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Abstract

Advances in modern cryptography coupled with rapid
growth in processing and communication speeds make
secure two-party computation a realistic paradigm.
Yet, thus far, interest in this paradigm has remained
mostly theoretical.

This paper introduces Fairplay [28], a full-fledged
system that implements generic secure function eval-
uation (SFE). Fairplay comprises a high level proce-
dural definition language called SFDL tailored to the
SFE paradigm; a compiler of SFDL into a one-pass
Boolean circuit presented in a language called SHDL;
and Bob/Alice programs that evaluate the SHDL cir-
cuit in the manner suggested by Yao in [39].

This system enables us to present the first evaluation
of an overall SFE in real settings, as well as examining
its components and identifying potential bottlenecks.
It provides a test-bed of ideas and enhancements con-
cerning SFE, whether by replacing parts of it, or by
integrating with it. We exemplify its utility by exam-
ining several alternative implementations of oblivious
transfer within the system, and reporting on their ef-
fect on overall performance.

1 Introduction

Motivation. Modern cryptography is usually con-
sidered to have its beginning in the landmark papers
of Diffie and Hellman [16], who introduced the concept
of public key encryption, and of Rivest, Shamir and
Adelman [35] who suggested a concrete public key sys-
tem. The fundamental theoretical studies along these
lines originate in the late 1970’s, and the results - the
well-known cryptographic primitives of public key en-
cryption, authentication and digital signature - have
been widely applied in practice during the 1990’s.

However, theoretical cryptography provided addi-
tional, powerful (and perhaps less intuitive) tools. One
of the most attractive paradigms in this category is a
secure function evaluation (SFE). It allows two par-

ticipants to implement a joint computation that, in
real life, may be implemented using a trusted party,
but does this digitally without any trusted party. A
classic simple example of such a computation is the
Millionaires’ problem [39]: Two millionaires want to
know who is richer, without any of them revealing to
the other his net worth. More generally, informally,
the two-party SFE problem is the following. Alice
has an input ~x = x1, . . . , xs and Bob has an input
~y = y1, . . . , yr. They both wish to learn f(~x, ~y) for
some publicly known function f , without revealing any
information on their inputs that cannot be inferred
from f(~x, ~y). (We refer the reader to, e.g. [20], for a
formal introduction to SFE.) SFE is a universal build-
ing block, and many interesting cryptographic proto-
cols can be formulated as instances thereof, e.g., zero
knowledge proofs, private database mining, electronic
auction and negotiation, and voting protocols.

Thus far, SFE techniques are rarely applied in prac-
tice, and are typically considered to have mostly the-
oretic significance. In this paper, we suggest that it
is prime time to start translating these theoretical re-
sults into practical applications. We see three main
forces converging to make this transition possible:

1. New applications: new applications are driven
by advances in the communication infrastructure (such
as the ubiquity of the Internet or the emergence of web
services), coupled with increased demand for informa-
tion based relationships (e.g. for business or homeland
security purposes). These applications often involve
sensitive information related to issues such as pricing,
business processes, or personal information, and their
security often relies on trusting a designated trusted
party (such as eBay in the case of auctions). Not all
users feel completely confident giving this trust, es-
pecially when high stakes are involved. SFE offers a
solution for unmediated e-commerce applications such
as auctions and web services [32, 17].

2. New cryptographic techniques: we have lately



seen a growing theoretical effort to overcome the main
efficiency bottlenecks of previous theoretical solutions.
Such efforts include more efficient cryptographic so-
lutions for specific tasks such as auctions and certain
database access tasks (e.g. [31, 13]), as well as gen-
eral theoretical results improving on various efficiency
parameters (e.g. [29, 30, 24]).

3. Improved CPU and communication speeds:
while sending megabytes of communication, or spend-
ing GigaFlops of processing power would have seemed
unreasonably expensive only a few years ago, such ef-
fort is certainly acceptable now. It is not unreasonable
to spend such an effort even for tasks whose monetary
value is a few dollars. Even Gigabytes of communica-
tion, and TeraFlops of processing power are reasonable
for important tasks.

The goal of this work is to provide the first full
fledged secure two-party computation tool that is read-
ily deployed by the community. Fairplay provides the
first solid answers to questions regarding the efficiency
of the overall computation, and its breakdown into
parts. Thus, using this tool, we are able to tell for
the first time the overall price of solving a problem
like the above mentioned Millionaires’ problem in real
network settings (the answer is ≈ 4 seconds over a
wide area network, see Section 6). We further discern
the cost of different components of the SFE, and assess
their relative effect on overall elapsed time. Thus, for
example, in Section 6 we analyze the relative contribu-
tion of the public key operations performed as part of
the SFE protocol, and conclude that while 27%-77%
of the time is due to public key operations over a fast
LAN, only 9%-42% is accountable to public key oper-
ations over a wide area link.

Fairplay also serves as a test-bed of new ideas and
algorithmic variations. For demonstration, we already
considered several flavors of oblivious transfer (OT) al-
gorithms within our tool. Specifically, we have imple-
mented the original scheme by Bellare and Micali from
[6, 7], the enhancements suggested by Naor and Pinkas
in [30], and straight-forward communication batching.
Our experiments show a remarkable matching of the
predicted 30% speedup of the enhancement in [30] over
[6]. The effect of communication batching is observed
to be up to nearly nine-fold speedup (see Section 6).
Thus, our platform provides valuable guidance in trad-
ing different parameters.

Technical approach. The first issue we tackle is the
compilation paradigm. The correct paradigm for ad-
dressing the computation is to adopt the trusted party
model for the definition of tasks, and to compile these
definitions into protocols that do not use any trusted
party. In this way, the user specification is completely

oblivious to the actual protocol that implements it.
This is the common definition of secure computation
used in cryptography1 (we refer the reader to cryp-
tographic literature, e.g. to [10, 12, 20], for an exact
definition). Specifically, a definition of a task using a
trusted party involves the following elements:

1. Exact specification of the interaction of the
trusted party with the participants. This in-
cludes specification of what the participants tell
and what they learn from the trusted party.

2. Exact specification of the internal computations
of the trusted party.

In support of the user’s high level view of the com-
putation, we provide our own high-level definition
language called Secure Function Definition Language
(SFDL). SFDL is a procedural language that resembles
a subset of Pascal or C, and is tailored to our purpose.
For convenience, a syntax-driven GUI is provided that
guides the program developer.

Once such a specification is given, a compiler gen-
erates an intermediate level specification of the com-
putation in the form of a one-pass Boolean circuit.
Whereas classical theory on SFE was satisfied with the
fact that it is provably possible to reduce any function
to a canonical Boolean representation, we tackle for
the first time actually automating the transformation,
while keeping efficiency in mind.

The language used for describing the Boolean cir-
cuit is named Secure Hardware Definition Language
(SHDL). Developing an SFDL-to-SHDL compiler is a
novel endeavor in itself, because unlike common hard-
ware compilers, our compiler may use no registers, no
loops or goto’s, and moreover, may use every gate only
once. Its complete obliviousness makes compiling even
the most primitive operations like array indexing (e.g.,
“a[i]”) a daunting task: it must create essentially a
multiplexer, such that all possible values of “i” are
hardwired into it. Thus, the SFDL-to-SHDL compiler
includes many novel tricks for reducing the number
of resulting gates in the circuit, and for optimizing
the use of wires. The final component of Fairplay
is a Bob/Alice pair of programs, whose input is an
SHDL circuit, which together carry a secure compu-
tation protocol of the circuit in the manner suggested
by Yao. The entire computation structure of Fairplay
is depicted in Figure 1.

Security. The main security property guaranteed by
the system is the equivalence to the specified trusted
party. I.e., each user is guaranteed that whatever the
other participant does, including using completely dif-
ferent software for communicating with him, his se-
curity is assured to the same level that the trusted



party would have assured it. In particular, the func-
tion is correctly computed on the reported values and
no information about the input of one party is leaked
to the other (beyond what is implied by the specified
output). Note, however, that, in principle, there is no
way to “force” any party what to tell the trusted party
(e.g. force it to report its “true” input), and that in
two-party secure computation it is also impossible to
prevent one party from terminating the protocol pre-
maturely, before the other party learns its output –
this is detected, but cannot be recovered from.

The Fairplay system provides the guarantee above
based on common and widely accepted cryptographic
assumptions. We describe the security properties of
Fairplay in more detail in Section 5. The level of se-
curity provided is asymmetric: Alice can only cheat
with negligible probability, but Bob can potentially
cheat with probability 1/m, where m is a parameter
that can be chosen at will and there is an overhead
that is proportional to m.2

Summary of Contributions. We contribute a
generic two-party computation engine that we make
available for use by the security community. The tool
is available at Fairplay’s web-site [28]. It includes
a specially tailored high level description language
(SFDL) that describes a secure computation in the
trusted third-party model. It tackles the challenge of
efficient compilation of SFDL into a one-pass Boolean
circuit. And it provides a Bob/Alice implementation
that securely evaluates the circuit.

Fairplay enables experimenting with mechanisms re-
lated to secure function evaluation, whether by replac-
ing a component of it, building on top of it, or interact-
ing with it. Our preliminary investigation introduces
results concerning the overall cost of the SFE paradigm
in today’s Internet settings; it presents a breakdown
of costs into components and bottlenecks; and it ex-
amines various enhancements that were introduced in
the literature.

2 System Overview

We start by a general overview of the computation
being performed, which also allows us to present the
main entities and components of our system. Fair-
play comprises two applications that are activated by
the two players, who want to engage in two-party se-
cure function evaluation (SFE). By convention we call
these players/applications Bob and Alice. Prior to ex-
ecuting the SFE protocol, the two players must define
and coordinate the function-to-be-evaluated. In order
to do that, they use the Secure Function Definition
Language (SFDL), a language which was designed es-
pecially for this purpose. The SFDL is a high-level

programming language, which allows humans to spec-
ify the function-to-be-evaluated in the form of a com-
puter program. Another language that the system uses
is the Secure Hardware Definition Language (SHDL).
The SHDL is a low-level language designed for speci-
fying Boolean circuits. The SFE computation is done
in several stages as shown in Figure 1.

• An SFDL program file is written by the users us-
ing an SFDL editor.

• The SFDL program is translated by an SFDL
compiler to an SHDL circuit file. The circuit is
optimized before it is passed on to the next stage.

• The SHDL circuit is parsed. The resulting circuit
is in the form of a Java object.

• Bob constructs m garbled/encrypted circuits and
sends them to Alice. Alice randomly chooses one
of the circuits that will be evaluated.

• Bob exposes the secrets of the other m − 1 gar-
bled/encrypted circuits, and Alice verifies them
against her reference circuit.

• Bob specifies his inputs, and sends them to Alice
in garbled form. Alice inserts Bob’s inputs in the
garbled/encrypted circuit that she chose to eval-
uate.

• Alice specifies her inputs, and then Bob and Al-
ice engage in Oblivious Transfers (OTs) in order
for Alice to receive her inputs (in garbled form)
from Bob, while Bob learns nothing about Alice’s
inputs.

• Alice evaluates the chosen circuit, finds the gar-
bled outputs of both her and Bob, and sends the
relevant garbled outputs to Bob.

• Each party interprets his/her garbled outputs and
prints the results.

3 The SFDL, SHDL and their Com-
piler

3.1 Motivation

The secure function evaluation protocol requires that
the function to be evaluated be given as a Boolean cir-
cuit. Designers, however, will desire the function to
be given in a more convenient high-level form. In the
context of secure protocols, this is even more impor-
tant than the strong usual reasons for writing in high-
level programming languages. The starting point of
any attempt of security is a clear, formal, and easily-
understandable definition of the requirements. Such
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Figure 1: Computation overview

clarity of definition is almost impossible, for humans,
using low-level formalisms such as Boolean circuits.
Clear high-level languages are needed.

The compiler will thus accept a function written in a
high-level programming language and compile it into
a Boolean circuit that evaluates the same function.
In our case the compiler compiles an SFDL program
into an SHDL circuit. In addition to bridging the se-
mantic gap between high and low level languages, as
done by every compiler, a compiler into hardware has
to bridge another semantic gap: that of obliviousness.
Boolean circuits are oblivious – they perform the same
sequence of operations independently of the input (i.e.
compute the values of the gates one after the other).
Normal high-level languages change their flow of con-
trol according to the input: they execute statements
conditionally, loop for a variable number of steps, etc.

This semantic gap is not a technicality, but rather
the central issue in hardware compilers. On one hand

this is one of the key reasons why it is humanly diffi-
cult to design efficient Boolean circuits. On the other
hand, the key reason why Boolean circuits were used
as the computation model for secure function evalua-
tion protocols (rather than, e.g., a Turing machine)
is their obliviousness. Non-oblivious computations
would seem to leak information from the very identity
of the operation being simulated (existing solutions
for running RAM based computations obliviously are
quite complex [22]).

There do exist “hardware compilers” that compile
a high-level language into low level Boolean circuits.
These hardware compilers are used for actual hard-
ware construction, and serve to ease the development
effort. Most commonly used are the high level hard-
ware description languages VHDL [14] and Verilog [37]
that do not “look” like “normal” programming lan-
guages. There are also many compilers that do aim
to use languages that “look” like usual programming



languages, e.g. the C programming language (see e.g.
[9, 18, 33, 38, 19]). There are some similarities and
some differences between the goals of such languages
and our goals. The similarities are concerned with is-
sues like making conditional execution oblivious and
the “single assignment” issue – each hardware bit can
only be assigned a value once, but software allows re-
assigning values, e.g. in statement like x=x+1.

The main difference comes from the required out-
put. In our case the output should be a “theoreti-
cian’s Boolean circuit”: purely combinatorial, with no
sequential logic. Compilers into real hardware are ac-
tually mostly concerned with the use (and re-use) of
registers. Thus, for example, consider a command like
for i = 1 to 16 do sum = sum + a[i]. Our com-
piler should produce a circuit that has 16 copies of the
addition circuit. Real hardware compilers would pro-
duce a circuit with a single register (sum) and a single
addition circuit, where in each of the 16 clock cycles,
one value a[i] is added to the register’s contents. Ad-
ditionally, our optimization metric is very simple: the
number of gates (weighed by the the gate size). We
are not bound at all by technological restrictions such
as FPGA structure, delay considerations, or wiring is-
sues.

3.2 The Secure Function Definition
Language (SFDL)

Let us begin with the simple example of the Million-
aires’ problem:

program Millionaires {
type int = Int<4>; // 4-bit integer
type AliceInput = int;
type BobInput = int;
type AliceOutput = Boolean;
type BobOutput = Boolean;
type Output = struct {

AliceOutput alice, BobOutput bob};
type Input = struct {

AliceInput alice, BobInput bob};

function Output out(Input inp) {
out.alice = inp.alice > inp.bob;
out.bob = inp.bob > inp.alice;

}
}

First, note that the syntax is quite conventional,
borrowing heavily from the C and Pascal program-
ming languages. Now, let us look at some of the main
ingredients of this program as well as the language in
general. A full description of the language may be
found in Appendix A.

Type system. The SFDL supports a full type sys-
tem. The primitive types are Boolean, integer, and
enumerated. For maximum efficiency and since there
is no pre-wired hardware word size, integers may be
declared to be of any bit-length and are always signed
2’s-complement. Similarly, enumerated types are al-
located the minimal number of required bits. Struc-
tures and arrays create more complex types from sim-
pler ones. Structure entries are accessed using dot-
notation, s.f, and array entries using the standard ar-
ray notation a[i]. Access to arrays has a potential for
non-obliviousness if the index is not a constant expres-
sion. This is handled by the compiler, but users should
be aware of the high price of such access. Pointers do
not exist – this is in order to maintain obliviousness.
Beyond their usual role as defining variable types, the
type system is used to formalize the input and out-
put of the function to be evaluated. The special types
AliceInput, AliceOutput, BobInput, BobOutput, must
be defined in every program, specifying the respective
input and output types of the two players. The types
Input and Output are always defined to be structures
encapsulating the inputs (resp. outputs) of both play-
ers.

Program Structure and Functions. An SFDL
program consists of a sequence of functions (as in C, no
nesting is allowed) preceded by declarations of global
constants and types. Functions receive parameters
and return values using the Pascal-like syntax of as-
signment to a variable whose name is identical to the
function name. As in Pascal, a function must precede
any function that calls it. Unlike Pascal, no “forward”
clause exists, and no recursion is allowed. The lack
of recursion is critical in order to maintain oblivious-
ness. Functions may define and use local variables; in
the current implementation we forbid global variables.
The last function in the program is the one computing
the desired output from the inputs. By convention it
is named output. It accepts a single parameter of type
Input and produces the result of type Output.

Assignments and expressions. Expressions use
the standard notations: they combine constants, vari-
ables (including, recursively, array entries and struc-
ture items), and function calls using operators and,
optionally, parenthesis. The allowed operators include
arithmetic addition and subtraction, Boolean logical
operators (bitwise, for integers), and the standard
comparison operators. Due to their cost, multiplica-
tion and division are not provided as primitive opera-
tors, but rather should be implemented as functions.
Data types of different widths may be combined, and
sign-extension is used.

Loops and Conditional Execution. The SFDL
has the standard if-then and if-then-else statements.



It should be noted that conditional execution is not
oblivious, and thus the compiler generates hardware
that always computes both sides of the branch. Gen-
eral loops are not oblivious and are not possible in
the language. The language does provide a for-loop
where the number of iterations is known in advance (a
compile-time constant).

3.3 The compiler

The compiler reads the input program written in
SFDL, and performs a sequence of transformations on
it. In the end of the sequence of transformations, a
data structure that corresponds to the hardware is ob-
tained, and is then output in SHDL format. The fol-
lowing example shows part of the SHDL output pro-
duced for the Millionaires’ problem above. Each line
in the SHDL output file specifies a “wire” in the gener-
ated circuit that is either an input bit or a Boolean gate
with given truth-table and input wires. This format is
in a verbose form, in particular containing comments
(automatically generated, but ignored by the secure
evaluation protocols).

0 input //output$input.bob$0
1 input //output$input.bob$1
2 input //output$input.bob$2
3 input //output$input.bob$3
4 input //output$input.alice$0
5 input //output$input.alice$1
6 input //output$input.alice$2
7 input //output$input.alice$3
8 gate arity 2 table [1 0 0 0]
inputs [4 5]

9 gate arity 2 table [0 1 1 0]
inputs [4 5]

10 gate arity 2 table [0 1 0 0]
inputs [8 6]

11 gate arity 2 table [1 0 0 1]
inputs [8 6]

12 gate arity 2 table [1 0 0 1]
inputs [10 7]

13 gate arity 2 table [0 0 0 1]
inputs [4 0]

14 gate arity 3 table [0 0 0 1 0 1 1 1]
inputs [13 9 1]

15 gate arity 3 table [0 0 0 1 0 1 1 1]
inputs [14 11 2]

16 gate arity 2 table [0 1 1 0]
inputs [12 3]

17 gate arity 2 table [0 1 1 0]
inputs [15 16]

18 output gate arity 1 table [0 1]
inputs [17] //output$output.alice$0

...

Additionally, the compiler outputs another file that
gives formatting instructions enabling the secure func-
tion evaluation protocol to input and output values in
a convenient user-friendly format. E.g. in the SHDL
circuit produced above the first 4 wires (numbered 0–
3) while treated as just 4 arbitrary bits inside the
circuit, should be read from the user as an integer.
The following example is produced for the Millionaires’
problem above:

Bob input integer "input.bob"
[0 1 2 3]

Alice input integer "input.alice"
[4 5 6 7]

Alice output integer "output.alice" [18]
Bob output integer "output.bob" [29]

Here is a short description of the sequence of steps
performed by the compiler:

1. Parsing. Simple syntactic analysis and parsing,
resulting in a memory-resident data structure. Due to
the simplicity of the language we have not used any
compiler-compiler tools.

2. Function inlining and loop unfolding. all func-
tion calls are treated as macros and simply inlined
where they are called. All for-loops are simply un-
folded (note that the number of iterations is a compile-
time constant). These two transformations may seem
quite inefficient at first sight but that is not the case:
they are absolutely required in order to maintain obliv-
iousness.

3. Transformation into single-bit operations.
Every command that deals with multi-bit values is
transformed into a sequence of single-bit operations.
In the simplest case, an assignment of the form a=b
where a and b are 4-bit integers is converted into the
four single-bit assignments a0 = b0, a1 = b1, a2 =
b2, a3 = b3. In the case of expressions, first a com-
plex expression is transformed into a sequence of op-
erations, e.g. a = b + c + d is converted into temp =
b + c, a = temp + d. Then, each multi-bit operator
is converted into its hardware implementation. E.g.
an operation a = b + c, where b and c are 4-bit in-
tegers is converted into a sequence of 4 ”full-adders”,
implemented using 8 ternary gates.

4. Array access handling. Handling array indices
that are compile-time constants is simple: each array
entry is treated as a separate variable, and the array
access logic is thus completely compile-time and incurs
no hardware cost. Handling array indices that are ex-
pressions must incur a significant hardware cost due to
the semantic gap that must be bridged. In particular,
every access to a single array entry results in O(n) pro-
duced hardware gates, where n is the total array size.



An access to the value of an array entry, as in a = b[i]
is obtained by constructing a multiplexor whose n in-
puts are the entries of b, and whose selection input
bits are the bits of i. Assigning a value to an array
entry, as in a[i] = b, is obtained essentially by using a
demultiplexer. More precisely by using, in effect, the
sequence of n if-commands that contain only constant
array access indices: if (i = 0) then a[0] = b; if (i = 1)
then a[1] = b; ...

5. Single variable assignment. Normal code com-
monly assigns values to variables multiple times, as in
a = b + c; ...; a = a + 1. Hardware, does not allow
this: each ”variable”, actually, wire, is assigned a sin-
gle value computed as an obliviously known operation
on other wires. One of the main challenges of every
hardware compiler is to eliminate multiple assignments
of values to variables, and to transform them into sin-
gle assignments. This issue has received much atten-
tion in the literature (see e.g. work on SSA form [15]).
It seems that our algorithm for this problem is new
and superior to previous approaches. In particular, it
runs in linear time as long as the nesting depth of if
statements in the program is bound by a constant.

Let us first look at the simple case shown above
a = b+c; ...; a = a+1. The single assignment transfor-
mation defines a new copy of the variable for each as-
signment: a1 = b+ c; ...; a2 = a1+1. Things get more
complicated, when the different assignments are inter-
leaved with conditional execution, e.g. a = b+c; if (x)
then a = a+1 else a = a+2; In this case, we must cre-
ate new copies of a for each branch, and an additional
copy combining them together after the loop ends:
a1 = b + c; a2 = a1 + 1; a3 = a1 + 2; a4 = x?a2 : a3,
where the last assignment uses the C-language ”?:”
operator notation, which in hardware is a simple mul-
tiplexor. Note also that this transformation has elimi-
nated the ”if” statement, yielding an oblivious circuit.
The algorithm for the general case is of independent
interest and is described in the next subsection.

6. Optimization. At this point we have obtained
an in-memory image of a Boolean circuit. This circuit
is now optimized, i.e., its size is reduced. The opti-
mization step is crucial, often reducing the size of the
circuit by an order of magnitude. The optimization is
done in linear time, and has three components:

• Peekhole optimization: local simplifications of
code, e.g. (x and true → x), (x or not x → true),
etc.

• Duplicate code removal: a hash table of all values
computed in the circuit is kept. If some value
is computed twice, then one of the duplicates is
removed and replaced with direct access to the
other wire.

• Dead code elimination.

Peekhole optimization and duplicate removal are
done in a single pass in topological order over the cir-
cuit. Dead code elimination is then done in an addi-
tional single pass in reverse topological order.

3.4 The single assignment algorithm

The input to this algorithm is code that contains as-
signment statements, where each variable may be as-
signed a value multiple times and (possibly nested) if
statements. The output is straight line code where
each variables is assigned a value only once.

Data structure. Our basic data structure is a stack
of hash tables. It maintains a running version number
for each identifier. It supports the following opera-
tions:

• new(id): increases the version number of this
identifier (and returns the new version number).
The first time an id is declared, its version number
is assigned to 1.

• get(id): returns the current version number of
the identifier.

• push-scope(): starts a new version scope for all
identifiers. The version numbers of all identifiers
are initialized to the current version numbers, but
all further new(id) commands will only affect the
new scope.

• pop-scope(): ends the current version scope. All
version numbers of all identifiers are reset to their
value in the previous scope.

• enum-scope(): enumerate all the variables in
the current scope.

The implementation uses a new hash table for each
version scope. A new() command updates the ver-
sion number in the current scope. A get() command
traverses the stack of hash tables (from the most re-
cent backwards) until it finds an instance of the desired
identifier. Its running time is proportional to the stack
depth.

Algorithm. Assume that the input is a sequence
of statements s1...sn. For ease of exposition, let us
assume that all assignment commands involve two
variables on the RHS, and that all if-statements
contain no else clauses. (An ”if (x) then y else z”
command is equivalent to ”if (x) then y; if (not(x))
then z”.) The algorithm is now given by:

For i = 1..n do {
if si is a statement of the form



" a = f(b, c) " then {
i = get (b)
j = get (c)
k = new (a)
output: " ak = f(bi, cj) "

}
if si is a statement of the form
" if(x) then {r1...rm} " then {

push-scope()
recursively process {r1...rm}
Let V = enum-scope()
For each v ∈ V do

jv = get (v)
pop-scope()
For each v ∈ V do {

i = get (v)
j = jv

k = new (v)
output: " vk = x?vj : vi "

}
}

}

4 Bob-Alice Two-Party SFE

This section describes the specific two-party SFE pro-
tocol that was implemented in Fairplay, based on the
protocol suggested by Yao in his seminal work that in-
troduced the notion of secure function evaluation [39].
We start with a general overview and then describe
in detail how Bob constructs garbled circuits and how
Alice evaluates one. Finally we discuss the oblivious
transfer (OT) variants that were implemented thus far.
We do not prove here the security of the protocol, since
it was mostly borrowed from existing theoretical con-
structions (however, Section 5 states the security guar-
antees of the protocol, describes the reasoning for the
choice of the specific cryptographic operations that we
use, and suggests some variants of the current proto-
col).

4.1 General overview

Our SFE computation is given as input a Boolean cir-
cuit C made of gates and wires, described using SHDL.
Then Alice and Bob interact in order to evaluate C
securely. The version of Yao’s protocol that we im-
plemented requires a single OT per each input wire of
C. In this version Bob constructs the circuit C, and
converts it into a garbled circuit. The garbled circuit
is transferred to Alice. Then Bob and Alice execute
an OT once per each input wire. After this step Al-
ice evaluates the circuit independently without further
interaction with Bob.

Thwarting malicious behavior by Alice is guaran-

teed by Yao’s protocol and is based on the security
of the symmetric function used for encoding the se-
cret (SHA-1, which is modeled, for this purpose, as
a pseudo-random function) and on the security of the
OT protocol against malicious behavior. The same
properties also prevent malicious behavior of Bob, if
we can guarantee the correctness of the circuit encod-
ing that he constructs. This last property was imple-
mented using a cut-and-choose technique. Specifically,
Bob sends m garbled circuits to Alice, and Alice ran-
domly chooses one circuit that will be evaluated. Bob
must then reveal the secrets associated with the cir-
cuits that were not chosen by Alice for evaluation. Al-
ice verifies that these m − 1 circuits indeed represent
the function f , by comparing them to a reference cir-
cuit that she constructed herself. The two parties then
evaluate the circuit Alice has chosen. This method al-
lows to catch a cheating Bob with probability 1−1/m.
In real-world scenarios, where cheating leads to bad
reputation, this may be enough. We leave implemen-
tation of more complex cut-and-choose techniques for
future enhancements.3

4.2 Circuit preparation and evaluation

This section describes how Bob converts the Boolean
circuit C into a garbled circuit, and how Alice evalu-
ates that garbled circuit.

Circuit preparation. We use the notation Wk, k =
0, .., ` − 1 to denote all the wires that compose the
circuit C. All the gates in SHDL circuits have a single
Boolean output. The number of inputs into a gate can
be either 1, 2 or 3 (SHDL itself allows more inputs, but
the compiler produces only unary, binary or ternary
gates). For simplicity of exposition, in the description
below, we focus only on binary gates. The conversion
of C into a garbled circuit works as follows.

1. Bob assigns to each wire Wk ∈ C two random t-
bit strings v0

k, v1
k (t is a security parameter that

was set to 80). The string v0
k represents the bit

0 for Wk. The string v1
k represents the bit 1 for

Wk. Bob also assigns to each wire Wk ∈ C a
random binary permutation (i.e., a bit) pk, and
appends it to the pair v0

k, v1
k as follows: w0

k =
v0

k||(0 ⊕ pk), w1
k = v1

k||(1 ⊕ pk). We let w0
k, w1

k

denote the final result.

2. For each gate g ∈ C whose output wire is Wk and
whose input wires are Wi,Wj (see Figure 2)

(a) The original truth table of g consists of four
0/1 entries. Bob constructs the Garbled-
Truth-Table (GTT ) of g by replacing every
0 or 1 in the truth-table with w0

k or w1
k, re-

spectively.
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Figure 2: A gate in a circuit

(b) Bob constructs the Encrypted-Garbled-
Truth-Table (EGTT ) of g in the follow-
ing way. For entry (x, y) in g’s GTT , de-
fine x′ = x ⊕ pi, y′ = y ⊕ pj . The en-
try is encrypted using vx

i , vy
j as encryption-

keys and k, x′, y′ as an IV: EGTT [x, y] =
Encryptvx

i ,vy
j ,k,x′,y′(GTT [x, y]). The encryp-

tion is done by hashing vx
i ||k||x′||y′ and

vy
j ||k||x′||y′ using SHA-1, and XORing the

two results to the plaintext (see Section 5
for explanations).

(c) Bob constructs the Permuted-Encrypted-
Garbled-Truth-Table (PEGTT ) of g by
swapping the entries in g’s EGTT based on
the permutation bits assigned to g’s input
wires, namely pi, pj (the role of these per-
mutations is to make the position of a cer-
tain string in a PEGTT meaningless). I.e.,
if pi = 1 then the first two entries of the ta-
ble are swapped with the last two entries. If
pj = 1 then the first and third entries are
swapped with the second and fourth entries.

(d) For each wire which carries a bit of Al-
ice’s output, Bob sends an appropriate
translation-table that allows Alice to inter-
pret the circuit’s output from the garbled
value of the wire. Namely, for every out-
put wire k Bob sends a table of the form
〈(H(w0), 0), (H(w1), 1)〉, where H is a colli-
sion resistant hash function, which we imple-
mented as SHA-1.

Interaction. Initially, Bob sends to Alice m garbled
circuits as well as commitments to his garbled inputs
to each circuit. Out of these, Alice chooses at random
m− 1 circuits which are opened by Bob to prove that
the circuits were prepared properly.4 Bob then opens
the commitments to the garbled strings that represent
his input bits of the remaining unopened circuit. Note

that Alice cannot interpret these strings back to Bob’s
input bits, because the circuit is garbled. Alice then
uses oblivious transfer (OT) in order to obtain from
Bob the garbled strings that match her input wires.
The OT protocol that was implemented is discussed in
the next subsection. For now assume that for each in-
put bit Alice obtains the corresponding garbled string.

Circuit evaluation. Alice proceeds to evaluate the
garbled circuit gate by gate. Let g be a specific garbled
gate whose output wire is Wk and whose input strings
are wi, wj . Let the least significant bits of wi, wj be
x, y and the rest of the bits be vi, vj respectively. For
each such gate:

1. Alice uses x, y as indices into an entry to be de-
crypted in g’s PEGTT .

2. Alice uses vi, vj as decryption-keys, and
k||x||y as an IV. Namely, Alice sets
wk = Decryptvi,vj ,k,x,y(PEGTT [x, y]). The
decryption is done by hashing vi||k||x||y and
vj ||k||x||y using SHA-1, and XORing the two
results to the ciphertext.

Throughout the evaluation all that Alice obtains are
garbled strings. These do not leak information on the
values of the bits flowing through the circuit. When
Alice finds the garbled values of the output gates she
uses the translation tables to interpret the circuit’s
true output. As for Bob’s output, Alice sends him
the garbled values of his output wires. Bob associates
them with the corresponding 0 or 1 values. (Note that
in the case of a wire that carries an output bit which
should be revealed to Bob alone, Alice cannot decipher
the value, or change it without being detected by Bob.
In the case of a wire that carries an output bit which is
revealed to both Bob and Alice, Alice can, of course,
decrypt the value but she cannot change it without
finding a collision in the hash function.)

Malicious vs. Semi-honest parties. If the parties
are assumed to be semi-honest (i.e. follow the proto-
col) then there is no need for using cut-and-choose
methods for verifying the circuits constructed by Bob,
and we can set m = 1. The OT protocol, too, can be
simplified, since the current implementation is secure
against malicious parties.5

4.3 Oblivious Transfer

Two OT variants were implemented thus far (the sys-
tem can be easily extended to employ more variants).
Both variants are based on the Diffie-Hellman prob-
lem (and are implemented over a group Zq, which is a
sub-group of prime order q of Z∗

p, where p is prime and



q|p−1). The first one is the 1-out-of-2 oblivious trans-
fer (OT 2

1 ) protocol due to Bellare and Micali [6], which
was adapted to using random oracles [7]. The sec-
ond protocol, which was proposed by Naor and Pinkas
in [30], is an optimization of the first one, that uses the
same gr mod p value for multiple OT executions (g is
a generator of the group Zq, r is a random exponent).
A detailed description of both protocols can be found
in [30]. Both these OT protocols are secure in the
random oracle model and were implemented using the
SHA-1 hash function. (There are constant-round OT
protocols secure in the standard model [2, 30]. The
SFE application requires multiple concurrent invoca-
tions of these protocols, but on the other hand it is
only required that the SFE implementation, and not
necessarily each OT invocation, provide both privacy
and correctness.)

5 Cryptographic Background

This section describes the rationale behind the choice
of specific cryptographic operations for Fairplay and
suggests several additional variants. We do not pro-
vide here proofs of the correctness and security of the
implementation, as it is mostly based on existing con-
structions.

The protocol we implemented provides security
guarantees which depend on the following three as-
sumptions:

1. SHA-1 is modeled as a random oracle.

2. The oblivious transfer protocol is secure (the se-
curity of the OT protocol can be based on the
computational Diffie-Hellman assumption [2, 30],
but we use random-oracle based protocols which
are more efficient).

3. Alice does not terminate the protocol before send-
ing Bob’s output to him.

We get the following guarantees:

• Bob is guaranteed that an interaction with a ma-
licious Alice is not different than an interaction
with the trusted third party, except for a negligible
error probability.

• Alice has the same guarantee with relation to Bob,
with error probability of 1/m.

Note that these guarantees means that (1) a mali-
cious party cannot learn more information about the
other party’s input than it can learn in the trusted
party model, and (2) a malicious party cannot change
the computed function. Also, if we are assured that
Bob does not change the circuit he provides to Alice
then his cheating probability is also negligible.

Garbling the circuit. The basic symmetric crypto-
graphic function that we use is SHA-1. We preferred
it to using a block cipher (such as AES) since it sup-
ports a variable input length. The encoding of the
circuit (garbling) can be implemented using a pseudo-
random function (as is described in detail, for exam-
ple, in [31]), where the output of the function is used
as a pad that masks the values in the table represent-
ing a gate in the circuit. We use the masking values
SHA-1(wi||k||x||y), SHA-1(wj ||k||x||y) for entry (x, y)
of the table of gate number k, whose input wires are
i and j. (Note that wires i and j could be input into
multiple gates.) The underlying security assumption
is that SHA-1 is pseudo-random function keyed by wi

or wj and applied to other parameters.

OT. The OT protocols are based on the random or-
acle model and the computational Diffie-Hellman as-
sumption. Alternative two-round OT protocols that
are secure in the standard model and use only O(1) ex-
ponentiations were described in [30, 2]. We preferred
not to use them in order to reduce the number of ex-
ponentiations.

Cut-and-choose. Bob commits to his garbled in-
puts before the cut-and-choose step. This is done in
order to prevent him from choosing his input based on
Alice’s choices in this step. We leave it for future work
to let Alice choose more than one circuit for evalua-
tion. This will reduce the cheating probability of Bob
to be exponentially small in the number of circuits
that are evaluated, but implementing this variant re-
quires Bob to prove that he provides the same input to
all circuits, and this step incurs additional overhead.
(An alternative method for verifying the garbled cir-
cuit constructed by Bob is to require him to prove,
in zero-knowledge, that the tables are correct. To the
best of our knowledge, this approach requires an even
higher overhead.)

Bob’s output. The protocol provides Alice with the
garbled values of Bob’s output wires. If the value of an
output wire should become known only to Bob (and
not to Alice) then she receives no information about
the relationship between actual and garbled values of
this wire. If the output is used by both Bob and Alice,
she receives hash values of the garbled values corre-
sponding to 0 and to 1. However, she is not able to
provide Bob with a garbled value that corresponds to a
different output than the one she computed, since this
would mean that she can invert the hash function.



6 Experimental results

The first, immediate contribution of a system such as
Fairplay is that it can provide answers to very basic,
concrete questions like:

• How much time does it take to execute the two-
party SFE protocol for the quintessential Million-
aires’ problem?

• What would be the time-penalty if the two ty-
coons in question were actually Billionaires and
not just Millionaires?

The experiments that we conducted using our sys-
tem gave a very definite answer, that even the tougher
Billionaires’ problem (i.e., using 32 bit inputs) can be
solved in very reasonable time. It took our system only
1.25 seconds to solve the Billionaires’ problem using
fast communication, and 4.01 seconds when commu-
nication was slow. More generally, in this paper we
report results for four functions, which produced cir-
cuits ranging in size from tens of gates to thousands
of gates. A summary of the various size parameters of
these four functions is shown in Table 1 (their SFDL
source code can be found in Fairplay’s web-site [28]).

Function Number of circuit gates
Total Inputs Alice inputs

AND 32 16 8
Billionaires 254 64 32
KDS 1229 486 6
Median 4383 320 160

Table 1: The four functions

The details of the four functions are as follows:

• AND - performs bit-wise AND on two registers.
The input size for both Alice and Bob is 8 bits.
Total circuit size is 32 gates, out of which 16 are
inputs and 16 are outputs.

• Billionaires - compares two integers. The input
size for both Alice and Bob is 32 bits. Total circuit
size is 254 gates, out of which 64 are inputs and
2 are outputs.

• Keyed Database Search (KDS) - Bob has a
database of 16 items, each item is keyed by a 6-bit
key and comprises of 24 data bits. Alice privately
retrieves the data of one item by specifying its key.
The input size for Bob is 480 bits and for Alice 6
bits. Total circuit size is 1229 gates, out of which
486 are inputs and 24 are outputs.

• Median - finds the median of two sorted arrays.
The input for both Alice and Bob are ten 16-bit

numbers. Total circuit size is 4383 gates, out of
which 320 are inputs and 32 are outputs.

The AND function was chosen as an example of the
simplest possible circuit, whose size is of the same or-
der as the number of its inputs. The KDS function
demonstrates a circuit in which the size of Alice’s in-
put (which defines the number of OTs) is much smaller
than either the number of Bob’s inputs or the number
of gates. The median function demonstrates a circuit
whose size is much greater than the number of inputs.

Communication vs. computation. Another im-
portant contribution of a working system is that it
enables a systematic, realistic investigation of the rel-
ative cost of its various ingredients. This can be done
by utilizing profiling tools, and by performing super-
vised experiments, in which the cost of the different
sub-components is measured in isolation. One spe-
cific question that we found interesting in this area is
the following: what is the relative cost of the public
key operations required by the two-party SFE proto-
col? Since this relative cost is affected by the cost of
communication, and since communication delays vary
dramatically in different environments, we conducted
our experiments in two extreme settings - LAN and
WAN. The LAN’s latency is 0.4 ms, and its effective
throughput is 617.8 MBPS (Mega bit per second). The
WAN’s latency is 237.0 ms, and its effective through-
put is 1.06 MBPS. By activating our system on the
four functions described above, and profiling it under
the LAN/WAN environments, we discovered that the
public key operations were responsible for 27%-77%
of the total delay in the LAN setting, while in the
WAN setting the relative cost of the public key opera-
tions was only 9%-42%. These results suggest that, at
least for some interesting functions, the relative cost
of the communication is rather significant, especially
in a WAN environment where communication is slow.
In light of this, we also calculated the slowdown fac-
tor caused by moving from LAN to WAN, which was
found to be at least 2.34 and at most 6.89.

Communication optimization using batching.
Communication batching means that instead of send-
ing k big integers (associated with different OTs) in
k separate messages, we aggregate them together and
send them in one big message. It is useful because of
the relatively large constant overhead associated with
any message being sent regardless of its size, and also
due to internal implementation details of TCP/IP. By
implementing and measuring the performance of two
variants of the SFE protocol, with and without com-
munication batching, we were able to assess its con-
tribution. The observed speedup factors due to com-
munication batching in a LAN setting were between



Function LAN WAN
IPCG CC OTs EV EET (sec) IPCG CC OTs EV EET (sec)

AND 1.5% 18.8% 79.5% 0.2% 0.41 0.2% 58.4% 41.4% 0.0% 2.57
Billionaires 3.2% 5.4% 91.1% 0.3% 1.25 0.8% 45.2% 53.9% 0.1% 4.01
KDS 40.4% 2.8% 54.1% 2.7% 0.49 5.9% 64.3% 29.4% 0.4% 3.38
Median 13.2% 7.2% 78.7% 0.9% 7.09 4.7% 45.8% 49.2% 0.3% 16.63

Table 2: Elapsed execution times and their breakdown into sub-tasks

1.89-2.72, while in a WAN setting they were between
2.11-8.75.

OT optimization. We have also implemented an
optimization technique for OT that was proposed by
Naor and Pinkas in [30], in which the sender uses the
same value of gr mod p for multiple OTs, improving
both computation and communication. The maximum
speedup factor of this optimization method that was
observed in our system was 1.32.

There are many additional optimization techniques
that may be considered, implemented and tested (e.g.,
turning multiple 1-out-of-2 OTs to a single 1-out-of-
n OT [30], or using computation batching of multiple
modular inverses). This is an area for future research
(see Section 8).

We conclude this section by presenting Table 2. This
table shows the elapsed execution times required for
the aforementioned functions in both LAN and WAN
settings, and their breakdown into four main sub-
tasks. These sub-tasks are: IPCG - initializations,
parsing and circuit garbling, CC - circuits communi-
cation, OTs - Oblivious Transfers, EV - circuit evalu-
ation. (Note that the cost of the OTs includes contri-
butions from both calculating public key operations,
and communicating their results back and forth.) The
results shown in Table 2 were obtained using the most
optimized method currently available in our system
(namely, communication batching and Naor-Pinkas
gr optimization with no communication/computation
tradeoff). The EET columns present the elapsed exe-
cution time (in seconds), which was required for Alice
to execute the entire two-party SFE protocol excluding
SFDL-to-SHDL compilation.6 The number of garbled
circuits for the cut-and-choose algorithm was set to
m = 2, and the size of the DL parameters p, q was
1024 and 160 bits, respectively. Both Alice and Bob
used Intel 2.4 GHz Linux machines. The system was
implemented in Java, and it used the TCP/IP pro-
tocol for communication via Java sockets. The mea-
surements were taken as the average of 100 repetitions
(10 for the Median function) of the protocol. All it-
erations used a single TCP/IP connection, which was
established in the beginning.

Part of the future work includes a more fine grained
analysis of the performance. Namely, expressing the

expected execution time as a function of the number
of OTs (Alice’s input bits), the number of gates, and
the security parameter m.

7 Related work

There are very few previous actual implementations of
secure computation, and even fewer automated com-
pilers that generate an implementation of a secure pro-
tocol from a program description in a higher level lan-
guage.

Kühne implemented a translator that takes a
trusted-party specification of a multi-party protocol
and generates a specification for running the proto-
col using the BGW paradigm [25]. (This implementa-
tion is based on the specific construction of Hirt and
Maurer [23].) However, that project does not have an
“evaluator” part, which performs a distributed imple-
mentation of the resulting BGW protocol.

MacKenzie et al. [27] implemented a compiler that
automatically generates protocols for secure two-party
computation that use arithmetic functions over groups
and fields of special form. The compiler receives a
specification of a protocol that uses a secret key, e.g.,
for signature generation or for decryption, and imple-
ments a threshold crypto protocol where the key is
shared between two parties and only the two of them
together can perform the protocol. The key is gen-
erated by a TTP and is given to the parties. Com-
pared to Fairplay, this is a compiler for a restricted
but important class of functions, which is particularly
suitable for applications where the secret key has to
be closely guarded using threshold cryptography. In
principle this type of functions can be implemented
by a Boolean circuit, but the result would be an over-
whelmingly large circuit.

An example of an automated security toolkit in a
different domain is AGVI, a toolkit for Automatic
Generation, Verification, and Implementation of Se-
curity Protocols [36]. AGVI receives as input a sys-
tem specification and security requirements, and au-
tomatically finds protocols for the specific application,
proves their correctness (using efficient search of a
space representing the protocol execution), and im-
plements them in Java.

TEP [3] is a secure multi-party computation system



that employs a trusted third party. The trusted plat-
form co-joins participants in a joint computation, pass-
ing authenticated information among participants over
guarded communication channels. TEP users need to
annotate their program with information flow labels in
order to automatically verify that no information on
any private data is leaked through the TEP channels
to other participants. In comparison, our system does
not employ a TTP, and does not require information
flow labels by the user.

The secure program partitioning technique of [40]
takes a user program written in a security-typed lan-
guage, and automatically provides a distributed par-
titioning of the program. The user annotated pro-
gram contains static information flow labels that spec-
ify which program components may use what data and
how. An automated compiler splits the program to
run on heterogeneously trusted hosts. Compared with
their approach, the secure program partitioning is ben-
eficial only for programs that naturally break into com-
municating components, in a manner dictated by the
user’s annotation.

8 Future Work

The current implementation of the secure two-party
computation system can be extended in many ways.

Improving the performance. The elapsed execu-
tion time is a function of the communication delay
and bandwidth, and of the processing time. Ideally
the network and the processor should run in parallel,
and none of them should be idle waiting for the other
one to finish its job. The current implementation does
not perform this optimization.

The main computational overhead is incurred by
running invocations of the oblivious transfer protocol.
It would be interesting to explore deployment of fur-
ther recent enhancements of OT, such as extending a
small number of OTs into a large number of OTs us-
ing symmetric cryptographic operations alone [24], or
using OT variants which are based on the hardness of
breaking RSA, rather than the DDH assumption.

Security against malicious parties. The basic
SFE protocol of Section 4 provides a weak security
against malicious parties. Namely, the cut-and-choose
method guarantees with probability 1/m that the cir-
cuit that Bob prepares is correct. Some additional
care must be taken if we want to reduce Bob’s cheat-
ing probability to be exponentially small in m (see,
e.g., [34]).

Fair termination. No implementation can prevent
a malicious party from aborting the protocol prema-
turely (e.g after learning its output and before the
other party learns its output).7 Although there is no

perfect solution for this issue and existing solutions
are quite complex, some solutions can be implemented
(e.g. [34]). We are currently extending our system with
fair termination mechanisms borrowing from [34].

Reactive secure computation. Reactive secure
computation is an SFE which consists of several steps,
where each step operates based on inputs from the par-
ties and a state information that it receives from the
previous step. For example, in each step the parties
could compare two numbers and receive the result of
the comparison, which they use to decide which in-
puts to provide to the following step. In addition, se-
cret state information is communicated from round to
round, and the inputs to all rounds are used by the
protocol for computing the output of the final round
(but should otherwise remain hidden from the parties).
This scenario, as well as appropriate security defini-
tions and constructions, was described in [10, 12]. (A
protocol that uses reactive computation for securely
computing the median, in the presence of malicious
parties, was presented in [1].) In order to implement
secure reactive computation each step should transfer
a secret and authenticated state-information string to
the following step. In the two-party case this property
can be enforced using a modified implementation of
Yao’s protocol, see [1].

Integrating other SFE primitives. While the
generic construction of Yao can be used to implement
any functionality, more efficient constructions can be
designed for specific tasks (e.g. for bignum opera-
tions, computing comparisons or intersections, evalu-
ating polynomials, or querying a database). A secure
protocol for a more complex task can use a circuit
whose inputs are the results of specialized construc-
tions (for example, the protocol in [11] runs a circuit
that computes statistics based on the results of secure
database queries, and the protocol in [26] runs a cir-
cuit that uses uses the results of oblivious polynomial
evaluation).

Multi-party computation. The system we built
implements secure computation between two parties.
There is also a large body of research on secure multi-
party computation, for either combinatorial or alge-
braic circuits, and using different trust assumptions
(see e.g. [21, 8, 5]). A natural next step is to im-
plement the compilation paradigm in the multi-party
scenario. An additional open challenge is to devise fair
termination techniques for multiple participants.
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1An alternative definition uses simulation. The two defini-
tions are identical if the parties are assumed to be semi-honest,
but the trusted party definition is preferable for the case of ma-
licious parties and for defining secure composition of protocols.

2While in principle logarithmic overhead should suffice, it
seems that this is still not practical using current techniques.

3Bob’s cheating probability can be reduced to be exponen-
tially small in m if the protocol lets Alice check a constant frac-
tion (e.g. m/2) of the circuits that Bob constructed, evaluate
the remaining (m/2) circuits and output the majority result. In
that case, however, the protocol must have additional, measures
for ensuring that Bob provides the same input to all the circuits
evaluated by Alice (see e.g. [34]).

4Care must be taken to ensure that a circuit can only be
opened in a single way. In our implementation this depends on
the assumption that it is infeasible to find α, α′, β, β′ such that
H(α)⊕H(α′) = H(β)⊕H(β′), where H is SHA-1.

5An OT protocol for semi-honest parties is very simple: Alice
sends to Bob two strings, one of them random and the other
being the public key corresponding to a private key of her choice.
Bob encrypts each of the input items using the corresponding
string, and Alice is able to decrypt only one of them.

6Compilation can and should be done by the two parties off-
line.

7On the other hand, a premature termination of the protocol
by one party is detected by the other party, which in many
scenarios can then take measures against the corrupt party. This
is different than other types of malicious activity which are not
easily detected.
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A SFDL Overview

Programs in SFDL instruct a virtual ”trusted party”
what to do. The SFDL compiler compiles it into a
”Boolean circuit” low level format that instructs a true
client/server pair what to do. When the client/server
pair run the compiled form of the program, they imple-
ment correctly and securely the fictional trusted party.

A.1 Program Structure

program <program-name> {
<type declarations>
<function declarations>

}

In the first part of a program, the type declarations,
the programmer defines the data types that he will
use. The data types supported are Booleans, inte-
gers, structs (records), and arrays. Of particular im-
portance are the following data types that must be
defined in every program:

1. AliceInput - the data type of Alice’s input

2. BobInput - ditto for Bob

3. AliceOutput - the data type of Alice’s output

4. BobOutput - ditto for Bob

The data types Input and Output are automatically
defined for each program to be the structures of both
inputs and both outputs, respectively:

1. type Input = struct {
AliceInput alice, BobInput bob};

2. type Output = struct {
AliceOutput alice, BobOutput bob};

In the second part of the program, the function def-
initions, the programmer defines a sequence of func-
tions. Each function may call the previous ones (but
not later ones nor itself). The main functionality of
the program is the evaluation of the last function de-
fined. This function must be called output and must
receive a single parameter of type Input and return a
value of type Output.

A.2 Type declarations

Constant definitions may appear in the <type
declarations> segment. The syntax is standard, e.g.:

const numberOfBits = 16;

Data types can be defined using the type command.
Here are the supported data types:

1. Boolean: false/true

2. Integer types: e.g. Int<30> - a 30-bit integer
(signed). Any number of bits is allowed.

3. Enumerated types: e.g. enum {red, blue,
green}. Enumerated types are assigned the
smallest possible number of bits (in this case 2).

4. Structures: e.g. struct { Boolean ranked,
Int<7> level }

5. Arrays: e.g. Boolean[7] - has entries indexed 0
.. 6

New data types can be defined using the type state-
ment:

1. type Short = Int<16>;

2. type Byte = Boolean[8];

3. type Void = struct {};

4. type Color = enum {red, blue, green};

5. type Pixel = struct {Color color,
Int<10>[2] coordinates};

A.3 Function Declarations

Function Structure. The function header defines
the number of parameters to the function, their types,
and the return data type. Function must always re-
turn a value. After the header come local variable
declarations, and finally the statements themselves.

function <return data type>
<function name>
( <arg1 type> <arg1 name>, ... )

{



<var declarations>
<function body>

}

Function values are returned Pascal-style, by assign-
ing a value to a variable with the function’s name.
E.g.:

function Int<9> double(Int<8> x) {
double = x + x;

}

Variable Declarations.

var <type> <var name>, <var name>,
..., <var name>;

For example:

1. var Int<10> xCoord, yCoord;

2. var Color[8] palette;

All variables are initialized to 0.

Expressions. Expressions are used for computing
values. They are used in assignment statements, to
denote conditions, to send arguments to functions, etc.
Expressions are built from atomic values using opera-
tions. The following are the atomic values allowed:

1. A Boolean constant: false, true.

2. An integer constant: e.g. 34, -56, 0,
123456789123456789.

3. A variable name: e.g. i, price.

4. A field in a struct using x.y notation. (Here x is
a struct, and y is a name of a field defined in that
struct.)

5. An array entry using x[i] notation. (Here x is an
array and i is an integer expression.)

The following operators are defined:

1. +,- : addition and subtraction (in 2’s comple-
ment). Accepts k-bit long integers and return a
(k+1)-bit long result.

2. &, |, ,̃̂ : and, or, not, xor bitwise Boolean oper-
ations. Accept k-bit long arguments and return
k-bit long arguments.

3. <,>,==, >=, <=, ! = : 2’s complement compar-
ison operators. Accept k-bit long arguments and
return a 1-bit result.

4. function call: e.g. f(x, y), where f is a previously
defined function and x, y, .. are arbitrary expres-
sions that are passed as parameters by value.

Narrow and wide operands may be combined in an
operation, and the narrower value is always widened
using sign-extension.

Commands.

1. Assignment: x = <expression>; – any expression
may appear on the RHS, and any ”lvalue” may
appear on the LHS. An lvalue is a variable, a field
of a struct, or an array entry.

2. If: if (<Boolean expression>) <statement>

3. If-else: if (<Boolean expression>) <statement>
else <statement>

4. For: for <index>=<low val> .. <high val>
<statement> − the range of the for loop must
be a compile-time constant.

5. block { statement, . . ., statement }


