consistently take actions to protect it, recent research [2] demonstrates that,
when they are confronted to a prominent display of private information, they not
only prefer vendors that offer better privacy protection but also are willing to
pay higher prices to purchase from more privacy protective websites. Therefore,
it is of interest for vendors to deploy e-commerce applications where buyers need
to disclose the minimum information needed to carry out their transactions.

So far, the solutions proposed to develop privacy-enhancing e-commerce of
digital goods can roughly be divided into two categories: those that hide the
identity of the buyer from the vendor (anonymous purchase), and those that hide
which goods are bought (oblivious purchase). Anonymous purchase [3, 4] usually
employs anonymous e-cash [5–7] to construct systems where buyers can withdraw

2

coins from a bank and spend them without revealing their identity. These systems
have several shortcomings. First, they hinder customer management (e.g. the
vendor cannot easily apply marketing techniques like giving discounts to regular
buyers). Second, they do not allow for other methods of payment. Finally, strong
anonymity is difficult to achieve and there exist several attacks to reduce it [8].

Oblivious purchase is thus more appealing in scenarios where full anonymity
cannot be obtained or when the disadvantages that anonymity causes are impor-
tant. Oblivious purchase permits effective customer management and allows for
every method of payment. Like for anonymous purchase [3, 4], it has also been
shown how to integrate it into existing Digital Rights Management systems [9].
One can argue that, since the vendor does not know which items are sold, he can
find it difficult to discover which products are more demanded. However, we note
that this information can be obtained from other sources, e.g., by conducting
marketing researches.

Oblivious purchase employs the Priced Oblivious Transfer (POT) [10] prim-
itive, which is a generalization of the well-known Oblivious Transfer (OT) [11]
primitive intended to permit private purchases. OT is a two-party protocol be-
tween a sender S and a receiver R, where S offers a set of messages m1, . . . ,mN

to R. R chooses selection values σ1, . . . , σk ∈ {1, . . . ,N } and interacts with S in
such a way that R learns mσ1 , . . . ,mσk and nothing about the other messages,
and S does not learn anything about σ1, . . . , σk.

POT is a two-party protocol between a vendor V and a buyer B, where
V sells a set of messages m1, . . . ,mN with prices p1, . . . , pN to B. Besides the
requirements that V must not learn σ1, . . . , σk and B must not learn anything
about the other messages, in POT B must pay prices pσ1 , . . . , pσk without V
learning anything about the amount of money paid.

Both OT and POT admit an adaptive variant [12] (OTN
k×1,POT

N
k×1) where,

in transfer phase i, R or B may choose σi after receiving mσi−1 . The adaptive
variant is more suitable for constructing an oblivious database, enabling appli-
cations of OT such as medical record storage or location-based services [12, 13],
and the deployment of privacy-preserving e-commerce.

Previous work. The universally composable security paradigm [14] provides a
framework for representing cryptographic protocols and analyzing their security.
Protocols that are proven UC-secure maintain their security even when they are
run concurrently with an unbounded number of arbitrary protocol instances
controlled by an adversary.

Traditionally, security in OT was analyzed under a half-simulation model,
where simulation security is required against R, but just stand-alone privacy is
required against S. This notion was showed to admit practical attacks against
receiver’s security [12]. Camenisch et al. [15], as well as subsequent works [16],
present efficient adaptive OT schemes in a full-simulation model. However, these
works are not UC-secure because they use black-box simulation with adversarial
rewinding in their security proofs.

Recently, an adaptive UC-secure OT scheme was proposed [17]. They uti-
lize the approach of assisted decryption used in [15, 16], where S sends to R a

3

collection of ciphertexts and in each transfer phase helps R to decrypt one of
them. As pointed out in [17], this approach allows for transfer phases with con-
stant computational and communication complexity, and it is suitable to ensure
that S does not change the messages in each transfer phase, which are impor-
tant properties for constructing an oblivious database. This is in contrast to the
approach used in other non-adaptive UC-secure OT schemes [18, 19], where, in
each transfer phase, R hands a set of keys to S, who sends back a collection of
ciphertexts such that R is able to decrypt only one of them.

Despite this recent progress in OT, so far there are no efficient POT schemes
whose security is proven within the UC security paradigm. The first POT scheme
[10], as well as subsequent works [20], analyze security in the half-simulation
model. In [18] it is explained why these protocols fail even under sequential
composition and a practical attack is shown.

The existing conditional oblivious transfer schemes [21, 22], where sender
with input x and receiver with input y interact in such a way that a trans-
fer is completed only when q(x, y) = 1 for some public predicate q(·, ·), are
non-adaptive and employ the half-simulation model. On the other hand, secu-
rity of both the non-adaptive [23, 24] and the adaptive [25] Generalized Oblivious
Transfer schemes proposed so far, which can be instantiated as non-adaptive and
adaptive POT schemes respectively, depends on the underlying OT scheme uti-
lized to implement them, but we note that these solutions are rather inefficient.
Finally, access control schemes for OT based on stateful anonymous credentials
[26] are not UC-secure either.

Our contribution. We present a POTN
k×1 scheme that is UC-secure under the

assumption that there is an honestly generated common reference string. Secu-
rity is proven in a static corruption model without relying on random oracles.
After an initialization phase of complexity O(N), each transfer phase is opti-
mal in terms of rounds of communication and has constant computational and
communication cost.

Our construction follows the approach in [10] of building a prepaid mecha-
nism where B makes an initial deposit to V. In each transfer phase, B chooses
a selection value σi, proves that she has enough funds to buy message mσi and
subtracts price pσi from her deposit, while V learns neither pσi nor the new
value of the deposit. For this purpose, B employs a zero-knowledge proof of
knowledge that she updates her account correctly and that the new account is
non-negative. To allow for the latter we design a non-interactive range proof of
knowledge by applying the efficient interactive range proof recently proposed in
[27] to the non-interactive proof system due to Groth and Sahai [28]. This is the
first efficient non-interactive proof of knowledge in the standard model to prove
that a value lies in a given interval we are aware of.

We also employ the assisted decryption approach and some techniques uti-
lized in the adaptive UC-secure OT scheme in [17]. Specifically, we use double
trapdoor encryption and we prove security of ciphertexts under the DLIN [29]
assumption. Nonetheless, unlike [17], we make extensive use of P-signatures [30],
i.e., signature schemes that have efficient non-interactive proofs of signature pos-

4

session, to let B prove that she computes her requests honestly. In particular, we
employ a slightly modified variant of the P-signature scheme for signing blocks
of messages proposed in [7], which is secure under the HSDH [31] and TDH [30]
assumptions. (P-signatures also utilize Groth-Sahai proofs, which we instantiate
using the DLIN assumption.) The use of multi-block P-signatures allows our
scheme to have a smaller ciphertext size than the one in [17]. We note that our
POT scheme can easily be simplified to obtain an OT scheme, which constitutes
an alternative to the one in [17].

Outline of the paper. In Section 2 we briefly review the universally composable
security paradigm and we define the ideal functionality for POT. The security
assumptions we use, the Groth-Sahai proof system, and other cryptographic
building blocks are described in Section 3. In Section 4 we show how to construct
a non-interactive range proof. Finally, in Section 5 we depict the multi-block P-
signature scheme and our POT scheme.

2 Definitions

Adaptive k-out-of-N priced oblivious transfer (POTN
k×1). A POTN

k×1 scheme is
a two-party protocol between a vendor V and a buyer B. In the initialization
phase, V receives messages (m1, . . . ,mN) with prices (p1, . . . , pN) as input. B
receives an initial deposit ac0 as input. B stores state information B0 and V
stores state information V0 and outputs ac0. After that, V and B engage in
up to k transfer phases. In the ith transfer, V gets state information Vi−1 as
input, and B gets state information Bi−1 and selection value σi ∈ {1, . . . ,N }.
If ac0 −

∑
j∈S pσj ≥ 0, where S contains the indices of all transfers that ended

successfully, then V stores state information Vi and B stores state information
Bi and outputs mσi . Otherwise V stores Vi = Vi−1 and B stores Bi = Bi−1.

Universally composable security. We use the universally composable security
framework [14] with static corruptions to prove security of our construction. In
this framework, parties are modeled as probabilistic polynomial time interactive
Turing machines. A protocol ψ is UC-secure if there exists no environment Z that
can distinguish whether it is interacting with adversary A and parties running
protocol ψ or with the ideal process for carrying out the desired task, where ideal
adversary E and dummy parties interact with an ideal functionality Fψ. More
formally, we say that protocol ψ emulates the ideal process when, for all envi-
ronments Z, the ensembles IDEALFψ,E,Z and REALψ,A,Z are computationally
indistinguishable. We refer to Appendix A for a more detailed description of the
UC framework.

Our construction operates in the FCRS-hybrid plain model, where parties
have access to an honestly-generated common reference string crs and to au-
thenticated channels. As in [17], we assume that Z obtains crs from A. This
allows the simulator E to set up a crs with trapdoor information to be able to
simulate A in the security proof.

5

Below we recall the description of the ideal functionality for generating com-
mon reference strings (FCRS) [32]. FCRS is parameterized with a distribution
D and a set of participants P, which is restricted to contain the buyer B and
the vendor V of the POT scheme only. We also describe an ideal functionality
for POT (FPOT) based on the ideal functionality for OT given in [17].

FCRS. On input (sid , crs) from party P , if P /∈ P it aborts. Otherwise, if there
is no value r recorded, it picks r ← D and records r . It sends (sid , crs, r) to P .

FPOT . Parameterized with integers (N , l), a maximum price pmax , and a deposit
upper bound S , and running with a vendor V and a buyer B, FPOT works as
follows:

- On input a message (sid , vendor ,m1, . . . ,mN , p1, . . . , pN) from V, where each
mi ∈ {0, 1}l and each pi ∈ [0, pmax], it stores (m1, . . . ,mN) and (p1, . . . , pN)
and sends (sid , p1, . . . , pN) to B and to the adversary.

- On input a message (sid , buyer , deposit), where deposit ∈ [0, . . . ,S), if a (sid ,
vendor , . . .) message was not received before, then it does nothing. Other-
wise, it stores deposit and sends (sid , deposit) to V.

- On input a message (sid , buyer , σ) from B, where σ ∈ {1, . . . ,N }, if either
messages (sid , vendor ,m1, . . . ,mN , p1, . . . , pN) and (sid , buyer , deposit) were
not received before or deposit − pσ < 0, then it does nothing. Otherwise, it
sends (sid , request) to V and receives (sid , b) in response. It hands (sid , b)
to the adversary. If b = 0, it sends (sid ,⊥) to B. If b = 1, it updates
deposit = deposit − pσ and sends (sid ,mσ) to B.

3 Technical Preliminaries

A function ν is negligible if, for every integer c, there exists an integer K such
that for all k > K, |ν(k)| < 1/kc. A problem is said to be hard (or intractable) if
there exists no probabilistic polynomial time (p.p.t.) algorithm that solves it with
non-negligible probability (in the size of the input or the security parameter).

Bilinear maps. Let G and GT be groups of prime order p. A map e : G×G→ GT

must satisfy the following properties:

(a) Bilinearity. A map e : G×G→ GT is bilinear if e(ax, by) = e(a, b)xy;
(b) Non-degeneracy. For all generators g ∈ G, e(g , g) generates GT ;
(c) Efficiency. There exists an efficient algorithm that outputs the pairing group

setup (p,G,GT , e, g) and an efficient algorithm to compute e(a, b) for any
a, b ∈ G.

3.1 Assumptions

The security of our scheme relies on the Hidden Strong DH assumption [31], the
Triple DH assumption [30], and the Decision Linear assumption [29]:

6

Definition 1 (HSDH). On input (g , gα) ∈ G2, u ∈ G, and a set of tuples
(g1/(α+ci), gci , uci)li=1, the l-HSDH assumption holds if it is computationally
hard to output a new tuple (g1/(α+c), gc , uc).

Definition 2 (TDH). On input (g , gx , gy) ∈ G3 and a set of tuples (ci, g1/(x+ci))li=1,
the l-TDH assumption holds if it is computationally hard to output a tuple
(gµx , gµy , gµxy) for µ ∈ Zp/{0}.

Definition 3 (DLIN). On input (g , ga, gb, gac, gbd, z) ∈ G6 for random expo-
nents a, b, c, d ∈ Zp, the DLIN assumption holds if it is computationally hard to
decide whether z = gc+d.

3.2 Non-interactive Zero-knowledge Proofs of Knowledge

Let R be an efficiently computable relation and L = {y : ∃w |R(y ,w) = accept}
be an NP-language. For tuples (y ,w) ∈ R, we call y the instance and w the
witness. A non-interactive proof of knowledge system [33] consists of algorithms
PKSetup, PKProve and PKVerify. PKSetup(1κ) outputs a common reference string
crsPK . PKProve(crsPK , y ,w) computes a proof pok of instance y by using wit-
ness w . Algorithm PKVerify(crsPK , y , pok) outputs accept if pok is correct.

Zero-knowledge captures the notion that a verifier learns nothing from the
proof but the truth of the statement. Witness indistinguishability is a weaker
property that guarantees that the verifier learns nothing about which witness
was used in the proof. In either case, we will also require soundness, meaning
that an adversarial prover cannot convince an honest verifier of a false statement,
and completeness, meaning that all correctly computed proofs are accepted by
the honest verification algorithm. See [34–37] for formal definitions.

In addition, a proof of knowledge needs to be extractable. Extractability
means that there exists a polynomial time extractor (PKExtractSetup,PKExtract).
Algorithm PKExtractSetup(1κ) generates parameters crsPK that are identically
distributed to the ones generated by algorithm PKSetup and an extraction trap-
door tdext . PKExtract(crsPK , tdext , y , pok) extracts the witness w with all but
negligible probability when PKVerify(crsPK , y , pok) outputs accept.

We recall the notion of f-extractability defined by Belenkiy et al. [30], which
is an extension of the original definition of extractability (as given by De Santis
et al. [33]). In an f -extractable proof system the extractor PKExtract extracts a
value z such that ∃w : z = f(w)∧ (y ,w) ∈ R. If f(·) is the identity function, we
get the usual notion of extractability.

Commitment schemes. A non-interactive commitment scheme consists of the al-
gorithms ComSetup and Commit. ComSetup(1κ) generates the parameters of the
commitment scheme paramsCom . Commit(paramsCom , x, open) outputs a com-
mitment C to x using auxiliary information open. A commitment is opened by
revealing (x, open) and checking Commit(paramsCom , x, open) = C. A commit-
ment scheme has a hiding property and a binding property. Informally speaking,
the hiding property ensures that a commitment C to x does not reveal any infor-
mation about x, whereas the binding property ensures that C cannot be opened

7

to another value x′. (When it is clear from the context, we omit the commitment
parameters paramsCom .)

A notation for f-extractable non-interactive proofs of knowledge (NIPK). We are
interested in NIPK about (unconditionally binding) commitments. By ‘x inC’ we
denote that there exists open such that C = Commit(paramsCom , x, open). Fol-
lowing Camenisch and Stadler [38] and Belenkiy et at. [30], we use the following
notation to express an f -extractable NIPK for instance (C1, . . . , Cn,Condition)
with witness (x1, open1, . . . , xn, openn, s) that allows to extract all the witness
except the openings of the commitments:

NIPK{ (x1, . . . , xn, s) : Condition(crs, x1, . . . , xn, s) ∧ x1 inC1 ∧ . . . ∧ xn inCn}

The f -extractability of a NIPK ensures that, with overwhelming probability
over the choice of crs, if PKVerify accepts then we can extract (x1, . . . , xn, s) from
π, such that xi is the content of the commitment Ci, and Condition(crs, x1, . . . ,
xn, s) is satisfied. To further abbreviate this notation, we omit crs when it is
clear from the context.

Applying the notation to Groth-Sahai proofs. Groth-Sahai proofs [28] allow
proving statements about pairing product equations. The pairing group setup
(p,G,GT , e, g) is part of the common reference string crsPK as output by
PKSetup(1κ) and the instance consists of the coefficients {aq, bq}q=1...Q ∈ G, t ∈
GT , {αq,i, βq,i}q=1...Q,i=1...m ∈ Zp of the pairing product equation:

∏Q
q=1 e(aq

∏m
i=1 x

αq,i
i ,

bq
∏m
i=1 x

βq,i
i) = t. The prover knows {xi}mi=1 that satisfy this equation.

Internally Groth-Sahai proofs prove relations between commitments. A ho-
momorphism guarantees that the same relations also hold for the committed
values. Normally, as the first step in creating the proof, the prover prepares
commitments {Ci}i=1...m for all values xi in G. Then, the instance, known to
the prover and the verifier, is the pairing product equation alone (i.e., its coeffi-
cients).

In addition, it is possible to add pre-existing Groth-Sahai commitments
{Ci}i=1...n, n ≤ m, to the instance for some of the xi values. The correspond-
ing openings openi become part of the witness. The proof will be computed
in the same way, except that for values with existing commitments no fresh
commitments need to be computed. We will write Ci ← Commit(xi, openi) to
create Groth-Sahai commitments. Note that they use parameters contained in
the crsPK of the Groth-Sahai proof system. The Groth-Sahai proof system gen-
erates f-extractable witness indistinguishable1 NIPK of the form:

NIPK{(x1, . . . , xn, xn+1, . . . xm) :
Q∏
q=1

e(aq
n∏
i=1

x
αq,i
i , bq

m∏
i=1

x
βq,m
i) = t

∧ x1 inC1 ∧ · · · ∧ xn inCn}
1 Some classes of pairing product equations also admit zero-knowledge proofs.

8

3.3 P-Signature Schemes

A signature scheme consists of the algorithms Keygen, Sign and VerifySig. Keygen
outputs a secret key sk and a public key pk . Sign(sk ,m) outputs a signature s
of message m. VerifySig(pk ,m, s) outputs accept if s is a valid signature of m
and reject otherwise. (This definition can be extended to support multi-block
messages m = {m1, . . . ,mn}.) A signature scheme must be correct and unforge-
able [39]. Informally speaking, correctness implies that the VerifySig algorithm
always accepts an honestly generated signature. Unforgeability means that no
p.p.t adversary should be able to output a message-signature pair (s,m) unless
he has previously obtained a signature on m.

P-Signatures are defined by Belenkiy et al. in [30] as signature schemes
equipped with a common reference string crsSig and a NIPK that allows proving
possession of a signature of a committed message. Belenkiy et al. show how to
use the Groth-Sahai proof system to build this proof. Since in their construc-
tions m ∈ Zp and Groth-Sahai proofs prove knowledge of a witness in G, they
need to compute a bijection F (m) ∈ G and prove knowledge of F (m). To avoid
that given a secure signature scheme an adversary may still be able to compute
a forgery (s,F (m)) even though he is unable to compute (s,m), [30] defines
F -unforgeability, which means that no p.p.t adversary can output (s,F (m))
without previously obtaining a signature on m.

4 Non-Interactive Range Proof

We construct an efficient non-interactive range proof that a committed value
σ ∈ Zp lies in an interval [0,A). Our scheme is based on the efficient interactive
range proof recently proposed in [27]. The technique of [27] consists in writing
σ in base-d to show that it lies in an interval [0, da). First, the verifier sends
the prover signatures Si on d -ary digits, i.e., i ∈ Zd. Then the prover proves
that σ =

∑
j∈Za σjd

j and that all σj are d -ary digits. For the latter, she proves
possession of a verifier’s signature on σj . Our idea consists in employing P-
signatures, which allow for a non-interactive proof of signature possession, to
construct a non-interactive range proof following this approach.

A handy P-signature scheme. We employ the P-signature scheme of [30] that is
based on the strong Boneh-Boyen signature scheme [40].

Setup(1κ) runs the Groth-Sahai PKSetup(1κ) to obtain crsPK for pairing groups
(p,G,GT , e, g), picks random u ∈ G, and outputs crsSig = (crsPK , u).

Keygen(crsSig) picks a secret key sk = (α, β) ← Zp and computes a public key
pk = (v , w) = (gα, gβ).

Sign(crsSig , sk ,m) picks random r ← Zp/{α−msg
β } and computes s = (s1, s2, s3) =

(g1/(α+m+βr), wr, ur).
VerifySig(crsSig , pk ,m, s) outputs accept when e(s1, vgms2) = e(g , g), e(u, s2) =

e(s3, w). Otherwise, it outputs reject.

9

Using Groth-Sahai proofs, [30] shows how to construct a NIPK of such a
signature. This is a proof of a pairing product equation of the form

NIPK{(gm , um , s1, s2, s3) : e(s1, vgms2) = e(g , g) ∧ e(u, s2) = e(s3, w)
∧ e(u, gm) = e(um , g)}

We abbreviate this expression by writing NIPK{(gm , um , s) : VerifySig(pk , s,m) =
accept}. This scheme is F -unforgeable (F (m) = (gm , um)) under the HSDH and
TDH assumptions.

Range proof. This proof proves that a value σ ∈ Zp lies in an interval [0,A). The
range proof uses a common reference string crsSig as produced by Setup. In addi-
tion, we require that the verifier can distribute public parameters paramsRange ←
RPInitVerifier(crsSig ,A). These parameters do not need to be honestly generated,
as they can be verified by the prover using RPInitProver.

RPInitVerifier(crsSig ,A). On input A = da , it runs Keygen(crsSig) to get (sk , pk),
and, ∀i ∈ Zd, it computes Si = Sign(crsSig , sk , i). It outputs paramsRange =
(pk , {Si}i∈Zd).

RPInitProver(crsSig , paramsRange). It parses paramsRange to get pk and {Si}i∈Zd .
It verifies the signatures by computing, for all i ∈ Zd, VerifySig(crsSig , pk , i,Si).
If these verifications succeed, it outputs accept. Otherwise it outputs reject.

RangeProve(crsSig , paramsRange, g̃ , σ, openσ) computes the following proof for
a commitment Cσ = Commit(g̃σ, openσ):

NIPK{(g̃σ, {gσj , uσj ,Sσj}a−1
j=0) :

{VerifySig(pk , σj ,Sσj))}a−1
j=0∧ (1)

e(g , g̃σ)
a−1∏
j=0

e(g̃−dj , gσj) = 1 ∧ g̃σ inCσ} (2)

Intuitively, (1) ensures that each σj is a d -ary digit by proving that the value
was used by the verifier to compute a signature Sσj , and (2) proves that σ
is correctly decomposed, i.e., that σ =

∑
j∈Za σjd

j . We use the short form
NIPK{(g̃σ) : 0 ≤ σ < A ∧ g̃σ inCσ} to refer to this proof.

This proof is only witness indistinguishable. While this is sufficient for our appli-
cation, it is possible to make the proof zero-knowledge using techniques described
in [28]. This proof can be extended to handle intervals of the form [A,B) in the
same way as in [27].

5 UC-Secure Adaptive k-out-of-N Priced Oblivious
Transfer

5.1 Intuition Behind our Construction

Our priced oblivious transfer scheme is based on the oblivious transfer scheme by
Green and Hohenberger [17]. Specifically, it is an assisted decryption scheme that

10

employs double trapdoor encryption (based on the linear encryption scheme in
[29]). The ciphertext of message m contains values (w r1

1 ,w r2
2 , hr1

1 , h
r2
2 ,m ·h

r1+r2
3),

where (w1,w2) are public parameters generated by vendor V and (h1, h2, h3) be-
long to the common reference string. (w r1

1 ,w r2
2) are used by buyer B to generate

the request message in each transfer phase, whereas (hr1
1 , h

r2
2) are used in the

security proof by the ideal protocol adversary E to obtain the messages from
V without the necessity of extracting a secret key from a proof of knowledge.
This is useful because if the secret key is a value in Zp, then Groth-Sahai proofs
do not permit its extraction. In order to be able to decrypt, E creates trapdoor
information when generating the crs. (We note that the environment learns crs
through the adversary. As mentioned in [17], there are impossibility results for
realizing UC-secure OT if E cannot craft crs.) In addition, by using double
trapdoor encryption we also prove the security of ciphertexts under the DLIN
assumption.

The message space is {0, 1}l , but we abuse notation and also write m to
denote the corresponding group element in G according to some efficient and
invertible mapping. We will do the same when encrypting the account ac0 that
is a value in Zp using linear encryption. For such a mappings between a bit string
{0, 1}l and an element in G see, e.g., [41].

The ciphertexts also contain signatures of (w r1
1 ,w r2

2) that are used to ensure
that B generates her requests honestly. Green and Hohenberger [17] employ
signature schemes that sign elements in G. However, we use a multi-block P-
signature scheme that signs elements in Zp, and thus we sign values (r1, r2).
Consequently, we need to provide B with the values F (r1, r2) = (gr1

1 , g
r2
2 , u

r1
1 , u

r2
2)

of this signature scheme. Nonetheless, we note that in our scheme the ciphertexts
have less group elements than in [17].

In order to permit oblivious purchases, our POTN
k×1 extends the OTN

k×1

construction sketched above. We follow the approach of [10] of building a prepaid
scheme, where in the initialization phase the buyer B pays an initial deposit ac0

to the vendor V, and in subsequent transfer phases this deposit is subtracted by
the price pσ of the message that is being bought.

The POT scheme must ensure that V learns neither the price of the message
nor the new value of the account, but also that B pays the right price for the
message and that she has enough funds to buy it. To achieve this, in the initial-
ization phase B sends a commitment to the deposit. In the ith transfer, B sends
a commitment to the new value of the account aci and proves that (1) this value
is correct, i.e., that aci = aci−1 − pσ, and that (2) it is non-negative. In order
to allow for (1), we need to ensure that B uses the right price. To accomplish
this, V adds the price of the message to the message block (r1, r2, pσ). Thanks
to that, when B proves possession of the signature, B can include in this proof
a pairing product equation to prove that aci = aci−1 − pσ. To verify this proof,
V employs the commitment to aci−1 that he got in the previous transfer phase.
To achieve (2), in the initialization phase V computes parameters of the range
proof and hands then to B. In each transfer phase, B proves that the new value
of the account aci belongs to [0..A), where A is the deposit upper bound.

11

5.2 P-Signatures for Blocks of Messages

We describe an F -unforgeable P-signature scheme for signing multiple message
blocks that is based on the single block scheme presented in [7]. Let m =
〈m1, . . . ,mn〉 denote n message blocks.

Setupn(1κ) runs the Groth-Sahai PKSetup(1κ) to obtain crsPK for pairing groups
(p,G,GT , e, g), picks random u ∈ G, and outputs crsSig = (crsPK , u).

Keygenn(crsSig) picks random (α, β1, . . . , βn , λ1, . . . , λn)← Zp and sets a public
key Pk = (v , g1, . . . , gn , u1, . . . , un) = (gα, gβ1 , . . . , gβn , uλ1 , . . . , uλn) and a
secret key Sk = (α, β1, . . . , βn).

Signn(crsSig ,Sk ,m) chooses random r ← Zp/{−(α+ β1m1 + . . .+ βnmn)} and
computes a signature s = (s1, s2, s3) = (g1/(α+r+β1m1+...+βnmn), gr , ur).

VerifySign(crsSig ,Pk ,m , s) outputs accept if e(s1, vs2
∏n
i=1 gmi

i) = e(g , g) and
e(u, s2) = e(s3, g).

We extend the multi-block signature scheme with a protocol for proving
possession of a signature.

NIPK{({gmi
i , umi

i }
n
i=1, s1, s2, s3) : {e(ui, gmi

i)e(umi
i , g−1

i) = 1}ni=1∧

e(u, s2)e(s3, g−1) = 1 ∧ e(s1, vs2
n∏
i=1

gmi
i) = e(g , g)}

We use the short form NIPK{({gmi
i , umi

i }ni=1, s) : VerifySign(Pk ,m , s) = accept}
to refer to this proof.

Theorem 1. Let F (m1, . . . ,mn) = (gm1
1 , um1

1 , . . . , gmn
n , umn

n). This signature scheme
is F-unforgeable under the HSDH and TDH assumptions. We prove Theorem 1
in Appendix B.

We make use of the observation that an F-unforgeable signature scheme can
also be verified using the F (mi) values alone, i.e., without knowing mi. Like in
the proof, an additional check of the equations {e(ui, gmi

i)e(umi
i , g−1

i) = 1}ni=1

is needed to verify that the F (mi) values are constructed correctly. Moreover,
the F (mi) values are sufficient to create a proof of possession of a signature. We
write, e.g., VerifySign(Pk , 〈m1,F (m2),m3〉, s) to indicate that the signature s is
verified using only the F value of message m2.

5.3 Construction

We begin with a high level description of the priced oblivious transfer scheme.
The vendor V and the buyer B interact in the initialization phase and in several
transfer phases. Details on the algorithms can be found below. We recall that
the scheme is parameterized with integers (N , l) for the number of messages and
their length, an upper bound pmax for the prices and an upper bound A = da

for the deposit.

12

Initialization phase. On input (sid , vendor ,m1, . . . ,mN , p1, . . . , pN) for the
vendor and (sid , buyer , ac0) for the buyer (that fulfill the restrictions im-
posed by the parameters of the scheme):
1. V queries FCRS with (sid ,V,B). FCRS runs POTGenCRS(1κ, pmax ,A)

and sends (sid , crs) to V.
2. B queries FCRS with (sid ,V,B). FCRS sends (sid , crs) to B.
3. V runs POTInitVendor(crs,m1, . . . ,mN , p1, . . . , pN ,A) to obtain a database

commitment T and a secret key sk , and sends (sid ,T) to B.
4. B gets (sid ,T) and computes (P ,D (priv)

0)← POTInitBuyer(crs,T , ac0).
B aborts if the output is reject. Otherwise, B sends (sid ,P) to V. (B
also needs to pay an amount of ac0 to V through an arbitrary payment
channel.)

5. (Upon receiving the money) V runs (D0, ac0)← POTGetDeposit(crs,P ,A)
and checks that ac0 corresponds to the amount of money received.

V stores state information V0 = (T , sk ,D0) and outputs (sid , ac0), and B
stores state information B0 = (T ,D (priv)

0).
Transfer phase. In the ith transfer, V with state information Vi−1 and input

(sid , vendor , b) and B with state information Bi−1 and input (sid , buyer , σi)
interact as follows:
1. B runs POTRequest(crs,T ,D (priv)

i−1 , σi) to get a request Q and private
state (Q (priv),D (priv)

i). B sends (sid ,Q) to V and stores (sid ,Q(priv),

D (priv)
i).

2. V obtains (sid ,Q). If b = 0, V sends (sid ,⊥) to B. Otherwise V executes
POTRespond(crs,T , sk ,Di−1,Q) to obtain a response R and state Di.
V sends (sid ,R) to B.

3. B receives (sid ,R) and runs POTComplete(crs,T ,R,Q (priv)) to obtain
mσi .

V stores state information Vi = (T , sk ,Di), and B stores state information
Bi = (T ,D (priv)

i) and outputs (sid ,mσi).

POTGenCRS(1κ, pmax ,A). Given security parameter κ, it generates two Groth-
Sahai reference strings crsVPK and crsBPK for the same pairing group setup
(p,G,GT , e, g) such that −pmax > A mod p holds. (In the proof of security
the two setups allow the simulator to simultaneously make use of knowledge
extraction and simulation for the first and the second proof respectively.) It
picks random a, b, c ← Zp and computes (h1, h2, h3) = (ga , gb , gc). It picks
random u ← G. It outputs crs = (crsVPK , crs

B
PK , u, h1, h2, h3).2

POTInitVendor(crs,m1, . . . ,mN , p1, . . . , pN ,A). On input messages (m1, . . . ,mN)
and prices (p1, . . . , pN):
1. It parses crs to obtain crsSig = (crsBPK , u) and (h1, h2, h3).
2. It picks random x1, x2 ← Zp and sets (w1,w2) = (h1/x1

3 , h1/x2
3).

2 Note that the set crsSig = (crsBPK , u) is used as common reference string for both
the multi-block signature scheme and the single-message signature scheme, which is
used for running the range proof.

13

3. It runs Keygenn to obtain (Pk ,Sk), where Pk = (v , g1, g2, g3, u1, u2, u3)
and Sk = (α, β1, β2, β3).

4. For i = 1, . . . ,N , it encrypts m as follows:
(a) It picks random r1, r2 ← Zp.
(b) It computes (s1, s2, s3) = Signn(crsSig ,Sk , (r1, r2, pi)).
(c) It sets Ci = (w r1

1 ,w r2
2 , hr1

1 , h
r2
2 ,mi · hr1+r2

3 , gr1
1 , g

r2
2 , u

r1
1 , u

r2
2 , s1, s2, s3,

pi).
5. V runs RPInitVerifier(crsSig ,A) to obtain paramsRange.
6. It sets pk = (w1,w2,Pk , paramsRange), sk = (x1, x2) and T = (pk ,C1, . . . ,

CN). It outputs (T , sk).
POTInitBuyer(crs,T , ac0). On input a database commitment T and a deposit

ac0 ∈ [0..A):
1. It parses crs to obtain crsSig = (crsBPK , u), T as (pk ,C1, . . . ,CN), pk as

(w1,w2,Pk , paramsRange) and the public key Pk as (v , g1, g2, g3, u1, u2, u3).
2. It runs RPInitProver(crsSig , paramsRange) to verify paramsRange.
3. For i = 1, . . . ,N :

(a) It parses Ci = (c1, c2, c3, c4, c5, c6, c7, c8, c9, s1, s2, s3, pi).
(b) It runs VerifySign(Pk , 〈(c6, c8), (c7, c9), pi〉, s).
(c) It verifies that e(c1, h1) = e(c3,w1)∧e(c2, h2) = e(c4,w2)∧e(h1, c6) =

e(c3, g1) ∧ e(h2, c7) = e(c4, g2).
4. If not all these checks verify, it outputs reject. Otherwise it picks random

(l1, l2) ← Zp and sets P = (w l1
1 ,w

l2
2 , ac0 · h l1+l23) and D (priv)

0 = (ac0,

openac0 = 0). It outputs (P ,D (priv)
0).

POTGetDeposit(crs,P ,A). It works as follows:
1. It parses P as (c1, c2, c3).
2. It computes ac0 = c3/(cx1

1 c
x2
2) and checks that ac0 ∈ [0,A).

3. It sets D0 = Commit(gac0
3 , 0). It outputs (D0, ac0).

POTRequest(crs,T ,D (priv)
i−1 , σ). On input a database commitment T and a se-

lection value σ ∈ {1, . . . ,N }, it works as follows:
1. It parses T as (pk ,C1, . . . ,CN), pk as (w1,w2,Pk , paramsRange), crs to

obtain (crsBPK , u, h3) and Cσ as (c1, c2, c3, c4, c5, c6, c7, c8, c9, s1, s2, s3, pσ).
2. It picks random y1, y2 ← Zp and computes (d1, d2) = (c1 · wy1

1 , c2 · wy2
2)

and (t1, t2) = (hy1
3 , hy2

3).
3. It parses D (priv)

i−1 as (aci−1, openaci−1) to compute Di−1 = Commit(gaci−1
3 ,

openaci−1). It also picks a fresh openaci to compute Di = Commit(gaci
3 ,

openaci), for aci = aci−1 − pσ.
4. It runs PKProve on input crsBPK to compute a witness-indistinguishable

proof pok1:

NIPK{(c6, c8, c7, c9, g
pσ
3 , upσ

3 , s1, s2, s3, gaci
3 , gaci−1

3 , c1, c2, t1, t2) :
VerifySign(Pk , 〈(c6, c8), (c7, c9), (g

pσ
3 , upσ

3)〉, (s1, s2, s3)) = accept∧
e(w−1

1 , c6)e(c1, g1) = 1 ∧ e(w−1
2 , c7)e(c2, g2) = 1∧

e(c1, h3)e(t1,w1) = e(d1, h3) ∧ e(c2, h3)e(t2,w2) = e(d2, h3)∧
e(g , gaci−1

3)e(g−1, gaci
3)e(g−1, gpσ

3) = 1∧
∧ 0 ≤ aci < A ∧ gaci

3 inDi ∧ gaci−1
3 inDi−1}

14

5. It sets Q = (d1, d2, pok1,Di), Q(priv) = (Q , σ, y1, y2) and D (priv)
i = (aci,

openaci). It outputs (Q ,Q (priv),D (priv)
i).

POTRespond(crs,T , sk ,Di−1,Q). On input a database commitment T , a secret
key sk , private state Di−1, and a request Q , it works as follows:
1. It parses crs to obtain (crsVPK , crs

B
PK , u, h3), T as (pk ,C1, . . . ,CN), pk

as (w1,w2,Pk , paramsRange), sk as (x1, x2), Q as (d1, d2, pok1,Di).
2. It verifies pok1 by running PKVerify on input crsBPK and it aborts if the

output is reject. For this verification, it uses the commitments Di−1 and
Di.

3. It computes (z1, z2) = (dx1
1 , dx2

2) and z = z1 · z2.
4. It runs PKProve on input crsVPK to compute a zero-knowledge proof of

knowledge3 pok2:

NIPK{(z1, z2) : e(z1,w1) = e(d1, h3) ∧ e(z2,w2) = e(d2, h3)
∧ e(z1, h3)e(z2, h3) = e(z , h3)}

5. It outputs R = (z , pok2) and Di.
POTComplete(crs,T ,R,Q (priv)). On input a database commitment T , a re-

sponse R and private state Q (priv):
1. It parses crs to obtain (crsVPK , h3), T as (pk ,C1, . . . ,CN), R as (z , pok2)

and Q (priv) as (Q , σ, y1, y2).
2. It verifies pok2 by running PKVerify on input crsVPK . If verification fails,

it outputs reject.
3. It parses Cσ to obtain c5 and it outputs the message mσ = c5/(z · h−y1

3 ·
h−y2
3).

Theorem 2. This POT scheme securely realizes FPOT . We prove Theorem 2
in Appendix C.

5.4 Properties and Extensions

This scheme offers extra features over previous ones [10]. Namely, it permits that
several messages have the same price without scaling up prices and accounts, and
it allows the vendor to charge different prices for the same message to different
buyers, which can be used to apply marketing techniques like making discounts
to regular or underage buyers. This can be done by recomputing the signatures
included in the ciphertexts on different prices depending on the particular buyer.
In order to allow for a precomputed database, V can assign buyers to ` different
groups and associate to each group j ∈ {1, . . . , `} a different price for each
message mi by signing s(j) = Signn(crsSig ,Sk , (r1, r2, j, pij)). (Note that r1 and
r2 have the same value in the signatures of all the groups in order to reuse the
same encryption of mi.) In the transfer phase, when proving possession of the
multi-block P-signature s(j) for their group, buyers must reveal the attribute j.
3 To let this proof be zero-knowledge we introduce a new variable z3. The set of

equations is e(z1,w1)e(d−1
1 , z3) = 1∧e(z2,w2)e(d−1

2 , z3) = 1∧e(z1z2, z3)e(z−1, z3) =
1 ∧ e(w1, z3) = e(w1, h3).

15

The POT scheme can be simplified to obtain an OT scheme, which constitutes
an alternative to the one in [17]. Additionally, the multi-block signature scheme
provides high flexibility to implement other access control policies for oblivious
transfer beyond those required for POT. For example, if an index i is signed
instead of price pi, then access control methods based on stateful anonymous
credentials [26], which support a wide variety of policies, can be applied.

5.5 Efficiency Analysis and Comparison

In Table 1 we compare the performance of our POT scheme with the performance
of the OT scheme in [17] and with the OT scheme obtained by simplifying our
POT scheme. We show the number of group elements in the crs, in the database
T , in the request message, and in the response message. (We recall that the
deposit upper bound is A = da .) See Appendix D for more details.

POT scheme OT scheme [17] Our underlying OT scheme

crs 23 16 23
Database T 12N + 3d + 11 18N + 11 12N + 7
Request 86 + 30a 66 65
Response 28 35 28

Table 1. Performance comparison with the OT scheme in [17]

References

1. Koargonkar, P., Wolin, L.: A multivariate analysis of web usage. Journal of Ad-
vertising Research (March/April 1999) 53–68

2. Tsai, J., Egelman, S., Cranor, L., Acquisti, R.: The effect of online privacy in-
formation on purchasing behavior: An experimental study, working paper. (June
2007)

3. Grimm, R., Aichroth, P.: Privacy protection for signed media files: a separation-of-
duty approach to the lightweight drm (lwdrm) system. In Dittmann, J., Fridrich,
J.J., eds.: MM&Sec, ACM (2004) 93–99

4. Lee, D.G., Oh, H.G., Lee, I.Y.: A study on contents distribution using electronic
cash system. In: EEE ’04: Proceedings of the 2004 IEEE International Conference
on e-Technology, e-Commerce and e-Service (EEE’04), Washington, DC, USA,
IEEE Computer Society (2004) 333–340

5. Chaum, D.: Blind signatures for untraceable payments. In: CRYPTO ’82, Plenum
Press (1982) 199–203

6. Camenisch, J., Hohenberger, S., Lysyanskaya, A.: Compact E-Cash. In: EURO-
CRYPT. Volume 3494 of LNCS. (2005) 302–321

7. Belenkiy, M., Chase, M., Kohlweiss, M., Lysyanskaya, A.: Compact e-cash and
simulatable vrfs revisited (2008)

8. Berthold, O., Federrath, H., Köhntopp, M.: Project “anonymity and unobservabil-
ity in the internet”. In: CFP ’00: Proceedings of the tenth conference on Computers,
freedom and privacy, New York, NY, USA, ACM (2000) 57–65

16

9. min Sun, H., hang Wang, K., fu Hung, C.: Towards privacy preserving digital
rights management using oblivious transfer

10. Aiello, W., Ishai, Y., Reingold, O.: Priced oblivious transfer: How to sell digital
goods. In Pfitzmann, B., ed.: EUROCRYPT. Volume 2045 of Lecture Notes in
Computer Science., Springer (2001) 119–135

11. Rabin, M.O.: How to exchange secrets by oblivious transfer. (1981)
12. Naor, M., Pinkas, B.: Oblivious transfer with adaptive queries. In: CRYPTO.

(1999) 573–590
13. Kohlweiss, M., Faust, S., Fritsch, L., Gedrojc, B., Preneel, B.: Efficient oblivious

augmented maps: Location-based services with a payment broker. In Borisov, N.,
Golle, P., eds.: Privacy Enhancing Technologies. Volume 4776 of Lecture Notes in
Computer Science., Springer (2007) 77–94

14. Canetti, R.: Universally composable security: A new paradigm for cryptographic
protocols. In: FOCS ’01: Proceedings of the 42nd IEEE symposium on Foundations
of Computer Science, Washington, DC, USA, IEEE Computer Society (2001) 136

15. Camenisch, J., Neven, G., Shelat, A.: Simulatable adaptive oblivious transfer. In
Naor, M., ed.: EUROCRYPT. Volume 4515 of Lecture Notes in Computer Science.,
Springer (2007) 573–590

16. Green, M., Hohenberger, S.: Blind identity-based encryption and simulatable obliv-
ious transfer. In: ASIACRYPT. (2007) 265–282

17. Green, M., Hohenberger, S.: Universally composable adaptive oblivious transfer.
Cryptology ePrint Archive, Report 2008/163 (2008) http://eprint.iacr.org/.

18. Damgrd, I., Nielsen, J.B., Orlandi, C.: Essentially optimal universally composable
oblivious transfer. Cryptology ePrint Archive, Report 2008/220 (2008) http://

eprint.iacr.org/.
19. Wagner, D., ed.: Advances in Cryptology - CRYPTO 2008, 28th Annual Inter-

national Cryptology Conference, Santa Barbara, CA, USA, August 17-21, 2008.
Proceedings. In Wagner, D., ed.: CRYPTO. Volume 5157 of Lecture Notes in
Computer Science., Springer (2008)

20. Tobias, C.: Practical oblivious transfer protocols. In: IH ’02: Revised Papers from
the 5th International Workshop on Information Hiding, London, UK, Springer-
Verlag (2003) 415–426

21. Crescenzo, G.D., Ostrovsky, R., Rajagopalan, S.: Conditional oblivious transfer
and timed-release encryption. In: EUROCRYPT. (1999) 74–89

22. Blake, I.F., Kolesnikov, V.: Strong conditional oblivious transfer and computing
on intervals. In: In Advances in Cryptology - ASIACRYPT 2004, Springer (2004)
515–529

23. Ishai, Y., Kushilevitz, E.: Private simultaneous messages protocols with applica-
tions. In: In Proc. of 5th ISTCS. (1997) 174–183

24. Shankar, B., Srinathan, K., Rangan, C.P.: Alternative protocols for generalized
oblivious transfer. In Rao, S., Chatterjee, M., Jayanti, P., Murthy, C.S.R., Saha,
S.K., eds.: ICDCN. Volume 4904 of Lecture Notes in Computer Science., Springer
(2008) 304–309

25. Herranz, J.: Restricted adaptive oblivious transfer. Cryptology ePrint Archive,
Report 2008/182 (2008) http://eprint.iacr.org/.

26. Coull, S., Green, M., Hohenberger, S.: Controlling access to an oblivious database
using stateful anonymous credentials. Cryptology ePrint Archive, Report 2008/474
(2008) http://eprint.iacr.org/.

27. Camenisch, J., Chaabouni, R., Shelat, A.: Efficient protocols for set membership
and range proofs. In Pieprzyk, J., ed.: ASIACRYPT. Volume 5350 of Lecture Notes
in Computer Science., Springer (2008) 234–252

17

28. Groth, J., Sahai, A.: Efficient non-interactive proof systems for bilinear groups.
In Smart, N.P., ed.: EUROCRYPT. Volume 4965 of Lecture Notes in Computer
Science., Springer (2008) 415–432

29. Boneh, D., Boyen, X., Shacham, H.: Short group signatures. In Franklin, M.K., ed.:
CRYPTO. Volume 3152 of Lecture Notes in Computer Science., Springer (2004)
41–55

30. Belenkiy, M., Chase, M., Kohlweiss, M., Lysyanskaya, A.: P-signatures and nonin-
teractive anonymous credentials. In Canetti, R., ed.: TCC. Volume 4948 of Lecture
Notes in Computer Science., Springer (2008) 356–374

31. Boyen, X., Waters, B.: Full-domain subgroup hiding and constant-size group sig-
natures. In Okamoto, T., Wang, X., eds.: Public Key Cryptography. Volume 4450
of Lecture Notes in Computer Science., Springer (2007) 1–15

32. Canetti, R.: Obtaining universally compoable security: Towards the bare bones of
trust. In: ASIACRYPT. (2007) 88–112

33. Santis, A.D., Di Crescenzo, G., Persiano, G.: Necessary and sufficient assumptions
for non-interactive zero-knowledge proofs of knowledge for all NP relations. In
Montanari, U., Rolim, J.P., Welzl, E., eds.: Proc. 27th International Colloquium
on Automata, Languages and Programming (ICALP). Volume 1853 of LNCS.,
Springer Verlag (2000) 451–462

34. Goldwasser, S., Micali, S., Rackoff, C.: The knowledge complexity of interactive
proof systems. SIAM J. Comput. 18(1) (1989) 186–208

35. Goldreich, O.: Foundations of Cryptography: Basic Tools. Cambridge University
Press, New York, NY, USA (2000)

36. Blum, M., Feldman, P., Micali, S.: Non-interactive zero-knowledge and its appli-
cations. In: STOC ’88: Proceedings of the twentieth annual ACM symposium on
Theory of computing, New York, NY, USA, ACM Press (1988) 103–112

37. Feige, U., Lapidot, D., Shamir, A.: Multiple noninteractive zero knowledge proofs
under general assumptions. SIAM Journal on Computing 29(1) (1999) 1–28

38. Camenisch, J., Stadler, M.: Efficient group signature schemes for large groups.
In Kaliski, B., ed.: CRYPTO ’97. Volume 1296 of LNCS., Springer Verlag (1997)
410–424

39. Goldwasser, S., Micali, S., Rivest, R.L.: A digital signature scheme secure against
adaptive chosen-message attacks. SIAM J. Comput. 17(2) (1988) 281–308

40. Boneh, D., Boyen, X.: Short signatures without random oracles. In Cachin, C.,
Camenisch, J., eds.: EUROCRYPT. Volume 3027 of Lecture Notes in Computer
Science., Springer (2004) 56–73

41. Ateniese, G., Camenisch, J., de Medeiros, B.: Untraceable rfid tags via insubvert-
ible encryption. In Atluri, V., Meadows, C., Juels, A., eds.: ACM Conference on
Computer and Communications Security, ACM (2005) 92–101

42. Lindell, Y.: Lower bounds for concurrent self composition. In Naor, M., ed.: TCC.
Volume 2951 of Lecture Notes in Computer Science., Springer (2004) 203–222

A Universally composable security

We review the universally composable security paradigm presented in [14]. First,
we briefly explain the computational model, which is intended to represent mul-
tiple interacting computer programs. Then we review the protocol security defi-
nition: the model of protocol execution, the notion of ideal functionality and the
definition of security. Finally, we recall the concept of hybrid protocol and the
composition theorem.

18

Computational model. In order to represent a network of communicating com-
puter programs, [14] utilizes a system of interactive Turing machines instances
(ITI) that are provided with additional communication tapes which can be writ-
ten into by one ITI and read by another. In contrast to an interactive Turing
machine (ITM), which represents a static object (a program or algorithm), an
ITI is an ITM running on some specific data. There are two methods for ITI
intercommunication: communication through the communication tapes, which
models untrusted communication over a network, and communication through
the input and subroutine output tapes, which models local subroutine calls.

An execution of a system (I, C) is modeled as a sequence of activations of
ITIs, where in each activation a single ITI is active. In the beginning, an initial
ITI (I) is invoked on some external input. This ITI can perform local compu-
tations and also invoke other ITIs and write information on their corresponding
tapes (in each activation, the tape of only one ITI may be written). Once an
ITI is invoked, it can invoke other ITIs and write their tapes. When an ITI
enters a waiting state, then the ITI whose input tape was written becomes ac-
tive. If the tape of no other ITI is written, then the initial ITI is activated, and
the execution ends when the initial ITI halts. There exists a control function
C that determines which tapes of which ITIs can be written to by each ITI.
Let OUTI,C(κ, x) denote the random variable that describes the output of the
execution of the system (I, C), where κ is I’s security parameter and x is I’s
input.

The identity of an ITI is determined at invocation time by the invoking
instance and it is unchangeable. Each identity consists of two separate fields: a
session id (sid) and a party id (pid). A protocol instance is a set of ITIs in a
system’s execution that at a certain moment have the same program and the
same sid . The pid is used to differentiate ITIs within a protocol instance.

Protocol security. [14] explains the model of protocol execution in the presence
of an adversary and in a given environment. This model is parameterized by
three ITMs: the protocol ψ, which determines the program to be executed by
parties in a protocol instance, the adversary A, and the environment Z, which
represents all the protocols running in the system and the adversaries acting
within them (including protocols that interact with ψ). Z is the initial ITI. The
control function defines that A should be the first ITI to be invoked. Afterwards,
Z can communicate with A or provide inputs to parties that have the program
ψ and that have the same sid , which is fixed by Z. A can write a message in
the communication tape of a party, corrupt a party (only when instructed to do
so by Z), or send information to Z. A party of ψ can write a message in the
communication tape of A (and not in the one of other ITI), write outputs to
the subroutine output tape of Z, or invoke ITIs as subroutines. The execution
finishes when Z outputs a single bit. Remarkably, we note that Z has access to
the input and output of the parties, but neither to the communication between
them nor to the inputs and outputs of their subroutines, while A has only access
to the communication between parties. Nevertheless, Z and A can exchange
information between two activations of some party.

19

In order to prove that a protocol ψ is secure, ψ is compared with an ideal pro-
tocol within the above model of protocol execution. The ideal protocol involves
an ideal functionality F that acts as a trusted ITM that carries out the desired
task. In the ideal protocol execution, each party forwards its input to F and
copies any output coming from F to its local output. F has instructions to com-
pute the desired outputs given the inputs. In addition, F can receive messages
from adversary E and can be instructed to send messages to E , which models
the influence that E may have on the output of the parties, the information that
E may obtain, or the delay that E can apply to the outputs.

A protocol ψ is secure if ψ securely realizes F , which implies that ψ emu-
lates the ideal protocol. Emulation means that for any A there exists a simula-
tor4 E such that, for any Z and on any input, the advantage of Z in guessing
whether it is interacting with A and ψ or with E and the ideal protocol is neg-
ligible. More formally, let IDEALF,E,Z denote the ensemble of random variables
{OUTZ,C(F,E)(κ, x)}κ∈N,x∈{0,1}∗ and letREALψ,A,Z denote {OUTZ,C(ψ,A)(κ, x)}κ∈N,x∈{0,1}∗ .
ψ securely realizes F if these ensembles are computationally indistinguishable.
Intuitively, if ψ securely realizes F then it is guaranteed that the outputs of the
parties when running ψ are indistinguishable from their outputs when interact-
ing with F on the same input, and that A does not learn more information when
interacting with ψ than when interacting with F .

Hybrid protocol. An F-hybrid protocol is a protocol where parties, besides com-
municating with A as usual, make calls to instances of the ideal functionality F
by invoking the ideal protocol of F . F can be thought as an ideal service that
is provided in the network.

Composition theorem. Let ψ be a protocol that makes subroutine calls to a
protocol φ, and let ρ be a protocol that emulates φ. Then the composed protocol
ψρ/φ, where each invocation of φ is replaced with an invocation of ρ, emulates
ψ. As a corollary, if ψ is an F-hybrid protocol and ρ securely realizes F , then
the composed protocol ψρ/F emulates ψ. This theorem includes the traditional
notion of concurrent self composition [42], where many instances of the same
protocol run concurrently.

B Proof of Theorem 1

We refer to [30] for a formal definition of F -unforgeability. We consider two types
of forgeries. In type 1 the forger D sends (s1, s2, s3) and F (m1, . . . ,mn) such that,
for q = 1 to l , s1 6= s(q)

1 , where s(q)
1 was used to answer the qth signature query

from D. In type 2, there exists q such that s1 = s(q)
1 .

4 Adversary E is often called simulator because typically in security proofs E operates
by simulating A.

20

Type 1 forgeries: We construct an algorithm E that breaks the l -HSDH assump-
tion with non-negligible probability if there exists a forger D that outputs a
type 1 forgery with non-negligible probability. E takes as input an l -HSDH tuple
that consists of (g , gα) ∈ G2, u ∈ G, an l -tuple {g1/(α+cq), gcq , ucq}lq=1 and a
description of the groups (p,G,GT). E computes a tuple (g1/(α+c), gc , uc) such
that, ∀q, c 6= cq, as follows:

Setupn(1k). E sets crsSig = (p,G,GT , e, g , u) and hands them to D.
Keygenn(crsSig). E picks random (β1, . . . , βn , λ1, . . . , λn)← Zp and calculates a

public key Pk = (v , g1, . . . , gn , u1, . . . , un) = (gα, gβ1 , . . . , gβn , uλ1 , . . . , uλn).
The secret key is (α, β1, . . . , βn)← Zp, although D does not know α. E sends
Pk to D.

OSignn(crsSig ,Sk ,m). At the qth query, q ∈ {1, . . . , l}, E implicitly sets cq =
r +

∑n
i=1 βimi and computes (s1, s2, s3) as follows:

s1 = g1/(α+cq)

s2 = gcq/g
Pn
i=1 βimi = gr

s3 = ucq/u
Pn
i=1 βimi = ur

E sends (s1, s2, s3) to D.
Forgery. D outputs a forgery (s1, s2, s3) = (g1/(α+r+β1m1+...+βnmn), gr , ur) and

(gm1
1 , um1

1 , . . . , gmn
n , umn

n). E implicitly sets c = r +
∑n
i=1 βimi and computes

an HSDH tuple (A,B,C) as follows:

A = s1 = g1/(α+c)

B = s2
n∏
i=1

gmi
i = gr

n∏
i=1

gmiβi = gc

C = s3
n∏
i=1

(umi
i)(βi/λi) = ur

n∏
i=1

(uλimi)(βi/λi) = uc

Type 2 forgeries: We construct an algorithm E that breaks the l -TDH assump-
tion with non-negligible probability if there exists a forger D that outputs a type
2 forgery with non-negligible probability. E takes as input a l -TDH tuple that
consists of (g , gx , gy) ∈ G3, an l -tuple {cq, g1/(x+cq)}lq=1 and a description of the
groups (p,G,GT). E computes a (gµx , gµy , gµxy) as follows:

Setupn(1k). E sets crsSig = (p,G,GT , e, g , u), where u = gy , and hands them
to D.

Keygenn(crsSig). E picks random t← {1, . . . ,n}, (α, {βi}ni=1,i 6=t, {λi}ni=1)← Zp
and computes Pk = (v , g1, . . . , gn , u1, . . . , un) = (gα, gβ1 , . . . , gβn , uλ1 , . . . ,
uλn) by setting gt = gxγ for random γ ← Zp. The secret key is (α, β1, . . . , βn),
although E does not know βt = xγ. E sends Pk to D.

OSignn(crsSig ,Sk ,m). In the qth query, E sets cq = (α + r +
∑n
i=1,i 6=t βimi)

/γmt, where q ∈ {1, . . . , l}. Then (x + cq)γmt = α + r +
∑n
i=1 βimi is

21

the inverse of the exponent that should be used to compute s1. There-
fore, E sets r = cqγmt − α −

∑n
i=1,i 6=t βimi and computes (s1, s2, s3) =

((g1/(x+cq))(1/γmt), gr , ur). E sends (s1, s2, s3) to D.
Forgery. D outputs a forgery (s1, s2, s3) = (g1/(α+r+β1m1+...+βnmn), gr , ur) and

(gm1
1 , um1

1 , . . . , gmn
n , umn

n). E already has a message-signature pair such that
r +

∑n
i=1 βimi = r (q) +

∑n
i=1 βim

(q)
i , but there exists i such that mi 6= m(q)

i .
If i = t, then mt 6= m(q)

t but βtmt + r +
∑n
i=1,i 6=t βimi = βtm

(q)
t + r (q) +∑n

i=1,i 6=t βim
(q)
i . E implicitly sets µ = (m(q)

t − mt)γ. E computes a TDH
tuple (A,B,C) as follows:

A =(umt
(q)
/(umt

t)1/λt)γ = (um
(q)
t −mt)γ = uµ = gyµ

B =
m∏

i=1,i 6=t

(gmi
i /gm

(q)
i

i)(s2/gr
(q)

) = g
Pn
i=1,i6=t βi(mi−m

(q)
i)g(r−r(q)) =

gβt(m
(q)
t −mt) = gxγ(m

(q)
t −mt) = gxµ

C =
m∏

i=1,i 6=t

((umi
i)1/λi/um

(q)
i)βi(s3/ur(q)

) = u
Pn
i=1,i6=t βi(mi−m

(q)
i)u(r−r(q)) =

uβt(m
(q)
t −mt) = uxγ(m

(q)
t −mt) = uxµ = gxyµ

C Proof of Theorem 2

In order to prove this theorem, we need to build a simulator E that invokes
a copy of adversary A and interacts with FPOT and environment Z in such a
way that ensembles IDEALFPOT ,E,Z and REALPOT,A,Z are computationally
indistinguishable.

In our proof we make use of the fact that Groth-Sahai proofs are partially ex-
tractable, composable witness-indistinguishable, and (given certain conditions)
composable zero-knowledge. The following algorithms formalize these properties
and are needed for the security proofs.

PKExtractSetup(1κ). It outputs a tuple crsPK that is identically distributed to
the output of PKSetup(1κ) and an extraction trapdoor tdext .

PKExtract(crsPK , tdext , y , pok). It uses tdext to extract the witnesses w from
pok . The algorithm does not extract the openings of the commitments.

PKSimSetup(1κ). It outputs an alternative setup crs ′PK and a simulation trap-
door tdsim .

PKSimProve(crs ′PK , tdsim , y). On input simulation parameters crs ′PK , it out-
puts a proof pok for instance y such that PKVerify(crs ′PK , y , pok) outputs
accept.5

5 The statement y should belong to the class of statements for which the Groth-Sahai
proof system can compute a zero-knowledge proof.

22

Groth-Sahai proofs fulfill the correctness property. (PKExtSetup,PKExtract)
are a polynomial time extractor that allows for perfect extractability of the
witness, i.e., extraction is done with probability 1. However, if we have a com-
mitment Commit(x , open), then PKExtract extracts x but not the opening open.

Groth-Sahai proofs are composable witness-indistinguishable, but only for
some classes of statements they fulfill the stronger notion of composable zero-
knowledge.

Composable Witness-Indistinguishability. We require two properties: (1)
the parameters crs ′PK output by PKSimSetup are computationally indistin-
guishable from crsPK output by PKSetup, and (2) all (information theoretic)
adversaries A have advantage 0 in the following game:
1. A receives crs ′PK as generated by PKSimSetup.
2. A outputs an instance y and two valid witnesses (w0,w1).
3. A receives a proof pok = PKProve(crs ′PK , y ,wb), where b is a random

bit.
4. A sends its guess b′. Its advantage is |Pr[b = b′]− 1/2|.

Composable Zero-Knowledge. There exists a simulator that consists of al-
gorithms (PKSimSetup,PKSimProve) and that fulfills two properties: (1) the
parameters crs ′PK output by PKSimSetup are computationally indistinguish-
able from the parameters crsPK output by PKSetup, and (2) all (information
theoretic) adversaries A have advantage 0 in the following game:
1. A receives crs ′PK and tdsim as generated by PKSimSetup.
2. A outputs an instance y and a valid witness w .
3. Let pok0 = PKProve(crs ′PK , y ,w) and pok1 = PKSimProve(crs ′PK , tdsim ,

y). Pick a random bit b. A receives pok b.
4. A sends its guess b′. Its advantage is |Pr[b = b′]− 1/2|.

Simulation of buyer’s security. In this case only the vendor V is corrupted.

1. E runs algorithm PKSetup to generate two Groth-Sahai reference strings
crsBPK and crsVPK for the same pairing group setup (p,G,GT , e, g), where
−pmax > A mod p holds. E picks random u ← G. E picks random a, b, c ←
Zp, first computes h3 = gc and then computes (h1, h2) = (h1/a

3 , h1/b
3). E

sets crs = (crsVPK , crs
B
PK , u, h1, h2, h3). When FCRS is queried, E returns

(sid , crs).
2. Upon receiving (sid ,T) fromA, E checks T as described in POTInitBuyer and

aborts when not all the checks verify. Otherwise E parses T as (pk ,C1, . . . ,
CN). For i = 1, . . . ,N , E parses Ci to get (c3, c4, c5, pi) and sets mi =
c5/(ca

3 cb
4). E sends (sid , vendor ,m1, . . . ,mN , p1, . . . , pN) to FPOT .

3. Upon receiving (sid , ac0) from FPOT , E computes (P ,D (priv)
0) as explained

in POTInitBuyer. E sends (sid ,P) to A and keeps D (priv)
0 .

4. In the ith transfer phase, upon receiving (sid , request) from FPOT , E executes
POTRequest(crs,T ,D (priv)

i−1 , σmin), where σmin corresponds to the message
with the lowest price, to obtain (Q ,Q(priv),D (priv)

i), and sends Q to A. Upon
receiving the response R from A, E runs POTComplete(crs,T ,R,Q (priv)). If

23

the output is reject, E sends (sid , 0) to FPOT . Otherwise, E sends (sid , 1) to
FPOT and keeps D (priv)

i .

Simulation of vendor’s security. In this case only the buyer B is corrupted.

1. E runs PKExtractSetup to obtain crsBPK and an extraction trapdoor tdext ,
and algorithm PKSimSetup to obtain crsVPK and a simulation trapdoor tdsim .
Both use the same pairing group setup (p,G,GT , e, g), where −pmax > A
mod p holds. E picks random a, b, c ← Zp and computes (h1, h2, h3) =
(ga , gb , gc). E picks random u ← G and sets crs = (crsVPK , crs

B
PK , u, h1, h2, h3).

E returns (sid , crs) when FCRS is queried.
2. Upon receiving (sid , p1, . . . , pN) from FPOT , E picks random messages m ′

1, . . . ,
m ′

N ∈ GN and runs POTInitVendor(crs,m ′
1, . . . ,m

′
N , p1, . . . , pN ,A) to obtain

T . E sends (sid ,T) to A.
3. Upon receiving (sid ,P), E runs (D0, ac0)← POTGetDeposit(crs,P ,A), sends

(sid , buyer , ac0) to FPOT and keeps D0.
4. In the ith transfer phase, upon receiving (sid ,Q) from A, E parses Q as

(d1, d2, pok1,Di). E verifies the proof pok1 by running PKVerify and utilizing
(Di,Di−1), and aborts if verification fails. Otherwise, E executes PKExtract
(crsBPK , tdext , pok1) to extract the witness. Then, for i = 1 to N , E compares
the signature (gr1

1 , u
r1
1 , g

r2
2 , u

r2
2 , g

pi
3 , u

pi
3 , s1, s2, s3) in the witness with each of

the signatures that are included in the ciphertexts that were sent to A in
order to know the choice σi selected by A. E also compares the signatures
{gσj , uσj ,Sσj}a−1

j=0 in the witness that correspond to the range proof with
each of the signatures that were sent to A in paramsRange. (This is done in
order to ensure that A did not compute a forgery.) E stores Di and sends
(sid , buyer , σi) to FPOT in order to obtain either ⊥ or the message mσi . For
the former, E sends (sid ,⊥) toA. Otherwise E uses the value of the ciphertext
c5 = m ′

i · h
r1+r2
3 and the values (t1, t2) = (hy1

3 , hy2
3) in the extracted witness

to compute a response z = (c5t1t2)/mσi , and uses trapdoor tdsim to simulate
proof pok2. E sets R = (z , pok2) and sends (sid ,R) to A.

Simulation when none of the parties is corrupted. After receiving (sid , p1, . . . , pN)
and k messages of the form (sid , b), E creates a simulated transcript by running
copies of honest V and B. V is run on input random messages (m ′

1, . . . ,m
′
N)

and prices (p1, . . . , pN) while B is run on input an account ac0 such that ac0 >
pσmink, where σmin denotes the item with the lowest price. In the ith trans-
fer phase, B receives as input σmin. If bi = 0 then V sends a invalid response
(sid ,⊥). Otherwise V sends a valid response.

Simulation when V and B are corrupted. In this case E knows the inputs to B
and V and so E can simulate by computing the real messages that are sent by
the two parties.

Claim (Buyer security). When only V is corrupted, the ensembles IDEALFPOT ,E,Z
and REALPOT,A,Z are computationally indistinguishable under the DLIN as-
sumption.

24

Proof. We show by means of a series of hybrid games that the environment Z
cannot distinguish between the real execution ensemble REALPOT,A,Z and the
simulated ensemble IDEALFPOT ,E,Z with non-negligible probability. We denote
by Pr [Game i] the probability that Z distinguishes between the ensemble of
Game i and that of the real execution.

Game 0: This game corresponds to the execution of the real-world protocol
with an honest B. Therefore, Pr [Game 0] = 0.

Game 1: This game proceeds as Game 0, except that to generate crs we pick
random a, b, c ← Zp, first compute h3 = gc and then compute (h1, h2) =
(h1/a

3 , h1/b
3). crs is set to (crsVPK , crs

B
PK , u, h1, h2, h3). Since this crs has the

same distribution as in Game 0, then |Pr [Game 1]− Pr [Game 0]| = 0.
Game 2: This game proceeds as Game 1, except that message P = (w r1

1 ,w r2
2 , ac0·

hr1+r2
3) is replaced by another valid message that is computed by using

the same value ac0, so both messages are identically distributed. Therefore,
|Pr [Game 2]− Pr [Game 1]| = 0.

Game 3: This game differs from the previous one in that in each transfer phase
the request Q = (d1, d2, pok1,Di) is computed by executing POTRequest(crs,T ,
D (priv)
i−1 , σmin), where σmin is the message with the lowest price. Since the

values (d1, d2) are uniformly distributed over Zp and (pok1,Di) are com-
putationally witness indistinguishable under the DLIN assumption, then Q
cannot be distinguished from a request computed by using another selection
value σ ∈ {1, . . . ,N }. Therefore, |Pr [Game 3]− Pr [Game 2]| ≤ ν(κ).

E performs all the changes described in Game 3, but, for i = 1 to N , E uses
the ciphertexts that are sent by A to compute messages mi = c5/(ca

3 cb
4), gets

pi and sends (sid , vendor ,m1, . . . ,mN , p1, . . . , pN) to FPOT . Upon receiving ac0

from FPOT , E computes P by following POTInitBuyer, and stores private state
D (priv)

0 . In the ith transfer, E computes a request for σmin by using D (priv)
i−1 and

stores private information D (priv)
i . E also plays the role of the verifier when A

sends the response. (We note that, since we use the item with the lowest price,
A never rejects because there are not enough funds. Note that FPOT asks the
vendor whether he wants to make the transfer fail after checking that the buyer
has enough funds.) If the response is not valid, E sends b = 0 to FPOT . Otherwise
E sends b = 1 to FPOT . The distribution produced in Game 3 is identical to
that of our simulation. Therefore, we have that |Pr [Game 3] ≤ ν(κ).

Claim (Vendor security). When only B is corrupted, the ensembles IDEALFOT ,E,Z
and REALOT,A,Z are computationally indistinguishable under the DLIN as-
sumption and the (max(N , d))-HSDH and (max(N , d))-TDH assumptions.

Proof. We show by means of a series of hybrid games that the environment
Z cannot distinguish between the real execution ensemble REALPOT,A,Z and
the simulated ensemble IDEALFPOT ,E,Z with non-negligible probability. We
again denote by Pr [Game i] the probability that Z distinguishes between the
ensemble of Game i and that of the real execution.

25

Game 0: This game corresponds to the execution of the real-world protocol
with an honest V. Therefore, Pr [Game 0] = 0.

Game 1: This game follows Game 0, except that to set crs we run PKExtractSetup
to obtain crsBPK and an extraction trapdoor tdext , and PKSimSetup to obtain
crsVPK and a simulation trapdoor tdsim . Both use the same pairing group
setup (p,G,GT , e, g), where −pmax > A mod p holds. We pick random
a, b, c ← Zp and compute (h1, h2, h3) = (ga , gb , gc). We also pick random
u ← G and set crs = (crsVPK , crs

B
PK , u, h1, h2, h3). crsBPK computed as above

is identically distributed to the output of PKSetup. If the DLIN assumption
holds, then crsVPK generated as above is computationally indistinguishable
from that generated by PKSetup, and thus |Pr [Game 1]−Pr [Game 0]| ≤
ν1(κ).

Game 2: The difference between this game and the previous one consists in that
in each transfer phase we extract the witness of pok1 by running PKExtract(crsPK ,
tdext , y , pok1). Because Groth-Sahai proofs are perfectly extractable, i.e., ex-
traction never fails, we have that |Pr [Game 2]− Pr [Game 1]| = 0.

Game 3: This game is identical to Game 2, except that Game 3 aborts if the
extracted values that correspond to the signature (gr1

1 , u
r1
1 , g

r2
2 , u

r2
2 , g

pi
3 , u

pi
3 , s1, s2,

s3) do not equal to any of the signatures included in the ciphertexts C1,
. . . ,CN that where sent to A in the initialization phase. This means that
A computed a forged signature of the multi-block P-Signature scheme. Oth-
erwise, we get the selection value σi. The probability that Z distinguishes
between Game 2 and Game 3 is bounded by the following lemma:

Lemma 1. If the N -HSDH and the N -TDH assumptions hold, then |Pr [Game 3]−
Pr [Game 2]| = ν2(κ).

Proof. We construct a forger D that breaks the F -unforgeability of the
multi-block P-signature scheme with non-negligible probability. Given such
a forger, in Proof of Theorem 1 we show how to construct an algorithm E
that breaks either the N -HSDH assumption or the N -TDH assumption with
non-negligible probability.
Given a buyer B that causes Game 3 to abort with non-negligible probabil-
ity, D works as follows:
1. D obtains the parameters of the signature scheme crsSig = (p,G,GT , e, g , u)

from E , runs PKExtractSetup to get (crsBPK , tdext), PKSetup to get crsVPK ,
and sets (h1, h2, h3) = (ga , gb , gc). D sets crs = (crsVPK , crs

B
PK , u, h1,

h2, h3).
2. D obtains the public key of the signature scheme Pk from E .
3. For i = 1 to N , D picks random r1, r2 ← Zp and queries E to obtain

a signature (s1, s2, s3) on the message mi = (r1, r2, pi). Then D follows
algorithm POTInitVendor to compute T = (pk ,C1, . . . ,CN).

4. Upon receiving a request Q = (d1, d2, pok1,Di) from B, D extracts the
witness pok1. If the extracted values that correspond to the signature
(gr1

1 , u
r1
1 , g

r2
2 , u

r2
2 , g

pi
3 , u

pi
3 , s1, s2, s3) do not equal to any of the signatures

included in the ciphertexts (C1, . . . ,CN),D outputs (gr1
1 , u

r1
1 , g

r2
2 , u

r2
2 , g

pi
3 , u

pi
3 , s1, s2,

s3) as a forgery.

26

Game 4: This game is identical to Game 3, except that Game 4 aborts if at
least one of the extracted signatures that is employed in the range proof
{gσj , uσj ,Sσj}a−1

j=0 does not equal any of the signatures {(g i, ui,Si)}i∈Zd ,
where the signatures Si are included in paramsRange. This means that A
computed a forged signature of the single-message P-Signature scheme. The
probability that Z distinguishes between Game 3 and Game 4 is bounded
by the following lemma:
Lemma 2. If the d-HSDH and the d-TDH assumptions hold, then |Pr [Game 4]−
Pr [Game 3]| = ν3(κ).

Proof. We build a forger D that breaks the F -unforgeability of the single-
message P-signature scheme with non-negligible probability. Given such a
forger, in [30] it is shown how to construct an algorithm E that breaks ei-
ther the d -HSDH assumption or the d -TDH assumption with non-negligible
probability.
Given a buyer that causes Game 4 to abort with non-negligible probability,
D works as follows:
1. D obtains the parameters of the signature scheme crsSig = (p,G,GT , e, g , u)

from E , runs PKExtractSetup to get (crsBPK , tdext), PKSetup to get crsVPK ,
and computes (h1, h2, h3) = (ga , gb , gc).D sets crs = (crsVPK , crs

B
PK , u, h1,

h2, h3).
2. D obtains the public key of the signature scheme Pk from E .
3. For i ∈ Zd, D queries E to obtain a signature Si on the message i.
D uses these signatures to set paramsRange. Then D follows algorithm
POTInitVendor to compute T = (pk ,C1, . . . ,CN).

4. Upon receiving a request Q = (d1, d2, pok1,Di) from B, D extracts the
witnesses that correspond to the signatures {gσj , uσj ,Sσj}a−1

j=0 that are
employed in the range proof. If there exists a signature {gσj , uσj ,Sσj}
that does not equal any of the signatures {(g i, ui,Si)}i∈Zd in paramsRange,
then D outputs this tuple {gσj , uσj ,Sσj} as a forgery.

Game 5: The response R is computed as (z ′, pok ′2), where the value of the
ciphertext c5 = m ′

i · h
r1+r2
3 and the values (t1, t2) = (hy1

3 , hy2
3) in the ex-

tracted witness are used to compute a response z ′ = (c5t1t2)/mσi . We can
see that z ′ = hr1+y1

3 hr2+y2
3 = (w r1+y1

1)x1(w r2+y2
2)x2 = dx1

1 dx2
2 = z , where z

is the honestly generated response. The proof pok ′2 is computed by running
PKSimProve and using tdsim . A simulated proof is indistinguishable from a
proof computed by algorithm PKProve under the DLIN assumption. There-
fore, the probability that Z distinguishes between Game 5 and Game 4 is
bounded by |Pr [Game 5]− Pr [Game 4]| = ν4(κ).

Game 6: In this game the messages (m1, . . . ,mN) are replaced by random el-
ements (m ′

1, . . . ,m
′
N) of G when computing POTInitVendor. Now pok ′2 is a

proof of an invalid statement, and is simulated by using tdsim . The probabil-
ity that Z distinguishes between Game 6 and Game 5 is bounded by the
following claim:
Lemma 3. If the DLIN assumption holds, |Pr [Game 6] − Pr [Game 5]|
= ν5(κ).

27

Proof. We construct an algorithm T that breaks the DLIN assumption
given an environment Z that distinguishes Game 5 from Game 6 with
non-negligible probability. On input a DLIN tuple (g , ga, gb, gac, gbd, z), T
works as follows:
1. T sets (g1, g2) = (ga, gb). T picks random δ1, δ2, δ3, δ4, δ5, δ6 ← Zp and

sets (w1,w2) = (gδ11 , gδ22), (u1, u2) = (gδ31 , gδ42) and (h1, h2) = (gδ51 , gδ62).
2. T picks random γ, µ ← Zp and computes h3 = gγ and u = gµ. T runs

PKExtractSetup and PKSimSetup to get (crsBPK , tdext) and (crsVPK , tdsim)
respectively. T sets crs = (crsVPK , crs

B
PK , u, h1, h2, h3).

3. T picks random (α, β3, λ3)← Zp and computes (v , g3, u3) = (gα, gβ3 , uλ3).
T sets Pk = (v , g1, g2, g3, u1, u2, u3).

4. T calculates paramsRange as usual and then sets the tuple pk = (w1,w2,Pk ,
paramsRange).

5. For i = 1 to N , T picks random υi, τ1i, τ2i ← Zp and sets (c6, c7) =
(gacυigaυiτ1i , gbdυigbυiτ2i). This implicitly sets (r1, r2) = (υi(c+τ1i), υi(d+
τ2i)). T picks φi ← Zp and sets (s1, s2, s3) = (g1/(α+φi), gφi/(c6c7g

pi
3),

uφi/(c6c7g
pi
3)µ). T computes Ci = (cδ16 , c

δ2
7 , c

δ5
6 , c

δ6
7 , z

γυihυi(τ1i+τ2i)3 mi,
c6, c7, cδ36 , c

δ4
7 , s1, s2, s3).

6. T sets T = (pk ,C1, . . . ,CN), sends it and thereafter answers requests.
As can be seen, if z = gc+d, then, for i = 1 to N , Ci perfectly encrypts
message mi. However, if z is a random element of G, then T encrypts random
messages. Consequently, if there exists an environment Z that distinguishes
between these two cases with non-negligible probability, then T breaks the
DLIN assumption with non-negligible probability ν5(κ).

E performs all the changes described in Game 6, but in the initialization phase
E runs POTGetDeposit and sends ac0 to FPOT , and in each transfer phase E
sends the extracted value σi to FPOT to obtain either ⊥ or message mσi . In the
latter case, E uses the message mσi to compute R. The distribution produced
in Game 6 is identical to that of our simulation. Therefore, by summation we
have that |Pr [Game 6] ≤ ν6(κ).

Claim (Security when V and B are corrupted). When V and B are corrupted,
then IDEALFOT ,E,Z and REALOT,A,Z are indistinguishable.

In this case E knows the inputs of both parties and so E can compute the
real messages exchanged between the two parties.

Claim (Security when none of the parties is corrupted). When none of the par-
ties is corrupted, then IDEALFOT ,E,Z and REALOT,A,Z are computationally
indistinguishable under the DLIN assumption.

We do not provide a formal proof of this claim. In the initialization phase,
the V’s message consists of a random database, which we demonstrated that
is indistinguishable from a real database under the DLIN assumption. The B’s
message consists of the encryption of a different account value. We note that this
encryption is of the same form as the one used to compute the ciphertexts of the

28

database, and so it is secure under the DLIN assumption. In the transfer phase,
the request message is replaced by a valid request message for message σmin.
Under the DLIN assumption, Groth-Sahai proofs are witness indistinguishable
and so the request messages cannot be distinguished by environment Z.

D Efficiency of the POT scheme

LetNeq be the number of equations and m be the number of variables in a Groth-
Sahai proof. LetNnl be the number of non-linear equations andNl be the number
of linear equations. An equation is said to be linear if either {αq,i}q=1...Q,i=1...m =
0 or {βq,i}q=1...Q,i=1...m = 0. Let Qa denote the number of linear pairings, where
either {αq,i}i=1...m = 0 or {βq,i}i=1...m = 0, and Qb the number of quadratic
pairings. When instantiated with the DLIN assumption, a Groth-Sahai proof
that consists ofNeq pairing product equations has 9Nnl+3Nl+3m elements of G.
Calculating each group element requires a multiexponentiation. The verification
requires the computation of 21Neq + 3Qa + 9Qb pairings.6

The POT scheme consists of an initialization phase where both B and V send
one message and k transfer phases where V sends a response upon receiving a
request from B. Therefore, it has (k + 1)-rounds and the communication cost is
O(N + k). crs consists of 23 elements of G. Let A = da be the upper bound of
the deposit. In the initialization phase, V sends T , where each ciphertext has 12
elements of G and the public key consists of 2 elements plus 7 elements of the
public key of the signature scheme plus 2+3d elements of the parameters of the
range proof (where each signature consists of 3 elements and the public key has 2
elements). In total they sum 11+3d +12N elements of G. B sends an encryption
of the account that consists of 5 elements of G. In each transfer phase, B sends
a request that has two elements of G and a proof pok1, which consists of 5
pairing product equations (Nl = 4, Nnl = 1, Qa = 8, Qb = 1) to prove possession
of a multi-block signature, 4 equations (Nl = 4, Nnl = 0, Qa = 8, Qb = 0)
to prove that the request is correctly computed, 1 equation (Nl = 1, Nnl =
0, Qa = 3, Qb = 0) to prove that aci = aci−1 − pσi , and 3a + 1 equations
(Nl = 1 + 2a, Nnl = a, Qa = 5a + 1, Qb = a) to prove that aci ∈ [0..da). In
total, pok1 has parameters (Neq = 11 + 3a,m = 15 + 5a, Nl = 10 + 2a, Nnl =
1+ a, Qa = 20+5a, Qb = 1+ a) and thus comprises 84+30a elements of G and
requires the computation of 300+87a pairings for verification. V sends back one
element of G and a proof pok2, which has parameters (Neq = 4,m = 3, Nl =
3, Nnl = 1, Qa = 6, Qb = 1) and thus comprises 27 elements of G and requires
111 pairings for verification.

6 We make use of the fact that some of the pairings computed in the verification
algorithm are of the form e(x,1).

