
Reduction for Compositional Verification of
Multi-Threaded Programs

Corneliu Popeea
Technische Universität München

Andrey Rybalchenko
Microsoft Research

Andreas Wilhelm
Technische Universität München

Abstract—Automated verification of multi-threaded programs
requires keeping track of a very large number of possible interac-
tions between the program threads. Different reasoning methods
have been proposed that alleviate the explicit enumeration of
all thread interleavings, e.g., Lipton’s theory of reduction or
Owicki-Gries method for compositional reasoning, however their
synergistic interplay has not yet been fully explored. In this
paper we explore the applicability of the theory of reduction for
pruning of equivalent interleavings for the automated verification
of multi-threaded programs with infinite-state spaces. We propose
proof rules for safety and termination of multi-threaded programs
that integrate into an Owicki-Gries based compositional verifier.
The verification conditions of our method are Horn clauses,
thus facilitating automation by using off-the-shelf Horn clause
solvers. We present preliminary experimental results that show
the advantages of our approach when compared to state-of-the-
art verifiers of C programs.

I. INTRODUCTION

Development of practical verification tools for multi-
threaded programs requires dealing with the explosion of
the number of thread interleavings that need to be taken
into consideration. However, while one can easily construct
a contrived program in which every interleaving leads to a
different outcome, often enough different interleavings pro-
duce equal outcome, and hence can be considered equivalent.
Such an equivalence between interleavings suggests that only
representatives of each equivalence class need to be considered
when verifying a multi-threaded program.

One way to exploit such equivalence is called partial
order reduction (POR) [1]. This technique is used in com-
bination with model checking and amounts to restricting the
successor computation to representative interleavings, which
is performed on-the-fly during the exploration of the model.
Explicit-state [1], [2] as well as symbolic [3], [4] model
checking algorithms can be effectively combined with POR.
Furthermore, recent work shows that POR can also boost
interpolation based verification [5], which makes it applicable
for the verification of programs with infinite-state spaces.

Alternatively, one can exploit equivalence by transforming
a multi-threaded program such that it only produces representa-
tive interleavings, or a sufficiently small superset thereof. Such
transformation summarises and replaces certain sequences of
statements within threads by their composition into so-called
reducible blocks. Following Lipton’s theory of reduction [6],
executing these code blocks without any preemption pro-
duces representative interleaving when their building blocks
commute. Reducible blocks can greatly simplify deductive
verification of multi-threaded programs using proof assistants,

see e.g. [7]. For finite state systems, reducible blocks (also
called transactions in the literature) can be effectively identified
and created on-the-fly during model checking [8], [9], [10].
Unfortunately, this does not benefit automatic verification tools
for multi-threaded programs with infinite-state spaces. In par-
ticular, if reducible blocks contain loops then their invariants
are required to replace reducible blocks by their summaries.

In this paper we explore the applicability of reduction for
pruning of equivalent interleavings for the automated verifi-
cation of multi-threaded programs with infinite-state spaces.
Since reducible blocks rarely contain all statements of a thread,
i.e., there are multiple reducible blocks in each thread as
well as some statements that do not belong to any reducible
block, we integrate compositional reasoning into our explo-
ration as a complementary technique for avoiding the explicit
exploration of all interleavings. That is, our method relies
on reduction whenever possible, while statements outside of
reducible blocks are subject to compositional reasoning.

Technically, our paper makes the following contributions:
1) a Horn constraint based method for identifying commuta-
tivity (mover annotations) of program statements, 2) compo-
sitional proof rules for safety and termination that integrate
reduction and Owicki-Gries reasoning [11], 3) an efficient im-
plementation based on these ingredients. Our design decisions
were directed by the following considerations. Commutativity
inference, the first building block of our approach, serves as
a preliminary step for a final constraint based verification
run. We allow it to be more precise and data dependent
in comparison with type based approaches, e.g. [12]. Even
though being potentially more expensive, the ability to infer
larger transactions at step 1 may lead to dramatic reduction in
verification time when dealing with step 2. Our proof rules
are also inspired by the use of procedure summaries, see
e.g. [13], however instead of being driven by calls/returns
to mark start/finish points of summaries, we use transitions
that enter/exit from reducible blocks. Note that loops can be
part of reducible blocks and summarisation constraints defer
reasoning about them to the final solving step.

In summary, this paper shows that reducible blocks can be
identified without requiring deep and intricate modification of
the underlying verification techniques. Our experimental eval-
uation shows that the conceptual separation of concerns, i.e.,
treatment of equivalence between interleavings via reducible
blocks and keeping track of interleavings using compositional
proof system, compares favourably with state-of-the-art verifi-
cation approaches.



int x=2, y=2, mx=0, my=0;
// Thread-1

int a;
0: acquire(mx);
1: a = x;
2: acquire(my);
3: y = y+a;
4: release(my);
5: a = a+1;
6: acquire(my);
7: y = y+a;
8: release(my);
9: x = 2*x+a;

10: release(mx);
11:

// Thread-2
0: acquire(mx);
1: x = x+2;
2: release(mx);
3:

// Thread-3
0: acquire(my);
1: y = y+2;
2: release(my);
3:

VG = (x,y,mx,my), V1 = (a,pc1), V2 = (pc2), V3 = (pc3)
init(V ) = (x = 2 ∧ y = 2 ∧ mx = 0 ∧ my = 0 ∧ pc1 = pc2 = pc3 = `0)
next1(V V ′) = (move1(`0, `1) ∧ mx = 0 ∧ mx′ = 1 ∧ skip(x,y,my,a)) ∨

(move1(`1, `2) ∧ a′ = x ∧ skip(x,y,mx,my)) ∨
(move1(`2, `3) ∧ my = 0 ∧ my′ = 1 ∧ skip(x,y,mx,a)) ∨
(move1(`3, `4) ∧ y′ = y + a ∧ skip(x,mx,my,a)) ∨
(move1(`4, `5) ∧ my′ = 0 ∧ skip(x,y,mx,a)) ∨
(move1(`5, `6) ∧ a′ = a + 1 ∧ skip(x,y,mx,my)) ∨
(move1(`6, `7) ∧ my = 0 ∧ my′ = 1 ∧ skip(x,y,mx,a)) ∨
(move1(`7, `8) ∧ y′ = y + a ∧ skip(x,mx,my,a)) ∨
(move1(`8, `9) ∧ my′ = 0 ∧ skip(x,y,mx,a)) ∨
(move1(`9, `10) ∧ x′ = 2 ∗ x + a ∧ skip(y,mx,my,a)) ∨
(move1(`10, `11) ∧ mx′ = 0 ∧ skip(x,y,my,a))

next2(V, V ′) = (move2(`0, `1) ∧ mx = 0 ∧ mx′ = 1 ∧ skip(x,y,my)) ∨
(move2(`1, `2) ∧ x′ = x + 2 ∧ skip(y,mx,my)) ∨
(move2(`2, `3) ∧ mx′ = 0 ∧ skip(x,y,my))

next3(V, V ′) = (move3(`0, `1) ∧ my = 0 ∧ my′ = 1 ∧ skip(x,y,mx)) ∨
(move3(`1, `2) ∧ y′ = y + 2 ∧ skip(x,mx,my)) ∨
(move3(`2, `3) ∧ my′ = 0 ∧ skip(x,y,mx))

error(V ) = (x = 11 ∧ pc1 = `11 ∧ pc2 = `3 ∧ pc3 = `3)

Fig. 1. Program P1-1 and its representation as a transition system. The notation skip(v1, . . . , vk) abbreviates the constraint (v′1 = v1 ∧ · · · ∧ v′k = vk), while
movei(`j , `k) stands for (pci = `j ∧ pc′i = `k).

II. ILLUSTRATION

Our proposed method consists of two steps, inference of
reducible blocks and compositional verification with summa-
rization of the reducible blocks.

We illustrate our verification approach with a multi-
threaded program that uses locks (mx,my) to protect ac-
cesses to the shared variables (x,y). See Figure 1 for the
program P1-1. The program state is given by a valuation
of program variables V = (VG, V1, V2, V3), where VG are
global (shared) variables and Vi are thread-local variables
for a thread i ∈ {1, 2, 3}. Each thread has a thread-local
program counter variable pci ∈ Vi that holds location values
`p for a program line labeled p. We denote by PC i the
set of locations from thread i, i.e., PC 1 = {`0, . . . , `11},
PC 2 = {`0, . . . , `3} and PC 3 = {`0, . . . , `3}. The assertion
init(V ) gives the initial states of the program. We model the
effect of program statements using a thread transition relation
next i(V, V

′) corresponding to thread i. The primed version V ′
of the program variables are the next state valuations of V .

Our example uses a thread-synchronization model based
on locks, acquire and release statements. We assume that a
lock is initially not taken, e.g., mx = 0 and my = 0, and that
the acquire(mx) statement waits until the lock is released
(mx = 0) and then assigns the value 1 to mx. The release
statement sets the lock value back to 0.

Reducible block boundaries The objective of the infer-
ence of reducible blocks is to minimize the number of explored
interleavings during verification. For this illustration, we only

show how reducible blocks are encoded in our approach. (See
Section V for a formal description of a constraint based method
for identifying commutativity of program statements and its
application on the P1-1 example.)

Since global variables are consistently accessed while
holding a corresponding lock, the statements between acquire
and release for both thread-2 and thread-3 correspond
to a reducible block. For thread-1, our inference obtains
two reducible blocks, the first one from location `0 to `5 and
the second one from `6 to `10. Informally, we shall refer to
the four reducible blocks with labels (a), (b), (c) and (d).

(a) thread-1 {`0 − `5} (b) thread-1 {`6 − `10}
(c) thread-2 {`0 − `2} (d) thread-3 {`0 − `2}

Formally, the result of reduction is encoded using a parti-
tioning of the transition relation of each thread into four cat-
egories: next out out i(V, V

′) describes transitions of thread
i having both pci and pc′i set to locations outside reducible
blocks, next in ini(V, V

′) and next out ini(V, V
′) describe

transitions with target location pc′i inside a reducible block,
while next in out i(V, V

′) describes transitions having pci

set to a location inside a reducible block and target pc′i outside
a reducible block. We also make sure that transitions that target
error locations are not part of reducible blocks.

Compositional proof rule with reduction The crux of our
verification approach is a proof rule that uses both reduction
and compositional reasoning. The proof rule lists conditions
over three kinds of auxiliary assertions (or program invariants):



IRi(V ) describes reachable states outside reducible blocks
that should be accounted for interference by different threads;
LStepi(VG, Vi, V

′
G, V

′
i ) is a binary relation representing steps

inside the same reducible block that are visible only to thread
i; IStepi(V, V

′) represents steps of thread i that are visible
to other threads including steps outside reducible blocks and
summaries of reducible blocks.

Let us consider an interleaving of program statements that
starts with those statements from the reducible block (c).
Verification based on our proof rule continues exploring non-
deterministically reducible blocks from either thread-1 or
thread-3, i.e., c−a−b−d or c−a−d−b or c−d−a−b. Few
interleavings are effectively explored due to the coarse-grained
nature of reducible blocks. Overall, the following list contains
possible block-interleavings that are explored for P1-1.

(I1) a− b− c− d (I7) c− a− b− d
(I2) a− b− d− c (I8) c− a− d− b
(I3) a− c− b− d (I9) c− d− a− b
(I4) a− c− d− b (I10) d− a− b− c
(I5) a− d− b− c (I11) d− a− c− b
(I6) a− d− c− b (I12) d− c− a− b

The effect of all these interleavings is captured by the auxiliary
assertions from our proof rule.

For illustration, we aim to prove that the value of the
variable x is not equal to 11 at the end location. (The
variable x could have value 11 at the end of the program
only following the interleaving a − c − b − d. However, as
the reader may observe, this interleaving corresponds to an
infeasible execution.) For safety, we require that the auxiliary
assertions corresponding to the reachable states do not intersect
error states. The proof rule has premises over the auxiliary
assertions that are expressed as universally quantified Horn
clauses. (See Section IV for the formal details.) We compute
solutions for the auxiliary assertions using a Horn solver based
on abstraction refinement and interpolation over the linear
arithmetic domain [14].

For the illustration example, the solution for the reachable
state assertion is computed as follows.

pc1 = `0 ∧ mx = 0 ∧
(pc2 = `0 ∧ pc3 ∈ {`0, `3} ∧ x = 2 ∨
pc2 = `3 ∧ pc3 ∈ {`0, `3} ∧ 4 ≤ x ≤ 7) ∨

pc1 = `6 ∧ mx = 1 ∧
(pc2 ∈ {`0, `3} ∧ pc3 ∈ {`0, `3} ∧ x = 2 ∧ 2x + a = 7 ∨
pc2 ∈ {`0, `3} ∧ pc3 ∈ {`0, `3} ∧ 4≤x≤7 ∧ 2x+a≥13) ∨

pc1 = `11 ∧ mx = 0 ∧
(pc2 = `0 ∧ pc3 ∈ {`0, `3} ∧ x ≤ 7 ∨
pc2 = `3 ∧ pc3 ∈ {`0, `3} ∧ x ≤ 9 ∨
pc2 = `3 ∧ pc3 ∈ {`0, `3} ∧ x ≥ 13 ∧ 2x + a ≥ 13)

All the states have the location of thread-1, pc1 ∈
{`0, `6, `11}. The lock mx is held only at `6, otherwise it is
available. The different cases for each program location result
from varied interleavings of thread-1 and thread-2,
since statements of thread-3 have no influence on the value
of x. At states with pc1 = `11, we observe three possibilities:
thread-2 has not yet started (x ≤ 7), thread-2 may have
been executed after thread-1 (x ≤ 9), or thread-2 may
have been executed before thread-1 (x ≥ 13). Note that
our method over-approximates the set of reachable states, e.g.,
constraints on value of y are not present in the above solution.

III. PRELIMINARIES

Multi-threaded programs A multi-threaded program P
consists of N ≥ 1 threads. We assume that the program vari-
ables V = (VG, V1, . . . , VN ) are partitioned into global vari-
ables VG shared by all threads and local variables V1, . . . , VN ,
which are only accessible by the respective threads.

The set of global states G consists of the valuations
of global variables, and the sets of local states L1, . . . , LN

consist of the valuations of the local variables of respective
threads. A program state is a valuation of the global variables
and the local variables of all threads. We represent sets of
program states using assertions over program variables. Binary
relations between sets of program states are represented using
assertions over unprimed and primed variables. The set of
initial program states is denoted symbolically by init(V ) .
For each thread i we have a finite set of transitions. Each
transition is a binary relation between sets of program states.
Furthermore, each transition can only change the values of
the global variables and the local variables of the thread i
(local variables of other threads do not change). This fact is
captured in constraint form using the abbreviation next=i :=∧
j∈1..N\{i}

V ′j = Vj . We write next i(V, V
′) for the union of

the transitions of the thread i . The transition relation of the
program is next(V, V ′) = next1(V, V ′)∧next=1 (V, V ′)∨· · ·∨
nextN (V, V ′)∧next=N (V, V ′) . In the subsequent sections, we
abbreviate next i(V, V

′) ∧ next=i (V, V ′) to next i(V, V
′).

We distinguish two special types of variables, program
counter variables and lock variables. Firstly, each thread has
a program counter pci that is a local variable with values in
the set PC i. As a convention, we use labels `0, `1, .. to denote
some elements from the previous set. Secondly, some global
variables are used for thread synchronization via acquire (acq)
and release (rel ) primitives. The set of lock variables is denoted
by Locks , we have Locks ⊆ VG and we use m,mx,my to
denote some elements from the set of locks.

Computations Let |= denote the satisfaction relation be-
tween (pairs) of states and assertions over program variables
(and their primed versions). A computation of P is a sequence
of program states s1, s2, . . . such that s1 is an initial state, i.e.,
s1 |= init , and each pair of consecutive states si and si+1 in
the sequence is connected by a transition ρ of some program
thread, i.e., (si, si+1) |= ρ . A path is a sequence of transitions.

A program state is reachable if it appears in some com-
putation. Let ϕreach be the symbolic representation of the set
of all reachable states. The set of error states of a program is
denoted using error(V ). The program is safe if none of its
error states is reachable, i.e., ϕreach(V )∧ error(V )→ false .
The program is terminating if it does not have any infinite
computations.

Constraints and queries Let T be a first-order theory in a
given signature and |=T be the entailment relation with respect
to T . We refer to formulas in the given signature as constraints,
and let c(v) denote a constraint over the variables v. For
example, let x, y, and z be variables. Then, v = (x, y) and
w = (y, z) are tuples of variables. x ≤ 2, y ≤ 1∧x−y ≤ 0 are
example constraints in the theory T of linear inequalities over
rationals/reals. The entailment y ≤ 1 ∧ x − y ≤ 0 |=T x ≤ 2
is valid.



For assertions IRi, LStepi and IStepi ,

(S1) init(V ) → IRi(V )

(S2) IRi(V ) ∧ next out ini(V, V
′) → LStepi(VG, Vi, V

′
G, V

′
i )

(S3) LStepi(VG, Vi, V
′
G, V

′
i ) ∧ next in ini(V

′, V ′′) → LStepi(VG, Vi, V
′′
G , V

′′
i )

(S4) IRi(V ) ∧ LStepi(VG, Vi, V
′
G, V

′
i ) ∧ next=i (V, V ′) ∧ next in out i(V

′, V ′′)→ IStepi(V, V
′′) ∧ IRi(V

′′)

(S5) IRi(V ) ∧ next out out i(V, V
′) → IStepi(V, V

′) ∧ IRi(V
′)

(S6) IRi(V ) ∧ (
∨

j∈1..N\{i} IStepj(V, V
′)) → IRi(V

′)

(S7) (
∧N

i=1 IRi(V )) ∧ error(V ) → false

multi-threaded program P is safe

Fig. 2. Proof rule RULESAFETY.

We assume a set of uninterpreted predicate symbols Q that
we refer to as query symbols. The arity of a query symbol is
assumed to be encoded in its name. We write q to denote a
query symbol. Given q of a non-zero arity n and a tuple of
variables v of length n, we define q(v) to be a query. For
example, let Q = {r, s} be query symbols of arity one and
two, respectively. Then, r(x) and s(x, y) are queries.

Horn-like clauses Let h(v) range over queries and con-
straints with variables in v. We define a Horn-like clause to be
an implication c(v0)∧ q1(v1)∧ · · · ∧ qn(vn)→ h(v). The left-
hand side of the implication is called the body and the right-
hand side is called the head. To support efficient verification,
our Horn-like clauses slightly deviate from the standard notion
of Horn clauses since constraints occurring in our clauses can
contain disjunctions and conjunctions.

Solving Horn-like clauses We use a solver for Horn
clauses over a first-order theory T that is invoked as follows.

Σ := HSF(HC ,Q,Preds)

The solver takes as input a set of clauses HC over queries
Q with optional predicates Preds . The function Preds assigns
a finite set of predicates to each query symbol q from Q and
defines the abstract domain of a data-flow analysis or predicate
abstraction. The solver returns a solution function Σ that maps
each query from Q to a constraint from T .

IV. PROOF RULES

In this section we present proof rules that combine reduc-
tion and compositional reasoning.

A. Proof rule for safety

See Figure 2 for our proof rule RULESAFETY that lists
conditions for program safety over the following assertions.

• IRi(V ): interfering state assertions that represent state
reachability information outside reducible blocks for
thread i ∈ 1..N .

• LStepi(VG, Vi, V
′
G, V

′
i ): non-interfering step asser-

tions that represent steps of thread i that are only
locally-visible for thread i ∈ 1..N .

• IStepi(V, V
′): interfering step assertions that repre-

sent steps of thread i that are visible to other threads
(interfering steps) for thread i ∈ 1..N .

The clauses (S1) to (S6) are replicated for each thread i.
The clause (S1) considers that initial states are reachable states.
The clauses (S2) and (S3) do thread-modular reasoning inside
reducible blocks - (S2) initiates relations with target locations
inside reducible blocks and (S3) transitively extends these
relations. The clause (S4) makes the effect of a reducible block
visible to other threads, as well as in the interfering reachable
states. The clauses (S5) and (S6) perform compositional rea-
soning outside reducible blocks by using single transitions and
reducible block relations, respectively. The last clause (S7)
checks that states reachable outside reducible blocks do not
intersect the error states.

Theorem 1. The proof rule RULESAFETY is sound, i.e., if
an error state is reachable the constraint system consisting of
clauses (S1) to (S7) has no solution.

A correctness argument of the proof rule is omitted for
space constraints. (A soundness proof for a rule based on
reduction and compositional reasoning is included in the thesis
of one of the authors [15, (Section 3.5)].)

Example 1. The first clause from the proof rule states that
all initial states are included in the IRi(V ) assertions. For
the example from Section II a solution of the reachable-states
assertion will include at least the initial states:

(pc1 = `0 ∧ pc2 = `0 ∧ pc3 = `0 ∧
x = 2 ∧ y = 2 ∧ mx = 0 ∧ my = 0)

Clause (S2) initiates a binary relation LStepi for a thread
i whenever a transition next out ini(V, V

′) targeting a lo-
cation from a reducible block is enabled. Once inside a
reducible block, the clause (S3) uses relational composition
to include relations in LStepi as long as further transitions
next in ini(V, V

′) are enabled. We illustrate the applica-
tion of these clauses using the transitions corresponding to
thread-2 that start from the previously computed initial
states.

move2(`0, `1) ∧ mx = 0 ∧ mx′ = 1 ∧ skip(x,y,my) ∨
move2(`0, `2) ∧ mx = 0 ∧ mx′ = 1 ∧ x′ = x + 2 ∧ skip(y,my)



For assertions IRi, LStepi and IStepi satisfying (S1), . . . ,(S6)
and assertions LRound i, IRound ,

(T1) (
∧N

i=1 IRi(V )) ∧ LStepi(VG, Vi, V
′
G, V

′
i ) ∧ next in ini(V

′, V ′′))→ LRound i(V
′
G, V

′
i , V

′′
G , V

′′
i )

(T2) well -founded(LRound i)

(T3) (
∧N

i=1 IRi(V )) ∧ (
∨N

j=1 IStepj(V, V
′))→ IRound(V, V ′)

(T4) well -founded(IRound)

multi-threaded program P terminates

Fig. 3. Proof rule RULETERMINATION.

Clause (S4) generates a summary relation for the reducible
block of thread-2 from the previous relation and the asser-
tion next in out2(V, V ′):

move2(`0, `3) ∧ mx = 0 ∧ mx′ = 0 ∧ x′ = x + 2 ∧ skip(y,my)

Besides clause (S1), the clauses (S4) and (S5) generate
reachable states IRi(V ) by applying enabled reducible block
relations or transitions outside reducible blocks, respectively.
For our example, the following formula represents additional
reachable states generated from these clauses.

(pc1 = `0 ∧ pc2 = `0 ∧ pc3 = `0 ∧
x = 2 ∧ y = 2 ∧ mx = 0 ∧ my = 0) ∨

(pc1 = `0 ∧ pc2 = `3 ∧ pc3 = `0 ∧
x = 4 ∧ y = 2 ∧ mx = 0 ∧ my = 0)

B. Proof rule for termination

See Figure 3 for our proof rule RULETERMINATION that
lists conditions to ensure that a program is terminating. The
conditions are over assertions IRi, LStepi, IStepi that satisfy
the clauses from the rule RULESAFETY and the following
additional assertions:

• LRound i: binary relation assertions that represent
thread-modular transition relations inside reducible
blocks for i ∈ 1..N .

• IRound : binary relation assertion that represents tran-
sition relations outside of reducible blocks together
with summary relations of reducible blocks.

For each thread i the clause (T1) together with clause
(T2) guarantees that there is no infinite computation executing
within some reducible block. Clause (T3) together with clause
(T4) guarantees that there is no infinite computation that keeps
alternating between reducible blocks of the program infinitely
often.

Theorem 2. The proof rule RULETERMINATION is sound,
i.e., the constraint system consisting of clauses (S1)..(S6) and
(T1)..(T4) has a solution only if the program is terminating.

The premises of RULETERMINATION can be solved using
the Horn solver HSF [14], since the premises can be rep-
resented as Horn clauses with disjunctive well-foundedness
constraints. We write well -founded(ϕ(v, v′)) if ϕ(v, v′) is
a well-founded relation, i.e., there is no infinite sequence
s1, s2, . . . such that ϕ(si, si+1) for all i > 1. A relation

ϕ(v, v′) is disjunctively well-founded if it is included in a finite
union of well-founded relations, i.e., there exist well-founded
ϕ1(v, v′), . . . , ϕn(v, v′) such that ϕ(v, v′)→ ϕ1(v, v′)∨ · · · ∨
ϕn(v, v′) is a valid implication.

Example 2. We extend thread-1 from Figure 1 with a loop
that spans over newly inserted locations `1b and `8b.

// Thread-1
...
1: a = x;
1b: while a<=4
...
8: release(my);
8b: endwhile
9: x = 2*x+a;
...

Since this change does not introduce any additional non-mover
transitions, the reducible block boundaries of thread-1
remain the same, i.e., {`0 − `5} and {`6 − `10}.

The check corresponding to clause (T2) succeeds immedi-
ately, since the example does not contain looping executions
in a reducible block. For (T3), consider the following formula
that is computed by the Horn solver for the body of the clause.( N∧
i=1

IRi(V )
)
∧
((

move1(`0, `6) ∧ a ≤ 4 ∧ ..
)
∨(

move1(`6, `6) ∧ a ≤ 4 ∧ a′ = a + 1 ∧ ..
)
∨(

move1(`6, `11) ∧ a > 4 ∧ ..
)
∨(

move2(`0, `3) ∧ ..
)
∨(

move3(`0, `3) ∧ ..
))

The only disjunct that could potentially permit infinite state
sequences corresponds to move1(`6, `6). The HSF solver
concludes that this relation is well-founded, since variable a
is incremented and has an upper bound, and thus the example
program is proven terminating.

V. INFERENCE OF REDUCIBLE BLOCKS

This section depicts the computation steps for obtaining
reducible block boundaries. We consistently use a constraint-
based approach to solve the data-flow problems for every step.
Our formalization is based on the theory of reduction [6]
and follows the approach used to infer transactions for finite-
state model checking [9]. We illustrate our method using the
program from Figure 1.



A. Locks-held and mover information

Reducible block inference requires for each reachable
program transition specific mover information which highly
depends on the held locks. We use data-flow analysis to
compute lhi(`), an approximation of the set of locks held by a
thread i ∈ 1..N at location ` ∈ PC i. The following set of Horn
clauses over queries Q1 := {LR1(V ), . . .LRN (V )} allows us
to obtain reachable states of thread i without considering any
thread context switches.

HC 1 := { init(V )→ LRi(V ),
LRi(V ) ∧ next i(V, V

′)→ LRi(V
′) | i ∈ 1..N}

The abstract domain of the static analysis is defined by a pred-
icate function. It is initialized with predicates over program
counter and lock variables as follows.

Preds1(LRi(V )) := {pci = `i | `i ∈ PC i} ∪
{m = 0,m = 1 | m ∈ Locks}

We invoke the HSF solver: Σ1 := HSF(HC 1,Q1,Preds1).
Note that without a clause involving error states, the solver
computes only one over-approximation of the reachable states,
i.e. no abstraction refinement is performed in this phase. lhi(`)
contains the set of held locks for location ` by utilizing Σ1.

lhi(`) := {m ∈ Locks | ∀V :Σ1(LRi(V ))∧pci = `→ m = 1}

Example 3. The solution corresponding to the first thread from
Figure 1, Σ1(LR1(V )), follows.

(pc1 ∈ {`0, `11} ∧mx = 0 ∧my = 0) ∨
(pc1 ∈ {`1, `2, `5, `6, `9, `10} ∧mx = 1 ∧my = 0) ∨
(pc1 ∈ {`3, `4, `7, `8} ∧mx = 1 ∧my = 1)

The locks-held information derived at location `3 is lh1(`3) :=
{mx,my} .

We represent transition-mover information using four
boolean functions defined over pairs of program locations:
rmi(pci, pc

′
i), lmi(pci, pc

′
i), nmi(pci, pc

′
i), bmi(pci, pc

′
i) .

Following the theory of reduction [6], an acquire transition
is a right-mover (i.e., it commutes to the right with every
transition from other threads) and a release transition is a
left-mover (i.e., it commutes to the left with every transition
from other threads). A transition ρi(pci, pc

′
i) is a non-mover if

there exists a transition from another thread ρj(pcj , pc
′
j) that

accesses some common global variable (at least one thread
performing a write access) and the intersection of the sets of
locks held by thread i at pci and those held by thread j at pcj
is empty. Transitions that are neither left-movers, right-movers
nor non-movers are both-movers.

Example 4. For the first thread we obtain:

rm1 := {(`0, `1), (`2, `3), (`6, `7)}
lm1 := {(`4, `5), (`8, `9), (`10, `11)}
nm1 := ∅
bm1 := {(`1, `2), (`3, `4), (`5, `6), (`7, `8), (`9, `10)}

B. In-Out information

Let n,m ∈ Z+, i ∈ 1..n, and j ∈ 1..m. A re-
ducible block is a non-empty sequence of transition relations
a1, . . . , an, [c], b1, . . . , bm where each ai (bj) is a right-mover
(left-mover) and c is an optional non-mover. We use the

transition-mover information from Section V-A to group pro-
gram locations into two phases; a pre-commit-phase and a post-
commit-phase. The former phase contains target locations of
right-mover (ai) or initial locations. The latter phase contains
target locations of all other transitions (c, bj).

We utilize Horn clauses over the following set of queries:
Q2 := {Ph1(V, p), . . . ,PhN (V, p)} representing reachable
state queries extended by a boolean phase variable p that
indicates either the pre-commit-phase (p has value 1) or the
post-commit-phase (p has value 0). The set HC 2 contains the
following clauses replicated for i ∈ 1..N .

init(V )∧p = 1 → Phi(V, p)
Phi(V, p)∧next i(V, V ′)∧rmi(pci, pc

′
i)∧p′=1→ Phi(V

′, p′)
Phi(V, p)∧next i(V, V ′)∧

(lmi(pci, pc
′
i) ∨ nmi(pci, pc

′
i))∧p′ = 0 → Phi(V

′, p′)
Phi(V, p)∧next i(V, V ′)∧bmi(pci, pc

′
i)∧p′=p→ Phi(V

′, p′)

To define the abstract domain of the data-flow analysis, we
initialize the predicate function with predicates over program
counter and phase variables.

Preds2(Phi(V, p)) := {pci = `i | `i ∈ PC i} ∪ {p=0, p=1}
We invoke the HSF solver: Σ2 := HSF(HC 2,Q2,Preds2) .
Reducible block information is extracted from the solution
Σ2 and represented using boolean functions defined over
program locations. Ini(pci) holds when pci is a location inside
a reducible block, while Out i(pci) holds when pci is a location
outside any reducible block. A location is inside a reducible
block if it is contained in the pre-commit-phase or if every
enabled transition left-commutes with transitions from other
threads. Otherwise, a location is outside any reducible block.

Ini(pci) := Σ2(Phi(V, p)) ∧ ¬init(V ) ∧ (p = 1 ∨ p = 0 ∧
∀pc′i : lmi(pci, pc

′
i) ∨ bmi(pci, pc

′
i))

Out i(pci) := ¬Ini(pci)

Example 5. The solution corresponding to the first thread
follows.

Σ2(Ph1(V, p)) := (pc1 ∈ {`0, `1, `2, `3, `4} ∧ p = 1 ∨
pc1 ∈ {`5} ∧ p = 0 ∨
pc1 ∈ {`6, `7, `8} ∧ p = 1 ∨
pc1 ∈ {`9, `10, `11} ∧ p = 0)

We obtain the following results for the first thread: Out1 :=
{`0, `6, `11} and In1 := PC 1 \ Out1 . The results for the
second and third thread are computed similarly: Out2 :=
{`0, `3}, In2 = {`1, `2} and Out3 := {`0, `3}, In3 =
{`1, `2} .

Given the in-out information, we partition the transi-
tion relation of a thread depending on whether the tar-
get of a transition is a state in/outside a reducible block.
We also make sure that transitions that target error loca-
tions are not part of reducible blocks. We obtain the fol-
lowing four relations corresponding to next in ini(V, V

′),
next out ini(V, V

′), next in out i(V, V
′) and respectively

to next out out i(V, V
′).

next i(V, V
′) ∧ Ini(pci) ∧ Ini(pc

′
i) ∧ ¬error(V ′)

next i(V, V
′) ∧Out i(pci) ∧ Ini(pc

′
i) ∧ ¬error(V ′)

next i(V, V
′) ∧ Ini(pci) ∧ (Out i(pc

′
i) ∨ error(V ′))

next i(V, V
′) ∧Out i(pci) ∧ (Out i(pc

′
i) ∨ error(V ′))



TABLE I. RESULTS FOR VERIFICATION OF SAFETY PROPERTIES. A X-MARK (×-MARK) INDICATES A SAFE (UNSAFE) PROGRAM. EXPERIMENTS WERE
RUN ON AN INTEL XEON MACHINE, CLOCKED AT 3.47GHZ WITH 8 GB RAM. A T/O-MARK REPRESENTS A TIME-OUT AFTER 5400S.

Program LOC Threads Safe Impara Threader Comp RedComp
P1-1 48 3 X 1s 6s 7s 2s
P1-5 64 3 X 110s 281s 101s 32s
P1-10 84 3 X T/O T/O 840s 64s
P1-50 244 3 X T/O T/O T/O 2400s
P2-5 65 3 X 83s 617s 270s 140s
P2-10 85 3 X T/O T/O 1020s 220s
P2-50 245 3 X T/O T/O T/O 3778s
stack-safe-5 50 3 X 115s 5s 96s 17s
stack-safe-10 50 3 X 635s 127s 224s 75s
stack-unsafe-5 48 3 × 2s 1s 9s 2s
stack-unsafe-10 48 3 × 62s 2s 9s 3s
pbzip2-safe 283 4 X T/O T/O T/O 840s
twostage-3-unsafe 129 4 × T/O 843s T/O 17s

VI. IMPLEMENTATION AND EXPERIMENTAL EVALUATION

The implementation of our approach consists of three con-
ceptual modules. The first module is a frontend implemented in
the OCaml language that relies on the CIL library. It translates
C programs to corresponding transition systems in Horn clause
form. Our frontend relies on a number of static analyses:
thread-scope inference for dynamic thread creation, a pointer
analysis that is context-sensitive and malloc-sensitive, optional
array expansion for bounded arrays and restricted quantified
invariants for unbounded arrays.

A second module that infers reducible block boundaries
following the approach from Section V can be automated using
HSF, but is not yet integrated in our implementation. The lock
analysis can be realised through solving the clauses HC1 from
Section 5.1, while identification of left/right-movers reduces
to solving the clauses HC2 from Section 5.2.

The third module is a model checker implemented using
the HSF approach [14]. This module is given as input a proof
rule written as Horn clauses and the program generated by
our frontend with thread transition relations partitioned as
next in in , next in out , next out in and next out out .

A. Evaluation

In this section, we give details on an experimental evalu-
ation of our approach. We compare results from our imple-
mentation with two state-of-the-art verifiers: Threader [16],
the winner in the Concurrency category of SV-COMP 2013
and Impara [5], a verifier that combines partial-order-reduction
and interpolation [17]. Binaries and test programs used for
evaluation are made publicly available [18].

In general, our method benefits from the datarace-free
nature of statements to infer coarse-grained reducible blocks.
For evaluation purposes, we test how our verifier works on
programs with race conditions on shared variables. Consider
P2-1, a variation of P1-1 from Figure 1 such that thread-3
has an additional statement that accesses the shared variable y
without holding the lock my. For this modified program, our
reducible block inference computes more reducible blocks for
thread-1 and thread-3 than it is the case for the original
program P1-1. However, the reduction phase still significantly
reduces the number of interleavings to be explored.

See Table I for verification results of safety properties. We
report on variations of four programs. P1-1 and P2-1 were
described in the previous sections of the paper, stack-safe-5 is

part of SV-COMP 2013 and is challenging to the partial-order
reduction method implemented in Impara [5] and stack-unsafe-
5 is the modified stack example that does not satisfy its safety
assertion. As variations, P1-x, P2-x have “x” statements in each
of their reducible blocks. For stack-safe-x and stack-unsafe-x,
we vary the number of elements stored in the stack. Lastly,
we include two benchmarks that are challenging to Impara and
Threader, twostage-3-unsafe from SV-COMP and pbzip2-safe,
a multi-threaded implementation of a compression algorithm.

For each test program from Table I, we report the number
of lines of C code in Column 2, the expected verification
result in Column 4 and statistics on four verification methods.
Column 5 presents results from Impara [5], while Column 6
presents timings from the best performing compositional proof
rule implemented in Threader. Column 7 presents results from
our implementation based on a rule that uses compositional
reasoning but not reduction. Column 8 presents timings for our
new verification method (REDCOMP stands for the Reduction-
Compositional verification).

For the same implementation, we observe that reduction
improves the performance of a compositional reasoning veri-
fier, i.e., REDCOMP in Column 7 versus Comp in Column 6.
When comparing our synthesis-driven implementation Comp
with THREADER, a verifier optimized for the same proof
rule, we observe some overhead for test programs that are
less favorable for reduction, i.e., P1-1, stack-safe-5 and stack-
unsafe-5. However, for the variations of these programs that
are more favorable for reduction, we observe reduction in
verification time for our proposed method REDCOMP.

See Table II for results on verification of termination
properties. The program fig2-tacas12 has a complex termina-
tion proof based on disjunctive well-founded transition invari-
ant [19]. sync01-safe is a benchmark from SV-COMP 2014
that is marked as safe for assertion violations and suffers from
a non-termination bug. One thread may block waiting for a
signal on a condition variable, a bug that is uncovered using
REDCOMP. Finally, we include a C program modeling the
dining philosophers problem.

Due to the not-yet integrated block inference, we present in
this section only a limited experimental evaluation on selected
examples that are challenging for Impara and Threader. In
principle our current approach (reduction + compositional rea-
soning) subsumes the compositional algorithms from Threader.
For the most imprecise inference of reducible blocks, i.e., with
Ini = ∅ and Outi = PCi, the proof rule from Figure 2



TABLE II. RESULTS FOR VERIFICATION OF TERMINATION
PROPERTIES.

Program LOC Terminates Comp RedComp
fig2-tacas12 24 X 2s 3s
sync01-safe-fixed 62 X 308s 4s
dining-philo 108 X T/O 7s

reduces immediately to the Owicki-Gries rule automated in
Threader. (Threader already delivers conclusive results for
most of the other “Concurrency” benchmarks from SV-COMP.)

VII. RELATED WORK

The reduction principle, as formulated by Lipton [6],
has been used in program analysis for checking or inferring
whether a method is atomic, i.e., whether the body of the
method corresponds to a reducible block. These program
analyses were formalized either using a type system [12],
[20], or as a dynamic analysis [21]. Going one step further
and using the result of atomicity analysis for verification has
been proposed only in the context of finite-state verification
algorithms [8], [9] where the algorithms that benefit from
reduction are quite different than approaches like ours based on
interpolation-based verification. Reduction can greatly simplify
deductive verification of multi-threaded programs using proof
assistants [7]. Our current work can be viewed as a step
towards an integration of reduction in interpolation-based
verification.

Apart from works based directly on Lipton’s theory of
reduction, there have been other verification methods aiming
to avoid exploring interleavings that are equivalent.

One approach stems from compositional reasoning proof
rules, i.e., the Owicki-Gries method [11] or rely-guarantee
reasoning [22]. These compositional proof methods have
been automated for verification of finite-state models [23]
and infinite-state models [24] using counter-example guided
abstraction refinement [25]. Since compositional reasoning
avoids exploring many equivalent interleavings, Threader [16],
an implementation of the previous algorithms, has been able
to compete with success in the Concurrency category of the
verification competition held at TACAS [26]. Our current work
can be viewed as an extension of Threader’s algorithms with a
reduction-based static analysis that avoids exploring even more
redundant interleavings.

Another approach to the state explosion problem is partial
order reduction [1] that has been used for finite-state verifica-
tion, e.g., [2]. Recent work shows that POR can also boost
interpolation based verification [5], which makes it applicable
for the verification of programs with infinite-state spaces. This
approach has been implemented in a tool called Impara.

We emphasize the connection between procedure sum-
marization [13] and our approach. Rather than summarizing
procedures in sequential programs, our current work sum-
marizes reducible blocks in the context of multi-threaded
program verification. Our approach has been inspired by a
work on summarization of concurrent programs [9], with
the distinguishing feature that our work is applicable for
infinite-state spaces. While procedure summarization allowed
software analysis tools like SLAM and SATURN to perform
composable analysis of large code bases, our work aims to

use summarization of reducible blocks to allow verification to
scale to large multi-threaded programs.

ACKNOWLEDGMENTS

We thank Klaus von Gleissenthall for comments and sug-
gestions. This research was supported in part by the ERC
project 308125.

REFERENCES

[1] P. Godefroid, “Partial-order methods for the verification of concurrent
systems - an approach to the state-explosion problem,” Ph.D. disserta-
tion, University of Liege, Computer Science Department, 1994.

[2] C. Flanagan and P. Godefroid, “Dynamic partial-order reduction for
model checking software,” in POPL, 2005.

[3] F. Lerda, N. Sinha, and M. Theobald, “Symbolic model checking of
software,” Electr. Notes Theor. Comput. Sci., vol. 89, no. 3, pp. 480–
498, 2003.

[4] R. Alur, R. K. Brayton, T. A. Henzinger, S. Qadeer, and S. K. Rajamani,
“Partial-order reduction in symbolic state space exploration,” in CAV,
1997.

[5] B. Wachter, D. Kroening, and J. Ouaknine, “Verifying multi-threaded
software with Impact,” in FMCAD, 2013.

[6] R. J. Lipton, “Reduction: A method of proving properties of parallel
programs,” Commun. ACM, vol. 18, no. 12, pp. 717–721, 1975.

[7] T. Elmas, S. Qadeer, and S. Tasiran, “A calculus of atomic actions,” in
POPL, 2009.

[8] C. Flanagan and S. Qadeer, “Transactions for software model checking,”
Electr. Notes Theor. Comput. Sci., vol. 89, no. 3, pp. 518–539, 2003.

[9] S. Qadeer, S. K. Rajamani, and J. Rehof, “Summarizing procedures in
concurrent programs,” in POPL, 2004.

[10] T. Andrews, S. Qadeer, S. K. Rajamani, J. Rehof, and Y. Xie, “Zing:
A model checker for concurrent software,” in CAV, 2004.

[11] S. S. Owicki and D. Gries, “An axiomatic proof technique for parallel
programs I,” Acta Inf., vol. 6, 1976.

[12] C. Flanagan and S. Qadeer, “Types for atomicity,” in TLDI, 2003.
[13] T. W. Reps, S. Horwitz, and S. Sagiv, “Precise interprocedural dataflow

analysis via graph reachability,” in POPL, 1995.
[14] S. Grebenshchikov, N. P. Lopes, C. Popeea, and A. Rybalchenko,

“Synthesizing software verifiers from proof rules,” in PLDI, 2012.
[15] A. Wilhelm, “Efficient verification of multi-threaded programs,” Mas-

ter’s thesis, 2013, available from http://www.model.in.tum.de/∼popeea/
research/wilhelm.msc13.pdf/.

[16] A. Gupta, C. Popeea, and A. Rybalchenko, “Threader: A constraint-
based verifier for multi-threaded programs,” in CAV, 2011.

[17] K. L. McMillan, “Lazy abstraction with interpolants,” in CAV, 2006.
[18] C. Popeea, “Redcomp webpage,” http://www.model.in.tum.de/∼popeea/

research/redcomp, accessed: 09-Feb-2014.
[19] C. Popeea and A. Rybalchenko, “Compositional termination proofs for

multi-threaded programs,” in TACAS, 2012.
[20] C. Flanagan and S. Qadeer, “A type and effect system for atomicity,”

in PLDI, 2003.
[21] C. Flanagan and S. N. Freund, “Atomizer: a dynamic atomicity checker

for multithreaded programs,” in POPL, 2004.
[22] C. B. Jones, “Tentative steps toward a development method for interfer-

ing programs,” ACM Trans. Program. Lang. Syst., vol. 5, no. 4, 1983.
[23] A. Cohen and K. S. Namjoshi, “Local proofs for global safety proper-

ties,” in CAV, 2007.
[24] A. Gupta, C. Popeea, and A. Rybalchenko, “Predicate abstraction and

refinement for verifying multi-threaded programs,” in POPL, 2011.
[25] E. M. Clarke, O. Grumberg, S. Jha, Y. Lu, and H. Veith,

“Counterexample-guided abstraction refinement,” in CAV, 2000.
[26] D. Beyer, “Second competition on software verification - (summary of

SV-COMP 2013),” in TACAS, 2013.


