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ABSTRACT

Mobile video is quickly becoming a mass consumer phe-
nomenon. More and more people are using their smart-
phones to search and browse video content while on the
move. In this paper, we have developed an innovative in-
stant mobile video search system through which users can
discover videos by simply pointing their phones at a screen to
capture a very few seconds of what they are watching. The
system is able to index large-scale video data using a new
layered audio-video indexing approach in the cloud, as well
as extract light-weight joint audio-video signatures in real
time and perform progressive search on mobile devices. Un-
like most existing mobile video search applications that sim-
ply send the original video query to the cloud, the proposed
mobile system is one of the first attempts at instant and pro-
gressive video search leveraging the light-weight computing
capacity of mobile devices. The system is characterized by
four unique properties: 1) a joint audio-video signature to
deal with the large aural and visual variances associated with
the query video captured by the mobile phone, 2) layered
audio-video indexing to holistically exploit the complemen-
tary nature of audio and video signals, 3) light-weight fin-
gerprinting to comply with mobile processing capacity, and
4) a progressive query process to significantly reduce compu-
tational costs and improve the user experience—the search
process can stop anytime once a confident result is achieved.
We have collected 1,400 query videos captured by 25 mobile
users from a dataset of 600 hours of video. The experiments
show that our system outperforms state-of-the-art methods
by achieving 90.79% precision when the query video is less
than 10 seconds and 70.07% even when the query video is
less than 5 seconds.

Categories and Subject Descriptors

H.3.3 [Information Storage and Retrieval]: Information
Search and Retrieval—Search process; H.5.1 [Information
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Figure 1: A snapshot of our proposed mobile video
search system. (a) A user simply points his or her
phone at a screen to capture a few seconds of what
they are watching. While recording, the user can see
instant search results on the right. (b) The search
process can stop anytime once a confident search
result is achieved. Thus, the user does not need to
wait for a fixed time lag. The proposed system is
characterized by its unique features such as layered
audio-video indexing, as well as instant and progres-
sive search.
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1. INTRODUCTION

Mobile is reshaping the way video content is generated,
searched, and consumed on today’s Internet. The prolifer-
ation of increasingly capable mobile devices opens up ex-
citing possibilities for mobile video applications. As a re-
sult, mobile video is quickly becoming a mass consumer
phenomenon. Among many mobile video applications, mo-
bile video search—searching similar or duplicate videos to
identify a phone-captured query video—is emerging and be-
coming pervasive as: 1) while on the go, users always prefer
mobile devices as their principal video search and browsing



tools [4], and 2) the advanced built-in cameras have made
video search very natural—mobile users can now discover
videos by simply pointing their phones at a screen to cap-
ture a few seconds of what they are watching, as shown in
Figure 1(a).

While extensive research has been made on mobile visual
search (e.g., landmark recognition [9], product search [5],
augmented reality [6], and so on), mobile video search is still
in the early stages and remains a challenging research prob-
lem. Unlike traditional desktop video search, video search
on mobile devices faces the following unique challenges: 1)
large aural-visual variance of query video—due to the com-
plex capture conditions, the query clip is naturally noisy
with varying aural and visual qualities. Therefore, design-
ing robust signatures that can deal with such significant vari-
ance is crucial for mobile video search. 2) stringent memory
and computation constraints—as the CPU and memory of
mobile devices are still not comparable with desktop com-
puters, signatures with large memory costs or heavy compu-
tation are not suitable for mobile clients. 3) network band-
width limitations—with low and unreliable bandwidth, sig-
natures are expected to be as compact as possible to reduce
network latency, and 4) instant search experience—because
mobile users care more about their experience than in desk-
top search, the search process is expected to be instant and
progressive; in other words, the captured query clip needed
for search should be as short as possible, while the search
results should be returned instantly or even progressively.

Many existing mobile applications have tried to provide
video search functions. For example, IntoNow enables mo-
bile phone users to record a 12-second audio clip as the query
[7]. Although no algorithm details are available, it is likely
that the search is accomplished by audio fingerprinting tech-
nology. However, as it heavily depends on audio informa-
tion, it may not work well if the recording conditions are
noisy or the recorded query video is silent. On the other
hand, VideoSurf provides a video search service based on
the visual information extracted from a 10-second recorded
video clip [24]. Nevertheless, it needs users to choose the dis-
criminative visual content for search. It is also worth noting
that these applications fully rely on the computing power of
the cloud by simply sending the original query video to a
server, while neglecting the increasing computing capacity
of mobile clients. As a result, users need to record a video
clip of a fixed duration (e.g., 10 or 12 seconds). This paper
investigates if we can leverage the computing capacities of
advanced smartphones for extracting robust and compact
audio-video signatures on the mobile client. In this way, in-
stant and progressive video search can be achieved, where
the duration of the query video is less than those in any ex-
isting systems and the search process can stop anytime once
a confident result is achieved.

Although mobile visual search has attracted extensive at-
tention in the research community [2, 4, 5, 8], few efforts
have explored mobile video search. The most related re-
search to video search on mobile devices is near-duplicate
video search, which can be classified into three categories
according to the type of data modality they rely on: audio-
based [10, 25], video-based [18, 20], and fusion-based meth-
ods [21]. However, most existing approaches to duplicate
video search predominantly focus on desktop scenarios where
the query video is usually a subset of the original video with-
out significant distortions. Moreover, the computational

costs and compactness of descriptors are often neglected in
those systems. Therefore, conventional approaches to dupli-
cate video search have not taken the aforementioned mobile
challenges into account, and thus are not suitable for mobile
video search.

Motivated by the above observations, and aiming to ad-
dress the aforementioned mobile challenges, we have de-
veloped an innovative instant mobile video search system
through which users can discover videos by simply point-
ing their phones at a screen to capture a few seconds of
what they are watching. In the cloud, the system is able to
index large-scale video data using a novel Layered Audio-
VidEo (LAVE) indexing scheme; while on the client, the
system extracts light-weight joint audio-video signatures in
real time and searches in a progressive way. Specifically, the
LAVE scheme provides a new way to combine audio-video
signatures through joint multi-layered audio-video indexing,
which preserves each signature’s individual structure in the
similarity computation and considers their correlation in the
combination stage. The joint audio-video signature is not
only computationally cheap for mobile devices, but also mu-
tually reinforces the discriminative power from individual
modalities and thus is robust to the large variance (noise
and distortion) in the query video. The learned hash func-
tion significantly reduces the bits to transfer from mobile
to server. The design of the search process via a bipar-
tite graph transformation and matching algorithm makes the
video search progressive—the search can stop anytime once
a confident result is achieved. The experiments show that
our system can achieve 90.77% precision when the query
video is less than 10 seconds and 70.07% when the query
video is less than 5 seconds. Figure 1 shows a screenshot of
the system.

In summary, this paper makes the following contributions:

e We have designed an innovative mobile video system
that represents one of the first attempts towards in-
stant and progressive video search, by leveraging the
light-weight computing capacity of mobile devices. This
is unlike most existing mobile video search systems.

e We propose a new layered audio-video indexing scheme
to holistically exploit the complementary nature of au-
dio and video signals for more robust video search.

e We propose a progressive query process to support
varying lengths in the query video, where in most cases
the length is much shorter than those in any existing
mobile applications. This significantly reduces query
time and thus improves users’ search experience.

The rest of the paper is organized as follows. Section 2
reviews related work. Section 3 presents the proposed mobile
video search system. Section 4 describes the experiments
and evaluations, followed by the conclusion in Section 5.

2. RELATED WORK

We next review related research on near-duplicate video
search and mobile visual search, which are closely related to
the design of a mobile video search system.

2.1 Near-Duplicate Video Search

Although mobile video search is still in an early research
stage, there has been intensive research on general near-
duplicate video search. Depending on the query modality,



existing approaches mainly fall into three categories: audio-
based, video-based, and fusion-based approaches.

Extensive research has been conducted on using visual sig-
natures to search near-duplicate videos. A widely adopted
signature is global features [16, 18], where videos are repre-
sented by compact global signatures. For example, Shang
et al. propose a compact spatiotemporal feature that lever-
ages gray-level intensity distribution with respect to timeline
to represent videos [18]. Similarly, Paisitkriangkrai et al.
combine both spatial and temporal information into ordinal
measures to construct compact and invariant global signa-
tures [16]. Although these global representations achieve
fast retrieval speeds in a large-scale video dataset, they usu-
ally become less effective in handing recorded query videos
with serious distortions [28]. Compared with the global fea-
tures, local descriptors are more distinctive and robust to
these video distortions as they explore the local invariance
(such as scale and orientation). Therefore, local descriptors
are also employed to similar video search. However, due
to the computational complexity, the efficiency becomes in-
tractable. There are many approaches improving the speed
of local descriptor matching. Bag-of-Words (BoW) is a pop-
ular scheme for near-duplicate video search [20]. Further-
more, Wu et al. construct a hierarchy structure to speed
up the matching process [28]. However, local descriptor-
based approaches still cannot be directly adopted on mobile
devices without proper optimization due to the limited com-
puting capability and memory of mobile devices.

On the other hand, audio plays an important role for near-
duplicate video search [10, 25]. For example, Wang et al.
propose a simple but effective landmark-based audio finger-
print to conduct similar audio search [25]. Furthermore,
inspired by BoW, a bag of audio words (BoA) represen-
tation is proposed to characterize audio features for simi-
lar video search [10]. Compared with visual features, audio
features are robust, computationally efficient, and compact,
and therefore suitable to employ in mobile video search.

Recently, joint audio-visual near-duplicate video search
has attracted attention as audio and video can complement
each other. In particular, the TRECVID community has
tried to explore the benefit of the audio-visual combination
for large-scale video copy detection. The key problem of
feature combination is the identification of the correlation
between audio and video features. KEarly and late fusion
strategies are widely used fusion methods [21]. However,
both strategies have disadvantages—early fusion cannot well
preserve the individual structural information of each indi-
vidual feature while late fusion does not consider the corre-
lation among features [21].

In summary, fusion of audio and visual features gives a
neoteric avenue to near-duplicate video search. However, ex-
isting early or late fusion methods cannot sufficiently mine
the advantage of audio-video signatures. In addition, al-
though the existing near-duplicate video search methods can
be used as references, few of them can be directly adapted in
mobile video search to deal with unique mobile challenges.

2.2 Mobile Visual Search

Mobile visual search has attracted extensive attention due
to its huge potential for numerous applications. Most re-
search on this topic has predominantly focused on compact
descriptor design on mobile devices. The most popular way
to solve this problem is compressing descriptors through the

technology of image coding. For example, the Compressed
Histogram of Gradients (CHoG) encodes the raw features
with 20x reduction by an entropy-based coding method on
the mobile client [2]. On the server, the compressed descrip-
tors are approximately decoded. Similarly, Ji et al. propose
a multiple-channel coding scheme to extract compact visual
descriptors [8]. In contrast, He et al. [5] and Tseng et al. [23]
have suggested using the hashing function to compress the
descriptors. Compared to the above schemes, the hash bits
of the local features do not need to be decoded on the server,
which can be directly viewed as a visual word index. In addi-
tion, it offers lower transmission costs, and cheaper memory
and computation than other methods. However, there are
few methods for mobile video search. Although Chen et
al. design a dynamic query selection algorithm for mobile
video retrieval [3], using only one keyframe can hardly han-
dle the large variance of the query video captured in complex
conditions. Furthermore, sending raw local features is also
time and energy consuming. Wu et al. employ a similar
video search in their mobile video question-answering sys-
tem, which mainly address different challenges [27].

In summary, compared to the above methods, our pro-
posed system aims to provide instant and progressive mo-
bile video search. We have designed the search scheme to
progressively transmit compact hash bits, which are derived
from the joint and light-weight audio-video signature, to
the cloud. The proposed LAVE indexing technique exploits
the advantage of the audio-video signature for robust video
search. Moreover, to improve users’ search experience, a
progressive query process via a bipartite graph based trans-
formation and matching method has been developed.

3. INSTANT MOBILE VIDEO SEARCH

3.1 Overview

Figure 2 shows the architecture of the proposed mobile
video search system, including the offline and online stages.
In the offline stage, we first extract the audio-video descrip-
tors for each video from a large-scale source video dataset.
Then, these massive descriptors are indexed by a novel LAVE
indexing method. The online query stage consists of the fol-
lowing steps: 1) Real time extraction of light-weight audio-
video descriptors on mobile devices, while users are cap-
turing query video clips. The signatures (including visual
hash bits and audio fingerprint) are sent to the server at
an interval of one second. 2) Once the server receives the
one-second signature, the search for similar video keyframes
is conducted through the LAVE index. 3) A fast and ef-
fective geometric verification-based visual re-ranking step is
used to refine the search results. 4) A progressive query
process via bipartite graph transformation and matching is
performed to make the video search progressive. If there are
no change in the instant search results for three consecutive
seconds (i.e., a confident search result is regarded to have
been achieved), then the search process can stop and the
results will be returned to the users. In the next section, we
describe each component in detail.

3.2 Joint Audio-Video Descriptor

In contrast to other media, the main advantage of video
is that it contains both abundant audio and visual informa-
tion. As the complementary nature of the audio and video
signals, the joint audio-video descriptors are more robust
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Figure 2: The overview of our proposed mobile video search system.
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Figure 3: The extraction of landmark-based audio
fingerprinting.

to the large variance of query videos, especially for com-
plex mobile video capturing conditions (e.g., silent video
or blurred video of low visual quality). Selecting effective
audio-video descriptors is very important for a mobile video
search system. There are three main principles for joint de-
scriptor selection: 1) robust to the variance of the recorded
query videos, 2) cheap to compute on mobile devices, and
3) easy to index for instant search. Consequently, we choose
the Landmark-Based Audio Fingerprinting (LBAF)[25] and
Speeded-Up Robust Features (SURF) [1] as follows.

3.2.1 Audio Fingerprinting

Among various audio features, LBAF is widely used in
many near-duplicate video search methods. Its fast compu-
tation, efficient memory and invariant translation are also
very suitable for mobile video search. In our system, we
extract the LBAF as shown in Figure 3. First, the audio
information is segmented into short and partly overlapping
frames of length f,,, and stride f,,,. Second, for each frame,
its spectrogram is calculated. Third, the candidate peaks are
settled on the spectrogram of the frame according to three
criteria: higher energy content than all its neighbors, higher
amplitude than its neighbors, and a density criterion [25].
Fourth, anchor points are chosen from the peaks and each
anchor has a fixed target zone. Each anchor point is se-
quentially paired with the candidate peak in its target. The
pairs are called landmarks. Each landmark is represented as
L= {tg, [, Atd, Af}, where tfand f are the time offset
and the frequency of the anchor point, and At{ and Af}
are the time and frequency differences between the anchor
point and the paired point in the target zone. Finally, we
compress the fingerprint into l; = {h},t{} where hj, is the
hash value of the fi*, At{ and Af{. Different I; may have
the same hj.

In our experiments, we set fmn, = 256 ms and fi,, = 32
ms, and limit hash bits hf to less than 25 bits. As there are
also 15 bits for ¢f, the length of [; is 40 bits. For a one-second
audio clip, we choose 100 landmarks in total. Hence, we only
have to transmit 0.5 KB per second for audio fingerprinting.

3.2.2  Visual Hash Bits

According to our collected real-word mobile video query
dataset (to be described in section 4.1), the recorded videos
have great distortions, such as blurs, color change, reflection,
and transformation. So the video descriptor in our system
should be not only quickly extracted on the mobile device,
but also robust to these distortions. According to previous
research on mobile visual search [5, 8, 30], the SURF is a
competent feature for achieving both high efficiency and ro-
bustness. Furthermore, accelerating SURF extraction meth-
ods on mobile devices could also be used [30].

However, directly sending raw SURF features is very time
and energy consuming. Inspired by Bag of Hash Bits (BoHB)
[5, 23], hashing methods are used to compress the local
features to hash bits, such as its light computation and
memory requirements. Here, Minimal Loss Hashing [14] or
Spectral Hash [26] can be used to learn the hash function
hY = sign(vTx —t), where z is the SURF descriptor vector,
v and t is the learned hash matrix and the threshold scalar,
and h” is the learned visual hash bits. According to [5] and
[23], the binary code is limited to 80 bits. Finally, we use
eight bits to save the angle value of the SURF descriptor,
which will be used for geometric verification in the future.
Therefore, for each SURF feature, we will compress it to
v; = {h{,r{}, which is only 88 bits in length.

On the other hand, because of the different camera reso-
lutions on mobile devices, we will scale the query image to
a small picture. There are two main advantages: First, it
improves feature extraction speed on the mobile device. Sec-
ond, it decreases the number of feature points that need to
be transmitted. According to our experiments, the scaling
has little influence on precision but seriously improves query
speed. After the scaling, there are only 75 SURF points in
one frame on average. In other words, the system only needs
to transmit less than 1 KB of visual features to the server.
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Figure 4: The illustration of layered audio-video in-
dexing (LAVE).

In summary, after feature extraction, we obtain 100 audio
feature points and 75 visual feature points. Through effi-
cient compression, there are less than 2 KB of audio-visual
signatures per second to be transmitted by the network.

3.3 LAVE Indexing

Even though the computing of the Hamming distance be-
tween binary audio and visual features is efficient, linear
search for a big video dataset is still a bottleneck in real-time
mobile video search. The most widely used binary feature in-
dexing method is locality sensitive hashing (LSH). However,
as it uses random selection, aim to achieve good search qual-
ity, it needs a large number of hash bits to build enough ta-
bles. As an improvement, Lv et al. propose the multi-probe
method, which relies on looking through multiple buckets to
reduce the number of hash tables [11]. Nevertheless, check-
ing multiple buckets also costs a lot of time. Instead, Muja
et al. propose the multiple hierarchical clustering trees in-
dexing method [13]. Although the hierarchical decomposi-
tion of the search space can greatly reduce search time, it
requires multiple trees to avoid the situation in which the
closest neighbor to the query point lies across a boundary
from the domain explored. As a result, the multiple tree
structure increases the memory and query cost.

In our system, we propose LAVE indexing. As shown in
Figure 4, there are two layers in the LAVE. The first layer
is the index entry, containing a multi-index: audio indexing
(red) and visual indexing (blue). The second layer is the
visual hash bits, which are used for accurate feature match-
ing and combination. There are two advantages to these
structures: 1) effectively employing the hierarchical decom-
position strategy to improve the visual points search speed,
and 2) holistically exploiting the complementary nature of
audio and video signals. The different indexing entries in
the first layer preserve the individual structure of audio and

video signatures. In the second layer, the combination of
audio and video can be weighted by the hamming distance
of visual hash bits.

3.3.1 Building LAVE Index

In contrast to the visual feature, the audio feature is highly
compressed, only 25 bits for each point. Therefore, a linear
search of the audio index can be quickly completed. We use
the audio index as part of the first layer and each bucket in
the audio index of the first layer is associated with the second
layer by the video ID, audio time offset t* and keyframe
number t’. Through the audio indexing, we can refine the
number of visual points to be searched in the second layer,
which obviously improves the search speed.

However, if the audio information is changed significantly
or missed, it will be difficult to find the closet neighbor in the
second layer. The multi-index idea in [15] is used to solve
this problem. The hash bits from the second layer visual in-
dex are indexed by m different hash tables, which construct
the visual index of the first layer. The hash bits h3*® of the
visual index in the first layer are randomly selected from the
hash bits in the second layer. For a received visual point,
entries that fall close to the query in at least one such sub-
string are considered neighbor candidates. The candidates
are then checked for validity using the second layer index.
In contrast to [15], we have m + 1 multi-indexes: visual in-
dexing and audio indexing. Finally, all the results are fused
and the top N results are returned. With the help of the
audio index, we can greatly reduce the number m for the
hash table. In our experiments, even one hash table can
still work very well.

3.3.2  Searching LAVE Index

The search process in the LAVE indexing is presented
as follows. Let P, = {l1,l2,...,lm} be the received audio
query points and P, = {v1,v2,...,v5} be the received visual
query points. Through the search process, the top K visual
points will be returned for each query visual point.

Step 1 For each audio point [,,, in P,, the nearest approximate
neighbors will be acquired by a linear search in the
audio index. Then the matching pairs are assigned to
different candidate clusters C' = {c1,¢2,...,en}. Two
pairs are assigned to the same cluster if their nearest
approximate neighbors come from the same video.

Step 2 All the clusters will be reordered by temporal verifi-
cation. Here we define the temporal distance At to
denote the time difference of the two LBAFs in the
matching pairs. The histogram of At is computed for
all pairs in ¢,, and the score of ¢, equals hn/M, where
hy is the maximum value of the histogram. This score
is also used by the similar computation in Section 3.3.
Then the top K’ candidate clusters are chosen. All the
buckets associated with the top K’ candidate clusters
in the second layer are regarded as a subset.

Step 3 For each v; in P,, the K nearest approximate neighbors
are obtained as follows:

a. Top K approximate neighbors are determined by
linear search in the subset of the second layer.

b. Use the multi-index indexing method to search other
top K nearest neighbor points.
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c. The 2K nearest neighbor points are reordered by
similar distance. The top K nearest points are se-
lected.

Step 4 Finally, the top K nearest visual points are returned
as the search results.

In summary, according to the process, we combine the au-
dio and video in two stages. The first stage is Step 1 — Step
3.a. In this stage, we use the higher compressed audio infor-
mation as the crude filter and the more discriminative visual
information as the fine filter, which obviously improves the
final search speed. Furthermore, as the similarity is com-
puted in separate layers, the combination stage also pre-
serves the individual structure of each signature. The second
stage is Step 3.b — Step 4. In contrast to the first combina-
tion stage, which heavily depends on audio search accuracy,
the combination of audio and video can be weighted by the
hamming distance of visual hash bits. The two combina-
tion stages holistically exploit the complementary nature of
the audio and video signals for more robust mobile video
search. Finally, as we have m 4+ 1 multi-index, i.e., m vi-
sual indexes and one audio index, the computational com-
plexity of searching the LAVE index mainly depends on the
multi-index indexing method used to search the nearest vi-
sual neighbor points, which can be found in [15].

3.3.3 Geometric Verification

With the top N points, the Hough Transfer method is
used to get similar source keyframes of the query. Further-
more, a subsequent geometric verification (GV) considering
the spatial consistency of local features is needed to reject
the false-positive matches [17]. In order to reduce the time
consumption of GV, we follow a fast and effective GV based
re-ranking step [29] to find the most similar image. As the
method only utilizes the orientation of descriptors, there is
no need to transmit the location information of the local
features by the network. First, the method hypothesizes
two matched descriptors of duplicate images should have
the same orientation difference. So for two duplicate im-
ages, the orientation distance Af; between each matched
local feature pair is calculated. Then all Af; are quantized
into C bins (C = 10 according to [29]). Furthermore, the
histogram is scanned for a peak and the global orientation
difference is set as the peak value. Finally, the geometric
verification score is given by the number of the pairs in the
peak, which is normalized by the number of total pairs.

3.4 Progressive Query Process

In contrast to existing mobile video search systems (i.e.,
search after achieving all the query data), our system pro-

Algorithm 1 Progressive Query Process

Input: a new query gqg41.
Output: top K nearest videos

: add gr41 to @
: search qry1, get Riy1
add Riy1 to R
for each s, m in Rg4+1 do
find the G; contains sy, m
add gi+1 ¢ Sn,m to E;
end for
call W = VideoSimilarScore(G)
: return top K nearest videos

Procedure VideoSimilarScore(G)

: for each GG; in G do
if |E;| is changed then
calculate the MSM M;
if |M;| > o then
update W; = Sim(Q, Vi, W, W)
end if
end if
end for
return W
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vides a progressive query process. Along with the query ad-
vancing, the retrieval results can be dynamically calculated
on the server after each second query has arrived. Search
can stop anytime once a confident result is achieved. The
progressive query process can significantly reduce the query
cost and improve users’ search experience.

In our system, the progressive query process is imple-
mented via a bipartite graph transformation and matching
algorithm. As shown in Figure 5, for each matched query
and source video, we use a bipartite graph G = {N, E} to
represent the matching. In the bipartite graph, the green
node gr € @ denotes the received query at time k, the yel-
low node sy,m € S denotes the mth keyframe in source video
V.. Let Ry denote all the returned similar keyframes s, m
of query gi. There will be an edge ex,m € E if sp,m € Ri.
After each second search, we can update the bipartite graph
G; and then the similarity score of the matching can be
progressively calculated through G;.

The particulars of the progressive query process are shown
in Algorithm 1. If one new query comes, a new node will be
added. Then, the edges of the bipartite graph are updated
according to the returned result. The red node and lines in
Figure 4 show this process. For each bipartite graph, if its
number of edges has no change, we will skip it. Otherwise,
the similarity score of the matched video will be updated as
follows: First of all, the Maximum Size Matching (MSM)
M; of G is calculated. If |M;| > «, the similar score W; will
be calculated by

Wi = Szm(Q, ‘/2‘7 Wiaa le)
= Sima(Q? ‘/’iv Wia) + Slm’U(Qa ‘/737 W'Lv) + Slmt(Q? ‘Zb)a
(1)
where Sim,(Q, Vi, W) favors the audio content similarity,
which can be computed as follows,

Sima(Q, Vi, WE) = Z@ @)
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Figure 6: A dataset of real-world mobile video queries.

where wy; ; is the audio similarity between query gx and video
Vi, |Q| is the query length. Sim,(Q,V;, W?) indicates the
visual similarity, given by

SimU(Qa‘/iawiv) = Zwk727 (3)

Q|

where wy, ; is the visual similarity between query ¢ and
video V;. Sim+(Q, Vi) shows the temporal order similarity.
This score guarantees that the matched video should have a
similar temporal order. Given MSM M; of Gy, its temporal
matching number can be calculated by the Longest Common
Subsequence (LCSS) mode [19]. The LCSS is a variation of
the edit distance. We use it to denote the number of frame
pairs of M} matched along the temporal order.

LCSS(i,7)
0 i1=0o0rj=0
= LCSS(i—1,7—1)+1 ei; >0
max{LCSS(i —1,5),LCSS(i,j —1)} e;,; =0

(4)
Thus, Sim:(Q,V;) can be obtained by

LCOSS(QL V)
Q]

Finally, after computing all the similarities between @ and
V', the top K videos will be returned as the search results.
The computational complexity of the progressive query pro-
cess is O(|G| X |N;| x |E;|), where |G| is the number of the
bipartite graphs, |N;| and | F;| is the number of vertexes and
edges in each bipartite graph, respectively. However, in ac-
tual similarity calculation process, as |E;| has no change in
most bipartite graphs, the time consume is much less.

Sim(Q, Vi) = . (5)

4. EXPERIMENTS

In this section, we first introduce the dataset and queries
used for evaluation, and then show the evaluation of the sys-
tem latency, and the retrieval accuracy. Finally, we conduct
user studies to evaluate the usability of our proposed instant
mobile video search system.

4.1 Real-World Mobile Video Query Dataset

To evaluate the performance of our instant mobile video
search system, we use the video dataset in TRACVID 2011,

which contains more than 19,200 videos, with a length of 600
total hours [22]. However, in past methods, the query videos
are all generated by programs, which are different from real-
world mobile video queries recorded by mobile users. There-
fore, we asked 25 volunteers to record video clips from the
source dataset as queries. In order to better imitate the
possible habits of different mobile users, the choice of the
volunteers favored diversity: there were eight females and
17 males. Their age distribution is shown in Figure 6(a)
and their career distribution is shown in Figure 6(b). In ad-
dition, most of the volunteers had at least one year of expe-
rience using smart phones. All of them had watched videos
on mobile devices, including eight users who frequently had
done so. They recorded the videos according to their in-
terests and used different mobile devices (iPhone 4S, HTC
z710t, Samsung Galaxy S3, etc.). Finally, we obtained 1,400
query videos with an average length of 30 seconds . Figure
6(c) shows the category distribution of the recorded query
videos. Some keyframes of the queries can be seen in Fig-
ure 6(d). According to the examples, we found that the
recording process produced serious image distortions, such
as blurs, color changes, reflections and transformations. The
recorded audio signals were also noisy or silent.

4.2 Evaluation of System Latency

Latency is very important for instant mobile video search.
Basically, our system latency can be broken down into four
components: video description extraction latency on the
client, video description transmission latency with network,
video retrieval latency on the server, and result transmission
latency.

e Video description extraction latency. We tested
the video description extraction time on two types of
mobile devices. Device I is equipped with Android
4.1.1 OS, a Qualcomm APQ8064P processor with 1.5
GHz frequency, and a 2GB RAM+16GB ROM. De-
vice II is equipped with Android 4.2.2 OS, a Texas
Instruments OMAP 4460 processor with 1.2 GHz fre-
quency, and a 1GB RAM+16GB ROM. Then, we sep-
arately extracted the video description from 100 query

! The query videos are released in “http://mcg.ict.ac.cn/mcg-
mvq.html” as a benchmark for mobile video search in this com-
munity.
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Figure 7: Comparison of search accuracy on the dataset of real-world mobile video queries (in terms of hit

ratio).

videos on these two mobiles. For each one-second video
steam, the average video description extraction time
is listed in Table 1. In order to compare, we imple-
mented the visual feature extraction method in [29],
which compresses SURF features with a lossless cod-
ing method. It cost 398ms on Device I and 417 ms on
Device II to extract the visual features, respectively.

e Video description transmission latency. With re-
gards to query delivery, we prefer the query bit rate for
quantitative computation, as the exact latency in time
heavily depends on the type of network used. As intro-
duced in Section 3.2, we hash the audio fingerprinting
into 40 bits and totally choose 100 audio fingerprinting
points in each second. Additionally, the visual signa-
ture is hashed into 88 bits and about 75 visual points
are extracted in each second. So we only have to trans-
mit less than 2 KB/s audio-visual signatures by the
network. A typical 40 KB/s 3G network only requires
50 ms to transform the data [8].

e Video retrieval latency. To test video retrieval la-
tency, we implemented our method on a server that
had Intel(R) Xeon(R) CPU with 3.33 GHz frequency,
and 48 GB of memory. Then, we retrieved the 1,400
recorded videos on the 600-hour video dataset. The
average video retrieval latency for a one-second query
includes 119 ms for the search in the LAVE index and
8 ms for the progressive query process.

e Result transmission latency. For the list to be
complete, we should also add the video search results
transmission latency. As we use an image thumbnail
and title to represent each video (less than 3KB), we
need to transmit 15KB data for the top 5 results to the
client. The latency will depend on network setting. It
approximately requires 375ms on a typical 40 KB/s 3G
network [8].

e The overall latency. In our system, the above four
components run in parallel. In order to test the whole
system latency in the real network setting, we searched
100 different videos with Device I in a real Wi-Fi net-
work and 3G network setting, respectively. The entire
system latency was 626 ms with the Wi-Fi network
and 781 ms with the 3G network.

4.3 Evaluation of Retrieval Accuracy

In order to evaluate our instant mobile video search sys-
tem, we compared the following five methods on the col-
lected real-world mobile query video dataset.

Table 1: Time (ms) for extracting video signatures
for one-second query clip.
| Video signatures

| Device I | Device IT |

Audio fingerprint 120 130
Visual hash bits 389 405

(1) Audio-Based Method (ABM). The method only
uses the audio fingerprinting as a video description and
uses linear matching on the server.

(2) Video-Based Method (VBM). The method only
uses the visual hash bits to describe the video and
searches the signatures in the multi-index hash, which
is also used in the LAVE.

(3) AV_MH. Similar to our method, this method also
uses a linear index for audio signature and multi-index
hashing for visual signature. The difference is that it
combines the audio-video signatures using an average
late fusion strategy.

(4) AV_HT. As opposed to AV_MH, this method utilizes
randomized hierarchical tree indexing for visual signa-
ture retrieval. The indexing method is implemented in

the Fast Library for Approximate Nearest Neighbors
(FLANN) [12].

(5) LAVE. Our proposed mobile search approach.

The previous two methods are implemented as baselines for
single signature methods. The last three approaches are de-
signed to exploit the complementary nature of the audio and
video signals. As the late fusion strategy is widely used by
many methods, we use it as the baseline for feature com-
bination methods. To measure the effectiveness of all the
approaches, we used the hit ratio, which is defined as the
number of correctly match the similar video in the top k
results to the total search time. Because we will return the
top 10 similar videos to the user, we separately computed
the hit ratio when k =1, k = 5, and k = 10.

4.3.1 Results on the Entire Query Videos

We first tested the five methods with all 1,400 query videos
on the 600-hour video dataset. The hit ratio results of the
different methods can be seen in Figure 7. From the results,
we found that our method achieved the highest hit ratio
among the five methods. Compared to the ABM and VBM,
our methods can obviously improve the retrieval accuracy,
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ent query categories (in terms of hit ratio).

which demonstrates that the complementary nature of the
audio and video signals reinforce the discriminative power
of individual modalities. As a result, our method is robust
to the large variance in the recorded query videos. Among
the methods combining the audio and video signatures, our
method also achieves the highest accuracy. The reason is
that the average late fusion strategy used by AV_MH and
AV_HT does not consider the correlation among features in
the combination stage. In contrast to late fusion, LAVE
employs a multi-layer structure to indicate the similarity of
audio features by the distance between the visual feature
points. In the combination stage, the correlation among
features is uniformly measured by the visual distance. So the
combination stage of the LAVE scheme effectively chooses
the more discriminative features for different queries.

As shown in the Figure 7, we also observe that the per-
formance gain of retrieval accuracy tends to be large for
the first ten seconds, while after that, the accuracy grows
slowly. We can therefore choose 10 seconds as the longest
query time. Our system can achieve 86.08% and 90.77%
precision at eight and ten seconds, respectively.

4.3.2  Results on Different Query Categories

In order to further evaluate the effectiveness of our ap-
proach, we also tested the retrieval accuracy on nine differ-
ent video categories. The query length was set to 10 seconds
and the hit ratio was computed from the top five similar
videos. As shown in Figure 8, the performance improve-
ments of LAVE were consistent and stable, i.e., most query
categories improved compared to the ABM and VBM. Com-
pared to AV_MH and AV_HT, our method also achieved bet-
ter results for some categories. For example, for the query
category “sports,” the AV_MH and AV_HT methods got the
same hit ratio as the ABM. In other words, the late fusion
provided no benefit to the final results. On the contrary,
the hit ratio of LAVE was 7% higher than the baseline. The
reason is that some sport videos have very similar audio
signals. Although the visual signals can discriminate these
videos, the average fusion of the audio and video similar-
ity score decreases the information. On the other hand,
LAVE indexing methods can easily discriminate these videos
through the high weight on the video similarity score. The
same situation also occurred in other categories (e.g., “film”
and “person”).

4.4 Subjective Evaluation of Usability

We randomly invited 12 users from the volunteers to use
our proposed mobile video search system (LAVES). The sub-

Table 2: A summary of the user study compar-
ing three mobile video search applications: (a)
IntoNow [7], (b) VideoSurf [24], and (c) LAVES (our
method). 1~5 indicate the worst to the best level.

[ ID | Question [(@ [ (®) ] ()]
1 Attractiveness 34 | 3.8 | 4.2
2 Naturalness 3.8 | 3.6 | 4.3
3 Practicality 3.3 | 32 | 4.1
4 Easy to use 4.3 | 4.2 | 4.7
5 Efficiency 3.1 3 4.3
6 Effectiveness 2.8 3 4.3
7 Preference 3 3.2 | 4.2
8 Effectiveness of progressive search | — — | 44

jects included three female and nine male company staff and
college students, with ages ranging from 22 to 36. Other in-
formation about these subjects can be found in Section 4.1.
As they have already participated in the recording task, af-
ter only three minutes of orientation and demonstration, all
of them understood how to use the system very well. From
the interview, we found that 10 subjects thought the instant
video search process is very cool when they first saw it. It is
worth noting that when they learned our system did not re-
strict users from recording either audio or video, all the sub-
jects thought it was very convenient and said that they will
try to use the system based only on audio or video manually.
This indicates that the switch among single-modality-based
and multi-modality-based solutions are preferred by users.
After learning the system well, the subjects were asked to
use the application to accomplish the following tasks.

e Task 1. Each subject selected 5~10 videos and tried to
search for them using LAVES. As our system has not
been released to the public yet, the subjects were un-
able to conduct the search outside the lab. Thus, the
query videos were chosen from our video dataset de-
scribed in Section 4.1. Also, the subjects could search
for the video based on audio, video, or both.

e Task 2. In this task, we compared LAVES with popu-
lar mobile video search applications (i.e., IntoNow and
VideoSurf). After learning how to use these applica-
tions, all subjects tried to use the three applications
freely by themselves for 20 minutes. Then, a ques-
tionnaire was given to each subject to evaluate the
usability, user friendliness, and user experience.

In Task 1, the subjects searched 120 videos in total, among
which only 16 tasks failed to find similar videos from the top
ten similar videos. In addition, all users thought the progres-
sive search process reduced their query time and improved
their search experience. According to our records, the av-
erage query time for all users was 8.5 seconds. For Task 2,
the quantitative evaluation of user satisfaction scores with
these mobile video search applications is listed in Table 2.
This indicates the advantages of LAVES over the other two
mobile video search applications. All the users thought our
application was attractive and easy to use with a friendly
user interface, and especially liked the lack of restrictions
on the use of audio or video as a query input. 91.67% sub-
jects were satisfied with the progressive search process and
thought it was natural. They gave a 4.3/5.0 for its Effec-
tiveness. Most of the subjects gave a positive response when



they were asked whether they would install this application
and recommend it to their friends. Moreover, the subjects
provided comments, such as “add more fashionable videos,”
“add sharing search results function,” and so on.

5. CONCLUSIONS

In this paper, we have investigated the possibility of in-
stant video search on mobile devices, where a very short
phone-captured video clip is used as the query to identify
the captured video from a large-scale video database. We
achieved this goal by designing an innovative mobile video
search system that leverages the computing power of mo-
bile clients to directly process video query mobile devices.
Specifically, we process the video query to extract joint audio-
video descriptors for robust video search (superior to a search
via a single modality), and compose a compact signature
with a new layered audio-video hashing algorithm. We de-
sign a novel progressive query process to instantly return
search results to mobile users. As a result, the user search
experience has been significantly improved with our pro-
posed system due to the state-of-the-art search accuracy and
the very short video query.

In the future, we will invite more subjects for field study
evaluations to further evaluate the robustness of our system
against video queries with large visual and aural distortions.
Our future investigations will also include: 1) we will opti-
mize the system in terms of more efficient descriptors, e.g.,
the speedup SURF optimized on specific mobile platform
[30], and indexing schemes; 2) in addition to only search re-
sults, we are aiming to integrate social functions (such as
recommendation of celebrities, TV programs, and informa-
tion related to the captured videos) for social applications;
3) we are also aiming to collect real video data in a particular
domain (e.g., TV program or movie) in the cloud.
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