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ABSTRACT

The problem of tagging is mostly considered from the per-
spectives of machine learning and data-driven philosophy.
A fundamental issue that underlies the success of these ap-
proaches is the visual similarity, ranging from the nearest
neighbor search to manifold learning, to identify similar in-
stances of an example for tag completion. The need to
searching for millions of visual examples in high-dimensional
feature space, however, makes the task computationally ex-
pensive. Moreover, the results can suffer from robustness
problem, when the underlying data, such as online videos,
are rich of semantics and the similarity is difficult to be
learnt from low-level features. This paper studies the explo-
ration of user searching behavior through click-through data,
which is largely available and freely accessible by search en-
gines, for learning video relationship and applying the re-
lationship for economic way of annotating online videos.
We demonstrated that, by a simple approach using co-click
statistics, promising results were obtained in contrast to
feature-based similarity measurement.
Furthermore, considering the long tail effect that few videos

dominate most clicks, a new method based on polynomial se-
mantic indexing is proposed to learn a latent space for alle-
viating the sparsity problem of click-through data. The pro-
posed approaches are then applied for three major tasks in
tagging: tag assignment, ranking, and enrichment. On a bi-
partite graph constructed from click-through data with over
15 million queries and 20 million video URL clicks, we showed
that annotation can be performed for free with competitive
performance and minimum computing resource, represent-
ing a new and promising paradigm for video tagging in ad-
dition to machine learning and data-driven methodologies.

Categories and Subject Descriptors

I.2.10 [Artificial Intelligence]: Vision and Scene Under-
standing—Video analysis; H.3.3 [Information Storage and
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Retrieval]: Information Search and Retrieval—Search pro-

cess

General Terms

Algorithms, Performance, Experimentation.
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ment, Annotation, Video Search, Click-through Data.

1. INTRODUCTION
The advent of video sharing sites and rapid development

of video technologies have led to the unprecedented Inter-
net delivery of video content. Millions of users are search-
ing, browsing, and sharing online videos as a source of in-
formation and entertainment daily. While the research on
content-based video retrieval has been studied for decades,
most commercial video search engines to date still heavily
rely on user-provided tags for search. Therefore, tagging,
or in another word, annotation, is the key not only to video
search, but also to many applications such as video browsing
and recommendation.

However, manually annotating video content is an intel-
lectually expensive and time-consuming process. As a result,
the tags provided by human subjects are often noisy, incom-
plete, subjective (biased), and sparse. This is particularly
true for video, as video is a sequence of images with large
content variance and complexity. Automatic annotation of
videos with relevant and complete tags has attracted exten-
sive research attentions in recent years.

The research on video annotation (tagging) has proceeded
along two dimensions, i.e., model-based [8][14][23] and data
driven [27][30] approaches. The model-based method always
relies on pre-trained classifiers, while data driven approach
aims to exploit video similarity for annotation. These ap-
proaches highly rely on computing the pair-wise video simi-
larity in a high dimensional feature or semantic space. How-
ever, compared with the image, a video is typically associ-
ated with more complicated semantics. Furthermore, it is
difficult to represent a video sequence using simple visual or
aural features. As a result, the video similarity (or distance)
computed in these spaces is usually not robust and compu-
tationally expensive, limiting the capacity of the existing
approaches in scaling up to real data.

On the other hand, popular video search engines provide
rich connection between users’ search intent and video con-
tent. We are investigating in this paper if users’ searching
behavior can be exploited for measuring video similarity and
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Figure 1: Unified video tagging framework. (a) Relationships mining between videos: the click-through bipartite

enclosed in the rectangle is extracted from video search logs. Co-click-based video similarity captures video relationship

only on the structure of the bipartite graph. Polynomial semantic video similarity combines video document features

and click-through bipartite to learn two mappings. With this, video document features are projected into a latent

space and then the dot product in the latent space is taken as the similarity function. (b) Based on the two proposed

video tagging methods, i.e., weighted neighbor tagging and tag propagation, various applications on video tag analysis

can be formulated within a unified framework. For better viewing, please see original color pdf file.

in turn resulting in scalable and efficient video tagging with
million scale. This provides a new paradigm for video tag-
ging by leveraging the “latent” and “crowdsourcing” human
intelligence which is the underlying user click-through. As
we all know that manual tagging of videos is expensive, but
the search logs are not that expensive to obtain.
Using the implicit feedback from search engine users has

been studied in the research, though not in the domain of
web video. These efforts include web document search by
query log analysis [6][15], query suggestion [17][19], query
clustering [3][31], user behavior understanding [4][11][24] and
image search [7][13]. Inspired by the successful use of click-
through data in these domains, in this paper, we consider ex-
ploring and exploiting information from both click-through
data and video document features to shed some light on
video and video similarities measurement, and furthermore,
demonstrating the utilization of searching behavior for three
problems in video tagging. Figure 1 shows an overview of
our proposed work. A bipartite graph between the user
queries and videos is constructed by using the search logs
of a video search engine. An edge between a query and a
video is established, if the users who issue the query clicked
and watched the video. The edges of the graph can capture
some relations between query-query, query-video and video-
video. For example, videos about “2008 US election” and
“2012 US President Obama” are related to each other, since
they are co-clicked with some queries such as“Obama”,“elec-
tion” and so on. Therefore, the basic idea of co-click is that
two videos are similar if they are co-clicked by users with
same queries, and thus leads to the intuition that the tags
between them can be exchanged to enrich the descriptions.
However, solely depending on click-through data overlooks
the following challenges: on one hand, only click-through
data is explored and exploited in the co-click method, thus
the method can not be applied to videos with no clicks; on
the other, users always looked at and clicked on the top
search results for a query, which makes the click-through
data with high sparsity. Therefore, in practice, the use of

co-click method is challenging due to the high sparsity of
click-through data.

To address the above issues, we leverage both the click-
through data and the video document features to learn video
similarities, which fully explores the relations between videos.
Specifically, we use two mappings to project queries and
video documents in a click-through bipartite into a same la-
tent space. The two mappings are supposed to be different
since the query distribution is very different to the video doc-
ument distribution. We formalize the two mappings learning
as an optimization problem, in which the objective is to min-
imize the margin ranking loss of the observed query-video
pairs on the click-through bipartite. The dot product in the
latent space is taken as the similarity function between video
and video, and the tags of one video will be assigned to its
similar videos as extra metadata. It is worth noticing that
although we only utilize the video-video similarities for the
video tagging problem, the learned query-query similarities
and query-document similarities can be equivalently applied
to any kind of related applications such as query suggestion
and video search.

In summary, this paper makes the following contributions:

• We study the problem of video tagging by leveraging
user click-through data. To the best of knowledge, this
paper represents the first effort towards this target in
the multimedia research community.

• We propose two video similarity measures, i.e., co-
click-based and polynomial semantic video similarity.
The former relies on the structure of click-through bi-
partite, while the later learns the similarity in a latent
space based on the click-through data.

• The proposed approach can solve video tag assign-
ment, tag ranking, and tag enrichment problems in
a single framework. We evaluate the proposed video
tagging approach on a large scale of user click-through
data collected from a commercial video search engine.



The remaining sections are organized as follows. Section
2 describes the related work. Section 3 presents the video
similarity measures including co-click-based and polynomial
semantic methods, while Section 4 formulates the problem
of video tagging over the discovered video-video similarities.
In Section 5, we analyze the click-through data generated
from large-scale query logs. Section 6 provides empirical
evaluations, followed by the discussion and conclusions in
Section 7.

2. RELATED WORK
We briefly group the related works into two categories:

video annotation and search by using click data. The former
draws upon research in automatically assigning tags (anno-
tations) to a video sequence, and the later investigates Web
search and mining by interpreting the click-through data.

2.1 Video Annotation (Tagging)
Video annotation has received intensive research atten-

tion since the early of year 2000 [28], and is probably the
“hottest” topic with a large number of published papers
in the area of multimedia. The research in this direction
has proceeded along two different dimensions: model-based
methods [8][14][23] and data driven approaches [27][30].
Model-based methods assume that a training set of videos

along with keyword annotations is provided for developing
concept classifiers. Cristianini et al. employed SVM with
one-against-the-other strategy to learn a set of detectors,
each of which independently models the presence/absence
of a certain concept in [8]. Later in [14], Jiang et al. used
a Context Based Concept Fusion-based learning method.
Users are involved in their approach to annotate a few con-
cepts for extra videos, and these manual annotations were
then utilized to help infer and improve detections of other
concepts. In [23], Qi et al. proposed correlative multilabel
method to simultaneously model both the individual con-
cepts and their correlations in a unifying formulation and
the principle of least commitment was obeyed.
Different frommodel-based methods, data driven approaches

construct video similarity for annotation. In [21], tag prop-
agation technique is developed by crawling tags of similar
videos for annotation by using text and visual features in
a graph reinforcement framework. In [27], the overlapping
or duplicated content of videos was exploited for measur-
ing video similarity. With this, tags associated with similar
videos were exchanged for generating new tag assignments.
In another work by Wang [30], both distance between sam-
ples and the difference of their surrounding neighborhood
sample distributions were taken into account for video sim-
ilarity estimation.

2.2 Search by Using Click Data
Click-through data has been studied and analyzed widely

with different Web mining techniques for improving search
engines’ efficacy and usability in recent years. The use of
the click-through data for query clustering was suggested
by Befferman and Berger [3], who proposed an agglomera-
tive clustering technique to identify related queries and Web
pages. Wen et al. [31] combined query content information
and click-through information and applied a density-based
method to cluster queries. The click-through data has been
studied for query expansion in the past [9]. Mei et al. [20]
proposed an approach to query suggestion by computing the

hitting time on a click graph. Li et al. [18] presented the
use of click graphs in improving query intent classifiers.

There are also several approaches that have tried to model
the representation of queries or documents on the click-
through bipartite. In [1], the authors introduced another
vectorial representation for the queries without considering
the content information. Queries were represented as points
in a high dimensional space, where each dimension corre-
sponds to a unique URL. The weight assigned to each di-
mension was equal to the click frequency. This is one of
the traditional click frequency models. Poblete et al. [22]
proposed the query-set document model by mining frequent
query patterns to represent documents rather than the con-
tent information of the documents.

In addition, click-through data has also been used to learn
the rank function [15]. Joachims et al. [16] observed the
relationship between clicked links and the relevance of the
target pages by an eye tracking experiment. Radlinski et
al. [25] concluded that the click-through data is not reliable
for obtaining absolute relevance judgements, and is also af-
fected by the retrieval quality of the underlying system. For
image search, click-through data has been found to be very
reliable [7][13]. In [7], Craswell et al. built a query-image
click graph and performed backward random walks to de-
termine a probability distribution over images conditioned
on the given query which can be used for ranking. Later
in [13], Jain et al. reranked the image search results so as
to promote images that are likely to be clicked to the top
of the ranked list. In another work by Trevisiol et al. [29],
an in-depth analysis of several ranking algorithms was per-
formed on Flickr user log data to investigate the importance
of many factors, including internal and external image pop-
ularity, the overall attentions, diversity, semantic categories
and visual appearance. However, to the best of our knowl-
edge, no work leveraging click data is proposed for video
search domain.

3. LEARNING VIDEO RELATIONSHIP

FROM CLICK-THROUGH
In this section, we first define the bipartite graph that nat-

urally comes from user actions in the query log, followed by
the co-click method to mine video similarity on the structure
of the click-through bipartite graph. Then, a polynomial se-
mantic video similarity algorithm is proposed to solve the is-
sues of click-through data incompleteness and no-click data
for new coming queries (videos) by combining the bipartite
graph and video features.

3.1 Notation
Let G = (V, E) denote a click-through bipartite as shown

in the left part of Figure 2. V = Q∪V is the set of vertices,
which consists of a query set Q = {qk}

m
k=1 ⊂ R

D and a video
set V = {vk}

n
k=1 ⊂ R

D, and D is the feature dimension. E
is the set of edges between query vertices and video vertices.
In addition, there exists rich metadata on the vertices of the
click-through bipartite and the metadata consists of queries
(videos) content features.

3.2 Co-click-based Video Similarity
Given the click-through bipartite graph G , we can define

a co-click matrix from the structure of the bipartite graph.
The element of the matrix stands for the number of queries
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Figure 2: Co-click Method. A click-through bipartite

with seven queries and five videos is illustrated and the

co-click matrix on this bipartite is given accordingly.

with which the two video pages are both clicked. The co-
click value of a video with itself is the number of clicks re-
ceived by the video from all the queries. Figure 2 shows an
example of one bipartite graph and its co-click matrix. For
simplicity, we assume that each video is clicked by queries
only once in Figure 2. Take v1 as an example, the video is
clicked by q1, q2 and q4, thus the co-click number of v1 with
itself will be 3. Similarly, v1 and v2 are both clicked only by
q1, hence the co-click value of v1 and v2 is 1.
Next we describe how to measure the similarity of two

videos based on the co-click matrix. The co-click number of
a video vi with itself is denoted as Ci, while the co-click value
between vi and vj is denoted as Cij . With these notations,
the similarity ω(vi, vj) between two videos vi and vj based
on the co-click relationship can be defined as

ω(vi, vj)=
Cij

√

CiCj

. (1)

The rationale underlying this formula is that, if two videos
are clicked by mostly the same queries, the two videos are
likely to be similar to each other. The similarity is offset
by the number of video clicks from all the queries, which
moderates the similarity score in the case when some videos
received more clicks than others. These videos are generally
more common than others. With the normalization, the
similarity measure is in the range of [0, 1].

3.3 Polynomial Semantic Video Similarity
It is easy to demonstrate that co-click method could achieve

promising performance if the click-through data is complete,
i.e. each query is associated with all the related documents.
But unfortunately, in real-world search, the key challenge
in doing so arises from the fact that the click-through data
is very sparse. For many of the queries, a handful of rel-
evant videos had received a large number of clicks but the
total number of clicked videos ranged typically from ten to a
hundred. Generalizing co-click method to all the videos be-
comes very challenging in such scenarios. Deriving from the
ideas of Polynomial Semantic Indexing (PSI) [2], and related
methods such as Partial Least Squares (PLS) [26] and La-
tent Semantic Indexing (LSI) [10], we develop a polynomial
semantic video similarity (PSVS) approach to model the re-
lations in a click-through bipartite by projecting queries and
videos into a latent space. With this, the video similarities

can be calculated by the dot product of their mappings in
the latent space.

Given a query q and a video v, we wish to learn two map-
pings, which can map query q from query space and video
v from video document space into a common latent space.
With this, the learned ranking function f(q, v) that returns a
score measuring the relevance of v given q can be better sat-
isfied with the query-video click-through observations. Let
us first consider the function f(q, v) as

f(q, v) =
D
∑

i,j=1

Wijq(i)v(j)=q
T
Wv, (2)

where q(i) (v(j)) stands for the ith (jth) dimension of the
feature vector and W is the learning matrix. As discussed in
[2], the huge memory requirement and large amount number
of parameters for W make the model training hardly be
possible for realistic tasks. Thus, a low-rank approximation
of W which will lead to capacity control, smaller memory
and less computational cost is given by

W̄ij = (UT
L)ij + Iij . (3)

After plugging the approximation matrix into ranking func-
tion f(q, v), we can derive that

f(q, v) = q
T (UT

L+ I)v =

Y
∑

i=1

(Uq)(i)(Lv)(i) + q
T
v, (4)

where U and L are Y×D matrices and induce a Y -dimensional
latent space.

The training of U and L could be many forms. From
our click-through data, we can easily get a set of triplets T ,
where each tuple (q, v+, v−) consists of the query q, a video
v+ with higher click and a lower clicked video v−. Deriving
from the idea of “learning to rank” [12][15], it aims to opti-
mize U and L which makes f(q, v+) > f(q, v−), i.e. video
v+ should be ranked higher than video v−. The margin
ranking loss [12] which has been used in several information
retrieval methods [5][15] is employed and the optimization
problem is defined as

minimize :
∑

(q,v+,v−)∈T

max(0, 1− f(q, v+) + f(q, v−)). (5)

Algorithm 1 presents the learning procedure. We train
this using stochastic gradient descent [5] for our model due
to its efficiency and capability of applying to highly scal-
able problems. The algorithm of polynomial semantic video
similarity has several characteristics in the following:

• Preference Relations: the proposed polynomial seman-
tic video similarity advocates the training using pref-
erence relations, which are mined from user implicit
feedback. Roughly speaking, if video A has signifi-
cantly more clicks than video B when given a query q,
then users should have a preference for A. These pref-
erences are used as supervised signals for our training.

• Low Rank: the matrices U and L are Y × D dimen-
sions, where Y ≪ D. Thus, it will sharply reduce the
memory and capacity cost, and speed up the training
procedure. That makes the algorithm highly appli-
cable and flexible when applied to the practical Web
applications.



Algorithm 1 Polynomial Semantic Video Similarity

Input:
⋆ Click-through bipartite G = (V, E).
⋆ Query feature q and video feature v.
Initialization:
⋆ Generate a set of triplets (q, v+, v−) as labeled data based on
the click-through data.
⋆ Initialize the matrices U and L using a normal distribution
with mean zero and standard deviation one.
⋆ Initialize the learning rate α.
For all the triplets:

Update the new matrices U and L:
U = U + αL(v+ − v−)qT , if 1− f(q, v+) + f(q, v−) > 0
L = L+ αUq(v+ − v−)T , if 1− f(q, v+) + f(q, v−) > 0

End
Output:
Similarity functions:
Video similarity: ∀v, v′, ω(v, v′) = vTLTLv′

Query similarity: ∀q, q′, ω(q, q′) = qTUTUq′

• Similarity Measurement: matrices U and L are the
two mappings from query space and video document
space into a Y -dimensional latent space. These two
mappings are learned on the observations of query-
video click-through bipartite. When obtaining the two
mappings, the relations of query-query and video-video
can be modeled by projecting them into the latent
space. Although only video-video relations are used
for the following video tagging problem, query-video
and query-query relations can be equivalently used in
their related applications.

• Incremental: the complexity of polynomial semantic
video similarity algorithm is linear to the number of
training triplets, which makes it easy to implement
and update. When the new click-through data is com-
ing, new query video preference triplets will be firstly
generated and then used to update the two matrices
U and L accordingly. Moreover, early stopping can be
assessed with a validation set for further reducing the
computational cost.

4. VIDEO TAGGING
After we get the relationships between videos, how to use

them for automatic tagging? In this section, two video tag-
ging approaches, i.e., weighted neighbor tagging and tag
propagation, will be described. The weighted neighbor tag-
ging method once only takes immediately neighbor video
into account for automatic tag assignment, while the tag
propagation approach further propagates the video relation-
ships and considers all the related videos simultaneously.

4.1 Weighted Neighbor Tagging
Let Vr = {vi : 1 ≤ i ≤ N} be the video collection where

each video has one or more relationships to others and let
Tag = {t1, . . . , tk, . . . , tM} be the set of tags initially as-
signed to the videos in Vr. Let I(tk, vi) be an indicator
function, with I(tk, vi) = 1 if vi was manually tagged with
tag tk, otherwise I(tk, vi) = 0. The tag relevance score
rel(tk, vi) of a tag tk from neighbor videos is computed as

rel(tk, vi) =
∑

vi, vj ∈ Vr

tk ∈ Tag

ω(vi, vj)I(tk, vj). (6)

In this way, we compute a weighted sum of influences of
the related videos containing tags. Then we can automati-
cally assign new tags for each video vi. Basically, there are
two major ways of utilizing the result. The simplest way is
by sorting the tags according to their relevance scores and
popping top k tags as the final result. An alternative way
is by producing a threshold δ for tag relevancy. Tags whose
relevance scores are above δ will be set as the new tags.

4.2 Tag Propagation
So far, we have just considered the direct relationships

between videos. Next, all the relationships between videos
are deployed holistically in a random walk framework to
better compute the tag relevancy. It is worth noticing that
the objective of tag propagation is not to assign relevance
values for the videos, but it is an approach for computing
relevance values of a tag tk for a given video vi.

Denote pij as the transition probability from video vi to
video vj , and I(tk, vi) and TR(tk, vi) as the initial and up-
dated relevance scores of a tag tk to a video vi, respectively.
The tag propagation is formulated as following











TR(tk, v1)
TR(tk, v2)

..

.
TR(tk, vN )











= λ











p11 · · · p1N
p21 · · · p2N
..
.

. . .
..
.

pN1 · · · pNN











T 









TR(tk, v1)
TR(tk, v2)

..

.
TR(tk, vN )











+(1− λ)











I(tk, v1)
I(tk, v2)

..

.
I(tk, vN )











,

(7)

where the tradeoff parameter λ (0 ≤ λ ≤ 1) weights the im-
portance of the propagated and initial scores. Note that the
first term in the equation represents information exchange
from neighboring videos, while the second term is the origi-
nal tag relevance score. The element pij is given by

pij=
ωij

∑

k
ωik

, (8)

where ωij is the video similarity between video vi and vj , as
discussed in Section 3.

The spirit of tag propagation is to give a higher relevance
score for tag tk to a video vi if the video is in close proximity
with other videos that are also highly relevant to the tag tk.
For each tag in the collection Tag, the above iterative prop-
agation will be repeated. To the end, the refined relevance
between tags and videos are produced and tags assigned to
the video can be generated and ranked by their relevance
scores.

4.3 Discussion
The proposed work can handle different practical scenar-

ios in a unified framework. For a no-tag video, tagging can
be carried out by crawling relevant tags from similar videos
(tag assignment). For a video with only few tags, the cover-
age of tag list can be expanded by including additional tags
from other similar videos not in the original tag list (tag en-
richment). Finally, for videos with abundant tags, tags can
be sorted according to their relevancy by getting clue from
the appearance of the tags in similar videos (tag ranking).
In all the tasks, tagging is for free as the click-through data,
which plays the essential role in mining similar videos, are
largely and freely available for access by search engines.
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Figure 4: Tag distribution for the click-through data.

Table 1: Coefficients of Power laws of Click Distribution

and Clicked URL Distribution, respectively.

Power laws: AxB A B

Click Distribution 41427273 -2.43
Clicked URL Distribution 19082457 -2.23

5. DATA ANALYSIS
We have collected one month query logs in November 2012

from a commercial video search engine. The query logs are
represented as plain text files that contain a line for each
HTTP request satisfied by the Web server. For each record,
the following fields are used in our data collection:

< Query, ClickedURL,ClickCount, T itle,Description, Tags >,

the ClickedURL and ClickCount represent the URL and
number of clicks on this URL when user submit the Query,
respectively. Note that ClickCount is cumulated over all
identical queries. T itle, Description and Tags denote the
corresponding textual information associated with the clicked
video.
For building the click-through bipartite, we used all the

queries in the log with at least one click. There are 15,697,027
queries and 21,000,433 URLs on the bipartite graph. Fig-
ure 3 gives the main characteristics of the query and URL
distribution. Figure 3(a) shows the query click distribution.

Each point represents the number of queries (y axis) with
a given number of clicks (x axis). The plot on Figure 3(b)
shows the clicked URL distribution. Each point denotes the
number of URLs with a given number of clicks. We can see
that these two distributions clearly follow power laws. The
observation is similar to [1], which also states that the user
search behavior follows a power law. For details, the associ-
ated law is plotted in Figure 3, and the law coefficients are
listed in Table 1. According to the statistics, each query has
on average 4.08 clicked URLs and each URL was clicked by
3.12 times on average.

Figure 4 further shows the statistics of the video tags.
Each point represents the number of videos with a given
number of tags. Among all videos, more than 65% videos
have 1 to 100 tags, followed by around 33% videos having no
tags, and less than 0.1% videos having more than 100 tags.

6. EXPERIMENT
We conducted our experiments on the aforementioned click-

through data and evaluated our approaches on video tag
assignment, video tag ranking and video tag enrichment.

6.1 Experimental Settings
Compared Approaches: We compare the following ap-

proaches for performance evaluation:

• Initial tags. The original tag list associated with the
video. We name this run as Initial. We simply treat
the tag order in the original list, giving that the first
tag is usually more representative than the second and
so on.

• Cosine similarity. The video-video relationship is mea-
sured by the cosine similarity on the video features.
Then two video tagging runs based on weighted neigh-
bor tagging (WN) and tag propagation (TP) are per-
formed, and named as Cos + WN and Cos + TP re-
spectively.

• Partial least squares [26]. A typical method which
aims to model the relations between two or more fea-
ture spaces by projecting them into a latent space.
We employed the Partial Least Squares method on our
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Figure 5: The NDCG of different approaches for video tag assignment.

click-through bipartite with query and video document
features. We name the two runs as PLS + WN and
PLS + TP by using the two video tagging methods,
respectively.

• Co-click-based video similarity. We design two runs
for co-click based video similarity described in Section
3.2: Co−click +WN and Co−click + TP .

• Polynomial semantic video similarity. Similarly, two
runs, i.e., PSV S + WN and PSV S + TP , are ex-
perimented based on the polynomial semantic video
similarity with the proposed two tagging approaches.

Parameter Setting: We take the word in queries and
video URLs including title, description, and tags as features.
Words are stemmed and stop words are removed. With word
features, each query is represented by a tf−idf vector in
the query space, and each video is represented by a tf−idf

vector in the video document space. In our experiments, we
use only the top 100,000 most frequent words. Moreover,
we randomly select 2 million triplets as the training data
for our polynomial semantic indexing. The learning rate α

is fixed using a validation set of 0.5 million triplets and set
as α = 0.06 in the experiment. The dimension Y of latent
space is empirically set to 200. For the tradeoff parameter
λ in the tag propagation, we set λ = 0.9 for all the TP

runs, making the similarities output by different approaches
comparable.
Ground Truth: To facilitate the evaluation and compar-

ison with other methods, we randomly selected 2,500 URLs
as the test samples, in which 500 URLs without tags are
evaluated for video tag assignment and the remaining 2,000
URLs with initial tags are tested in video tag ranking and
enrichment tasks. For each URL, the top 20 tags in the
ranked lists obtained by different approaches are all anno-
tated during the final evaluation. We invited nine evalua-
tors from different education backgrounds, including com-
puter science, linguistics, physics, industry, business, and
design. All evaluators are familiar with video sharing web-
sites. Every URL-tag pair was annotated on a three point or-
dinal scale: 2-Highly Relevant; 1-Relevant; 0-Non-relevant.
Note that obtaining just these annotations was very time-
consuming. The evaluators are requested to watch the whole
video before assigning labels. Whenever the relevancy judg-
ments cannot be made by visual inspection alone, the evalua-
tors have to read the text description and even refer to exter-

nal sources (e.g., Web pages, Wikipedia) for understanding
the background behind the video.

Evaluation Metrics: For the evaluation of video tag
assignment and video tag ranking, we adopted Normalized
Discounted Cumulative Gain (NDCG) which takes into ac-
count the measure of multi-level relevancy as the perfor-
mance metric. Given a tag ranked list, the NDCG score at
the depth of d in the ranked list is defined by:

NDCG@d = Zd

∑d

j=1

2r
j

− 1

log(1 + j)
(9)

where rj represents the rating of a tag in the ground-truth,
Zd is a normalization constant such that NDCG@d = 1
for perfect ranking and 0 otherwise. In the evaluation of
video tag enrichment, the metrics of Precision, Recall and
F1-Measure are employed.

6.2 Evaluation of Video Tag Assignment
The problem of video tag assignment is to assign a set of

tags to a given video for describing the video content. As
described in section 6.1, 500 video URLs without tags are
tested.

Figure 5 shows the NDCG performances of eight runs.
Note that the Initial run is excluded because the test video
contains no tags. Overall, the results across different depths
ofNDCG consistently indicate that using click-through data
leads to a performance boost against cosine similarity, which
relies on only video document features. Furthermore, PSV S

utilizing click-through data as relative relevance judgements
also exhibits better performance than PLS, which uses the
absolute click numbers for learning. The result basically
indicates that click-through data does not convey absolute
relevance judgements, but partial relative relevance judge-
ments.

Comparing PSV S to Co−click, performance improve-
ment is observed especially in the top few ranked tags. Basi-
cally PSV S has better capability in recalling relevant tags,
for leveraging video document features to compensate the
sparsity of click-through data. Compared to the weighted
neighbor tagging, tag propagation can constantly lead to
better performance gain. This somewhat reveals the weak-
ness of linear fusion behind the weighted neighbor tagging,
where the relationships between videos are considered indi-
vidually. Tag propagation, in contrast, is benefited from the
way of formulating the video tag assignment as a random
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Figure 6: The NDCG of different approaches for video tag ranking.

Table 2: Quality comparison of the tags obtained by

each method. Each measurement has been averaged over

all evaluated URLs.
Method Precision Recall F1-Measure
Initial 0.198 0.33 0.247
Cos+WN 0.376 0.72 0.453
Cos+TP 0.40 0.778 0.484
PLS[26]+WN 0.378 0.718 0.453
PLS[26]+TP 0.407 0.782 0.49
Co-click+WN 0.399 0.764 0.479
Co-click+TP 0.415 0.803 0.50
PSVS+WN 0.403 0.766 0.484
PSVS+TP 0.419 0.808 0.504

walk over the whole video similarity graph. Figure 8(a) lists
the tags generated by different methods on two exemplary
videos. PSV S and co−click achieve better qualitative re-
sults than others, and quantitatively PSV S+TP recalls the
most number of relevant tags than others.

6.3 Evaluation of Video Tag Ranking
In addition to tagging the no-tag videos, we also evaluated

the performance of tag ranking on 2,000 videos with initial
tags supplied by users. Based on the scores output by a
run, the initial tags are ranked according to their relevancy
to a video. Tag ranking is an important task that helps
browsing of videos by prioritizing the tags to be displayed
and indexed.
Figure 6 shows the performance of different runs. All the

methods exhibit significantly better performance than the
Initial run, clearly showing the advantages of exploiting
video relationship for tag ranking. Particularly, by build-
ing the relationship based upon click-through data that un-
derlies the latent human feedback, the similarities of videos
are more objectively measured. This basically facilitates the
evaluation of tag importance as evidenced by the good per-
formance of PSV S and Co−click in comparison to others.
Similar to the results of video tagging, PSV S shows the
strongest performance followed by Co−click.
A different observation compared to evaluation of tag as-

signment, however, is that the runs based on weighted neigh-
bor tagging exhibit better performance in ranking the top
five tags than the runs based on tag propagation. One anal-
ysis shows that, when there are few tags that dominantly
appear in the videos, the weighted neighbor tagging, which
performs weighted voting of tags, is effective in boosting
these tags into the top few positions. Tag propagation, on
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Figure 7: Performance improvement of test videos re-

turned by head and tail queries, respectively. The per-

formance are compared against the results w.r.t their tag

ranking at NDCG@10.

the other hand, somewhat diffuses the scores of these tags
through random walk, but has a better ability in recalling
more relevant tags not dominantly appear, and thus shows
better performance when going deeper into the ranked list.
Figure 8(b) shows the list of tags ranked by different ap-
proaches on two exemplary videos.

Furthermore, we split the test videos into two subsets,
i.e., head and tail. The former is the video set returned by
head queries, which have more than 100 clicks on different
URLs, while the later represents the video set returned by
tail queries, which have less than 100 clicks. Figure 7 shows
the degree of improvement on two sets of videos. The result
indicates that improvement can be generally expected, and
larger degree of improvement is attained when the videos
are returned by head queries.

6.4 Evaluation of Video Tag Enrichment
We adopted Precision, Recall and F1-measure as perfor-

mance metric. The evaluation requires the full set of tags
that are relevant to videos. However, practically such ground
truth is difficult to obtain because there are rich of words
that can potentially enrich the description of a video. In-
stead, we adopted the pooling strategy, which evaluates the
top 20 tags pooled from different runs and generate the
ground truth for measure the Recall.

Table 2 lists the performance of eight different runs. Com-
pared to the initial tags assigned to videos, more new and
relevant tags are introduced. As shown in the table, by using
PSV S + TP , the newly brought in tags enhance the cover-
age of the initial tags, significantly raising the Recall from
0.33 to 0.808 while improving the Precision. Comparing all
runs, PSV S again shows consistently better performance in
both Precision and Recall.
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Figure 8: Examples showing the tagging results by different methods (For better viewing, please see original color

pdf file). For each row, the first block shows the keyframes of a test video, followed by each block showing the top 15

tags annotated by a method. The correct tags are highlighted by yellow color.

6.5 Complexity Analysis
The complexity of our proposed PSV S learning is O(|T |×

Y × D), where |T | represents the number of the training
triplets. The training of 2 million triplets in our experiment
can be finished within five days on one server. More im-
portantly, the training complexity is linear to the number of
triplets, which makes the update with incremental triplets
very fast. For the video tagging, take 500 videos to per-
form video tag assignment for example, WN and TP take
less than 2.5 and 13 seconds on a regular PC (Intel dual-
core 3.33GHz CPU and 8 GB RAM) to complete the whole
process, respectively. In other words, tagging one video
only takes 5.0 and 26 milliseconds, respectively. Clearly,
the speed is fast and provides almost instant response.

7. DISCUSSION AND CONCLUSION
We have presented an economy way of video tagging, by

mining the video relationship through click-through data
which can be viewed as the footprints of user searching
behavior. Particularly, we propose two ways of exploiting
the searching behavior, by co-click and polynomial seman-
tic similarity, where the latter addresses the sparsity prob-
lem that generally exists in video click-through. Together
with two tagging methods, we demonstrated in the experi-
ments that the proposed approaches make improvement to
three tagging tasks: assignment, ranking and enrichment, by
leveraging the bipartite graph constructed from tens of mil-
lions of URL clicks. Basically, utilizing click-through, which
is cheap to exploit and free for search engines, as a measure



for characterizing video similarity, shows better performance
than feature-based approach such as by using cosine simi-
larity. By combining click-through and features for deriving
a latent space and tackling the sparsity problem, further
improvement was consistently observed in the experiments.
Our work can be enhanced by considering also partial vi-

sual near-duplicates, which frequently happen inWeb videos.
The visual features can be exploited together with click-
through and document features for a more comprehensive
manner of characterizing visual similarities. The cost, how-
ever, is the need for processing millions of videos, which is
much more computationally expensive than processing the
click-through data associated with videos.
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