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ABSTRACT
In this paper we describe two families of algorithms for hands-free
speech recognition using microphone arrays. Enhancement-based
approaches use a cascade of independent processing blocks to per-
form speech enhancement followed by speech recognition. We dis-
cuss the reasons why this approach may be sub-optimal and motivate
the need for a solution that tightly integrates all processing blocks
into a common unified framework. This leads to a second family
of algorithms called unified approaches which considers all process-
ing stages to be components of a single system that operates with
the common goal of improved recognition accuracy. We describe
several examples of such algorithms that have been shown to outper-
form more traditional signal-processing-based approaches. In doing
so, we hope to convey the benefits of performing hands-free speech
recognition in this manner and motivate further research in this area.

Index Terms— microphone array processing, speech recogni-
tion, beamforming

1. INTRODUCTION

Current automatic speech recognition (ASR) technology has pro-
gressed to the point where applications are being deployed for use
in real-world environments. There is a class of these applications
for which the use of a close-talking microphone by the user is un-
desirable, for reasons of either safety or convenience. In such sce-
narios, because the microphone resides some distance from the user,
the captured speech signal is subject to distortions caused by envi-
ronmental noise and reverberation. In these situations, the use of a
microphone array has been proposed as a means of sound capture
that can enhance the captured signal, and thereby reduce the detri-
mental effect that these distortions have on the performance of the
downstream speech recognition system.

One of the most challenging aspects of distant-talking speech
recognition is variety of deployment environments encountered. For
example, a speech recognition system in an automobile, e.g. [1],
must be robust to significant amounts of noise but only low reverber-
ation. On the other hand, a meeting room environment typically has
a much higher SNR but has moderate to high amounts of reverbera-
tion and the additional challenge of overlapping talkers [2]. Informa-
tion kiosks [3] or mobile devices [4] can be used in highly variable
environments which create especially challenging scenarios.

In this paper, we first review the most important and commonly
used traditional microphone array processing algorithms. These
were all originally developed for signal enhancement applications,
and have been applied by many researchers to recognition tasks.
Algorithms applied in this way can be considered enhancement-
based approaches to improving recognition performance. That is,

by generating cleaner speech signals, improved speech recognition
accuracy can be obtained.

Performing microphone-array-based speech recognition in this
manner has been shown to give improvements in recognition accu-
racy over single channel techniques. However, we argue that because
speech enhancement and speech recognition are two fundamentally
different tasks, performing hands-free speech recognition using an
enhancement-based approach is inherently sub-optimal. This mis-
match creates a gap in performance between current performance
and what may be possible with a more optimal approach.

The remainder of the paper is spent discussing research that at-
tempts to bridge this gap. We describe recent work from a vari-
ety of researchers that employs much tighter integration between the
front-end and back-end processing and as a result, is often able to
obtain significant improvements over more traditional approaches.
We describe these algorithms as unified approaches to hands-free
speech recognition. We show that these unified approaches can op-
erate at a variety of points along the processing chain, including the
beamforming, post-filtering, feature extraction, or decoding stages.
Finally, we discuss some computational considerations and some
general principles for training and evaluating a speech recognition
system for hands-free environments.

2. ENHANCEMENT-BASED APPROACHES TO
HANDS-FREE ASR

The most common method of performing speech recognition using a
microphone array is to apply either a fixed or adaptive beamforming
algorithm to the multi-channel captured audio, followed by a post-
filtering operation on the resulting output signal. The output signal
from the post-filter is then passed to the recognizer for feature ex-
traction and decoding.

2.1. Fixed beamformers

A fixed beamformer is one whose weights are precomputed and held
fixed during deployment. The weights are independent of the ob-
served target and/or interference signals, and depend only on the as-
sumed source and/or interference location. The most common fixed
beamformers used for speech recognition applications are the delay-
and-sum beamformer (DS) and the superdirective (SD) beamformer
[5].

Both of these beamformers can be derived as special cases of
the minimum variance distortion response (MVDR) beamformer. In
the MVDR beamformer, the weights are chosen so as to minimize
the output power of the array subject to a zero-distortion constraint in
the look direction. The closed-form MVDR solution can be obtained



based solely on knowledge of the look direction and an assumed
distribution of the ambient noise. The noise is typically assumed to
be zero mean, so its distribution can be completely defined by its
covariance matrix.

When a spherical or cylindrical coherence function is substituted
for the noise covariance matrix, the MVDR beamformer is equiva-
lent to the superdirective beamformer (SD). When the noise is as-
sumed to be equal power but uncorrelated across microphones, the
noise covariance matrix is a scaled version of the identity matrix.
Using such a model in the MVDR solution results in the delay-and-
sum beamformer.

There are numerous examples of both the delay-and-sum and
superdirective beamformers used for speech recognition applications
in the literature, e.g. [6].

2.2. Adaptive beamformers

Typically, the location of discrete noise sources, such as a radio or
an interfering talker is unknown a priori. In these scenarios, it may
be advantageous to use adaptive beamformers. The most common
adaptive beamformer is the Generalized Sidelobe Canceller (GSC)
[7]. The GSC is similar to the fixed MVDR beamformer in that
it tries to minimize output power subject to the same distortionless
constraint in the direction of the target signal. However, the mini-
mization is done adaptively based on observed samples. This gives
the array the ability to steer spatial nulls in the direction of discrete
interference sources.

While adaptive beamformers have a theoretical advantage over
fixed beamformers, the improvements in recognition accuracy over
fixed beamformers is typically not that significant [8]. This may
be because of reverberation which breaks the assumption of single
source and interference directions, source localization errors which
result in signal cancellation, and other reasons [9]. As a result,
adaptive beamformers have been applied to speech recognition tasks
[10, 11] but are less widespread than their fixed beamformer coun-
terparts.

2.3. Post-filtering

While these beamforming algorithms can reduce the noise in the re-
ceived signal significantly, they are incapable of removing the noise
entirely in any realistic environment. As a result, the output signal
generated by a beamforming stage is typically processed with a sin-
gle channel post-filter. These filters can be based on conventional
single channel speech enhancement algorithms, e.g. Wiener filter-
ing or spectral subtraction, or can exploit information from all array
channels [6, 12]. In [6], significant gains in recognition accuracy
were obtained using a post-filter after a fixed superdirective beam-
former.

3. LIMITATIONS OF ENHANCEMENT-BASED
APPROACHES

In general, traditional beamformers have been applied successfully
to farfield speech recognition tasks, but the improvements in recog-
nition accuracy have not been as great as improvements in signal to
noise ratio (SNR) or perceptual quality might indicate. In addition,
they have also not performed as well as simple feature enhancement
algorithms. In this section, we propose two potential explanations
for this sub-optimal performance.

3.1. Beamformer constraints are too strict

Almost all traditional beamformers applied to speech processing and
recognition do not utilize any prior information about the source sig-
nal. As a result, to ensure there is no distortion caused in the received
signal, they impose a requirement that the beamformer must pro-
duce unity gain and zero phase distortion in the assumed direction
of arrival. While a perfectly reasonable assumption, there are two
reasons why it is perhaps too strong for speech recognition applica-
tions. First, the features used by most state-of-the-art recognizers,
e.g. MFCC or PLP features, are derived from the magnitude of the
spectrum only. The phase information is thrown away, and therefore,
a requirement of zero phase distortion is actually unnecessary.

In addition, most recognition systems perform some version of
Cepstral Mean Normalization (CMN). This technique removes any
spectral tilt, i.e. linear channel distortion, from an input sequence
of feature vectors. Therefore, the requirement for unity gain on the
output is also perhaps unnecessary.

Thus, it is possible that requiring the beamformer to enforce a
constraint that has little bearing on recognition accuracy may result
in sub-optimal usage of the beamformer parameters. Of course, the
proper way to design a beamforming algorithm that suitably removes
or weakens these constraints remains an open and interesting area of
research.

3.2. Objective functions are mismatched

Most traditional microphone array processing methods were devel-
oped as extensions of narrowband signal enhancement algorithms.
The goal of these algorithms was to enhance the received signal that
was corrupted by noise or multi-path effects during transmission and
as such, objective criteria based on SNR, or squared error of the
waveform or spectrum was appropriate. On the other hand, speech
recognition is a pattern recognition task that uses a maximum like-
lihood criterion to hypothesize a word sequence based on a set of
statistical models (HMMs) and a given sequence of input features
derived from the waveform. Such a mismatch in objective func-
tions means that enhancing the output signal does not necessarily
improve speech recognition performance. The array algorithm can
only be expected to do so if its objective function matches that of
the recognizer, i.e. its output generates a sequence of feature vectors
that maximizes, or at least increases, the likelihood of the correct
transcription, relative to other hypotheses.

4. UNIFIED APPROACHES TO HANDS-FREE ASR

In the previous section, we described potential reasons why tra-
ditional enhancement-based approaches may be sub-optimal for
speech recognition tasks. We now turn our attention to several
recent algorithms that are based on the notion that better perfor-
mance can be obtained if the different processing blocks involved
in a microphone-array-based speech recognition system operate in a
more unified manner.

4.1. Array processing methods

As described in Section 3, the optimal set of array parameters are
those that result in feature vectors that give the correct word se-
quence the highest likelihood. Finding this set of parameters is the
goal of the LIMABEAM family of algorithms [13, 14]. In these
algorithms, the array parameters are chosen so as to maximize the
likelihood of the correct word sequence, represented by the most



likely state sequence that corresponds to the correct transcription.
LIMABEAM uses an unconstrained beamformer optimized using
gradient-based techniques.

In reality, the correct state sequence is unknown, so two so-
lutions are proposed. The first uses LIMABEAM as a calibration
operation under the assumption that the user speaks an enrollment
utterance with a known transcription. In the second approach, the
state sequence is treated as a hidden variable and optimized using
a generalized EM algorithm. In practice, the E-step is simplified
by extracting the single best state sequence based on the current set
of array parameters. The M-step then updates the array parameters
based on this state sequence.

A speech recognition model is also used for array parameter op-
timization in the phase-based masking algorithm described in [15].
The Phase Error Filter (PEF) is constructed based on the deviation
of the observed phase difference from the expected phase difference
for a given direction of arrival. As with other masking algorithms,
there is a tradeoff between noise reduction and musical noise, and
in the PEF, this tradeoff is controlled by a single parameter. The au-
thors show that different values are optimal for different SNRs and
propose a recognizer-based method for selecting the optimal value
automatically.

The authors use a Gaussian mixture model (GMM) in the cep-
stral domain in order to optimize this parameter for a given utterance.
The GMM can be considered a simplified speech recognition system,
with all Gaussians merged into a single state. As in Unsupervised
LIMABEAM, the target state sequence is unknown a priori and a
generalized EM algorithm is derived. Interestingly, the authors show
that convergence can be obtained after only a few iterations, some-
thing that was not observed in the LIMABEAM algorithms. This
approach is shown to outperform both a generic DS beamformer and
the DS beamformer followed by a Wiener post-filter.

4.2. Post-filtering methods

As described in Section 2.3, a post-filter is often applied to the array
output signal for further noise suppression. This post-filter would
be then followed by feature extraction in speech recognition appli-
cations.

However, significant gains can be obtained by replacing the
post-filter before feature extraction by a feature compensation al-
gorithm after feature extraction. Feature compensation algorithms
typically compute the MMSE estimate of the clean speech feature
vector given the observed noisy feature vector and a prior model of
clean speech. Several researchers have shown significant gains in
recognition accuracy in array contexts using feature compensation
algorithms such as CDCN and VTS [8, 11].

4.3. Acoustic modeling & decoding methods

Finally, a third category of unified approaches to hands-free speech
recognition perform the integration in the acoustic models of the
recognition engine itself. In this section we describe two different
approaches, one that primarily addresses additive noise and one that
addresses reverberation.

In [16] an algorithm is described that closely couples a GSC in
the acoustic front-end with HMM compensation in the recognizer.
This is performed by running a robust GSC in order to generate an
enhanced target signal. However, the system also takes the output
of the adaptive filters that follow the blocking matrix and uses this
as a running estimate of noise in the received signal. Feature extrac-
tion is performed on both the estimated target and noise signals, and

both sets of features are passed to the the recognizer, where VTS
model compensation is performed. This approach is intuitively ap-
pealing as it works in the model domain of the recognizer which has
been shown to outperform front-end based compensation schemes.
It also takes advantage of the fact that the “lower branch” of the GSC
generates an accurate estimate of the noise with the source signal at-
tenuated. This approach is shown to provide good performance in
a task with overlapping talkers, demonstrating its ability to handle
non-stationary interference sources.

All of the methods discussed thus far have obtained improve-
ments in recognition accuracy by more closely aligning the objective
functions of multiple processing blocks. In contrast, the algorithm
proposed in [17] proposes a change in how a single block operates,
namely the HMM decoding. In this work, the convolution of the
clean speech and room impulse response that is assumed to occur
in reverberant speech is modeled in the mel spectral (melspec) do-
main. That is, the reverberant melspec features are assumed to have
been generated from the convolution of the melspec features of the
clean speech and the melspec representation of the room impulse
response. The decoding algorithm computes the optimal state se-
quence over clean speech models given a sequence of melspec fea-
ture vectors computed from an observed reverberant signal and the
melspec representation of the room impulse response, trained offline
prior to decoding.

There are several interesting aspects of this approach. First, like
the GSC+VTS algorithm, it does not rely on an estimate of the clean
speech features prior to recognition. In addition, small perturbations
in the room impulse response which make dereverberation a diffi-
cult task in the signal domain are smoothed out by working in the
feature domain. The algorithm was evaluated on various rooms with
different reverberation times and obtained performance that exceeds
conventional decoding using either clean speech models or matched
condition models trained on reverberant speech.

5. OTHER CONSIDERATIONS

5.1. Complexity of Unified Approaches

In general, the unified approaches described in Section 4 are sig-
nificantly more complex than the traditional algorithms in Section
2 both from a computational and implementation standpoint. One
reason for the additional computational complexity is that the sim-
ple linear relationship between the clean speech, additive noise, and
reverberation that exists in the signal domain becomes a highly non-
linear relationship in the feature domain. This typically results in
algorithms that require iterative nonlinear optimization methods that
use gradients that relate parameters through multiple layers of inter-
mediate variables. The complexity in implementation comes from
the simple fact that state-of-the-art speech recognizers are compli-
cated software engineering systems. Implementing an algorithm that
is tightly integrated to such a system can be a significant engineering
challenge. While both of these are potential limitations of unified
approaches, they are also avenues for improvement and further re-
search.

5.2. Training and testing a speech recognizer for distant-talking
ASR

Speech recognition systems perform best when the speech observed
in deployment is closely matched to that seen in the training data.
Because the exact conditions that will occur in deployment are un-
known, multi-style training is typically performed, where the recog-



nizer is trained using data from a mixture of likely environments.
For all recognition tasks, this gives performance that is far superior
to that obtained by training the recognizer using clean speech data,
e.g. [18]. Collecting actual speech data in the field is of course
optimal but this is expensive and time-consuming. Using recorded
impulse responses and recorded samples of ambient noise, it is pos-
sible to easily create a synthetic training data that will generate good
quality acoustic models [19].

In addition, further improvements can be obtained by processing
the training data through the same pipeline that will be performed in
deployment. For hands-free speech recognition, this may include
segmentation (voice activity detection), sound source localization,
beamforming, postfiltering, and other stages. This Noise Adaptive
Training (NAT) enables the recognizer to learn how to appropriately
model the joint effect of all front-end processing on the speech signal
[20].

When evaluating an algorithm for hands-free speech recogni-
tion, it is important to know how it performs in the context of any
other recognizer-based compensation schemes that may be applied.
For example, in evaluation systems built for large vocabulary meet-
ing recognition tasks, the processing during decoding typically in-
volves many compensation steps, such as speaker adaptation and
vocal tract length normalization [2]. Therefore, it is valuable to com-
pare the performance of new algorithms for hands-free speech recog-
nition to both existing enhancement-based approaches described in
Section 2 but also to these well-known recognizer-based compensa-
tion schemes. Hands-free algorithms that generate complementary
improvements to these existing recognizer-based techniques are es-
pecially valuable.

6. CONCLUSION

In this paper we described two families of algorithms for hands-
free speech recognition using microphone arrays. Enhancement-
based approaches use a cascade of independent processing blocks
to perform recognition. In contrast, unified approaches consider all
processing stages to be components of a single system that oper-
ates with the common goal of improved recognition accuracy. By
operating in this unified manner, these algorithms have bridged the
gap between the previously disparate processing stages involved in
hands-free speech recognition. In doing so, they have also begun to
bridge the gap in performance between hands-free speech recogni-
tion systems and close-talking systems. We believe that further re-
search in this direction will lead to continued improvement in hands-
free speech recognition performance.

7. REFERENCES

[1] Y. Grenier, “A microphone array for car environments,” in
Proc. ICASSP, San Francisco, CA, Mar. 1992.

[2] T. Hain, L. Burget, J. Dines, G. Garau, M. Karafiat, M. Lincoln,
J. Vepa, and V. Wan, “The AMI system for the transcription of
speech in meetings,” in Proc. ICASSP, Honolulu, Hawaii, Apr.
2007.

[3] J. L. Gauvain, J. J. Gangolf, and L. Lamel, “Speech recognition
for an information kiosk,” in Proc. ICSLP, Philadelphia, PA,
Oct. 1996, pp. 849–852.

[4] A. Acero, N. Bernstein, R. Chambers, Y.-C. Ju, X. Li, J. Odell,
P. Nguyen, O. Scholz, and G. Zweig, “Live search for mobile:
web services by voice on the cellphone,” in Proc. ICASSP, Las
Vegas, NV, Apr. 2008.

[5] M. Brandstein and D. Ward, Eds., Microphone Arrays - Sig-
nal Processing Techniques and Applications, Springer-Verlag,
New York, 2001.

[6] I. A. McCowan and H. Boulard, “Microphone array postfilter
based on noise field coherence,” IEEE Trans. Speech Audio
Processing, vol. 11, no. 6, pp. 709–716, Nov. 2003.

[7] L. J. Griffiths and C. W. Jim, “An alternative approach to lin-
early constrained adaptive beamforming,” IEEE Trans. Anten-
nas Propagat., vol. AP-30, no. 1, pp. 27–34, Jan. 1982.

[8] M. L. Seltzer, Microphone Array Processing for Robust Speech
Recognition, Ph.D. thesis, Carnegie Mellon University, Pitts-
burgh, PA, July 2003.

[9] J. Bitzer, K. U. Simmer, and K.-D. Kammeyer, “Theoreti-
cal noise reduction limits of the generalized sidelobe canceller
(GSC) for speech enhancement,” in Proc. ICASSP, Phoenix,
AZ, May 1999, vol. 5, pp. 2965–2968.

[10] I. A. McCowan, D. C. Moore, and S. Sridharan, “Near-field
adaptive beamformer for robust speech recognition,” Digital
Signal Processing, vol. 12, no. 1, pp. 87–106, Jan. 2002.

[11] W. Herbordt, T. Horiuchi, M. Fujimoto, T. Jitsuhiro, and
S. Nakamura, “Noise-robust hands-free speech recognition and
communication on PDAs using microphone array technology,”
in Proc. ASRU, San Juan, Puerto Rico, Nov. 2005.

[12] C. Marro, Y. Mahieux, and K. U. Simmer, “Analysis of noise
reduction and dereverberation techniques based on microphone
arrays with postfiltering,” IEEE Trans. Speech Audio Process-
ing, vol. 6, no. 3, pp. 240–259, May 1998.

[13] M. L. Seltzer, B. Raj, and R. M. Stern, “Likelihood maximiz-
ing beamforming for robust hands-free speech recognition,”
IEEE Trans. Speech Audio Processing, vol. 12, no. 5, pp. 489–
498, Sept. 2004.

[14] M. L. Seltzer and R. M. Stern, “Subband likelihood maximiz-
ing beamforming for speech recognition in reverberant envi-
ronments,” IEEE Trans. Audio Speech Lang. Processing, vol.
14, no. 6, pp. 2109–2121, Nov. 2006.

[15] G. Shi, P. Aarabi, and H. Jiang, “Phase-based dual microphone
speech enhancement using a prior speech model,” vol. 15, no.
1, pp. 109–118, Jan. 2007.

[16] X. Zhao and Z. Ou, “Closely-coupled array processing
and model-based compensation for microphone array speech
recognition,” vol. 15, no. 3, pp. 1114–1122, Mar. 2007.

[17] A. Sehr, M. Zeller, and W. Kellermann, “Distant-talking
continuous speech recognition based on a novel reverberation
model in the feature domain,” in Proc. Interspeech, Pittsburgh,
PA, Sept. 2006.

[18] H. G. Hirsch and D. Pearce, “The aurora experimental frame-
work for the performance evaluations of speech recognition
systems under noisy condidions,” in ISCA ITRW ASR, Paris,
France, Sept. 2000.

[19] D. Giuliani, M. Matassoni, M. Omologo, and P. Svaizer,
“Training of HMM with filtered speech material for hands-free
recognition,” in Proc. ICASSP, Phoenix, AZ, Mar. 1999.

[20] L. Deng, A. Acero, M. Plumpe, and X. Huang, “Large vocabu-
lary speech recognition under adverse acoustic environments,”
in Proc. ICSLP, Beijing, China, Oct. 2000.


