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Chapter 1
Roles, Stacks, Histories: A Triple for Hoare

Johannes Borgström1, Andrew D. Gordon1, and Riccardo Pucella2

Abstract Behavioural type and effect systems regulate properties such as adherence
to object and communication protocols, dynamic security policies, avoidance of race
conditions, and many others. Typically, each system is based on some specific syn-
tax of constraints, and is checked with an ad hoc solver. Instead, we advocate types
refined with first-order logic formulas as a basis for behavioural type systems, and
general purpose automated theorem provers as an effective means of checking pro-
grams. To illustrate this approach, we define a triple of security-related type systems:
for role-based access control, for stack inspection, and for history-based access con-
trol. The three are all instances of a refined state monad. Our semantics allows a
precise comparison of the similarities and differences of these mechanisms. In our
examples, the benefit of behavioural type-checking is to rule out the possibility of
unexpected security exceptions, a common problem with code-based access control.

1.1 Introduction

1.1.1 Behavioural Type Systems

Type-checkers for behavioural type systems are an effective programming language
technology, aimed at verifying various classes of program properties. We consider
type and effect systems, typestate analyses, and various security analyses as be-
ing within the class of behavioural type systems. A few examples include memory
management (Gifford and Lucassen 1986), adherence to object and communication
protocols (Strom and Yemini 1986; DeLine and Fähndrich 2001), dynamic security
policies (Pistoia et al. 2007b), authentication properties of security protocols (Gor-
don and Jeffrey 2003), avoidance of race conditions (Flanagan and Abadi 1999),
and many more.

1Microsoft Research ·2Northeastern University

3



4 Johannes Borgström, Andrew D. Gordon, and Riccardo Pucella

While the proliferation of behavioural type systems is a good thing—evidence
of their applicability to a wide range of properties—it leads to the problem of frag-
mentation of both theory and implementation techniques. Theories of different be-
havioural type systems are based on a diverse range of formalisms, such as cal-
culi of objects, classes, processes, functions, and so on. Checkers for behavioural
type systems often make use of specialised proof engines for ad hoc constraint lan-
guages. The fragmentation into multiple theories and implementations hinders both
the comparison of different systems, and also the sharing of proof engines between
implementations.

We address this fragmentation. We show three examples of security-related be-
havioural type systems that are unified within a single logic-based framework.
Moreover, they may be checked by invoking the current generation of automated
theorem provers, rather than by building ad hoc solvers.

1.1.2 Refinement Types and Automated Theorem Proving

The basis for our work is the recent development of automatic type-checkers for pure
functional languages equipped with refinement types. A refinement type {x : T |C}
consists of the values x of type T such that the formula C holds. Since values may
occur within the formula, refinement types are a particular form of dependent type.
Variants of this construction are referred to as refinement types in the setting of
ML-like languages (Freeman and Pfenning 1991; Xi and Pfenning 1999; Flanagan
2006), but also as subset types (Nordström et al. 1990) or set types (Constable et al.
1986) in the context of constructive type theory, and predicate subtypes in the setting
of the interactive theorem prover PVS (Rushby et al. 1998).

In principle, type-checking with refinement types may generate logical verifica-
tion conditions requiring arbitrarily sophisticated proof. In PVS, for example, some
verification conditions are implicitly discharged via automated reasoning, but often
the user needs to suggest an explicit proof tactic.

Still, some recent type-checkers for these types use external solvers to dis-
charge automatically the proof obligations associated with refinement formulas.
These solvers take as input a formula in the syntax of first-order logic, including
equality and linear arithmetic, and attempt to show that the formula is satisfiable.
This general problem is known as satisfiability modulo theories (SMT) (Ranise and
Tinelli 2006); it is undecidable, and hence the solvers are incomplete, but remark-
able progress is being made.

Three examples of type-checkers for refinement types are SAGE (Flanagan
2006; Gronski et al. 2006), F7 (Bengtson et al. 2008), and Dsolve (Rondon et al.
2008). These type-checkers rely on the SMT solvers Simplify (Detlefs et al. 2005),
Z3 (de Moura and Bjørner 2008), and Yices (Dutertre and de Moura 2006).

Our implementation experiments are based on the F7 typechecker, which checks
programs in a subset of the Objective Caml and F# dialects of ML against a type
system enhanced with refinements. The theoretical foundation for F7 and its type
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system is RCF, which is the standard Fixpoint Calculus (FPC, a typed call-by-value
λ -calculus with sums, pairs, and iso-recursive types) (Plotkin 1985; Gunter 1992)
augmented with message-passing concurrency and refinement types with formulas
in first-order logic.

1.1.3 RIF: Refinement Types meet the State Monad

Moggi (1991) pioneered the state monad as a basis for the semantics of imperative
programming. Wadler (1992) advocated its use to obtain imperative effects within
pure functional programming, as in Haskell, for instance. The state monad can be
written as the following function type, parametric in a type state, of global impera-
tive state.

M(T ), state→ (T × state)

The idea is that M(T ) is the type of a computation that, if it terminates on a given
input state, returns an answer of type T , paired with an output state.

With the goal of full verification of imperative computations, various authors,
including Filliâtre (1999) and Nanevski et al. (2006), consider the state monad of
the form below, where P and Q are assertions about state. (We elide some details of
variable binding.)

MP,Q(T ), (state | P)→ (T × (state | Q))

The idea here is that MP,Q(T ) is the type of a computation returning T , with precon-
dition P and postcondition Q. More precisely, it is a computation that, if it terminates
on an input state satisfying the precondition P, returns an answer of type T , paired
with an output state satisfying the postcondition Q. Hence, one can build frame-
works for Hoare-style reasoning about imperative programs (Filliâtre and Marché
2004; Nanevski et al. 2008), where MP,Q(T ) is interpreted so that (state | P) and
(state |Q) are dependent pairs consisting of a state together with proofs of P and Q.
(The recent paper by Régis-Gianas and Pottier (2008) on Hoare logic reasoning for
pure functional programs has a comprehensive literature survey on formalizations
of Hoare logic.)

In this paper, we consider an alternative reading: let the refined state monad be
the interpretation of MP,Q(T ) where (state | P) and (state | Q) are refinement types
populated by states known to satisfy P and Q. In this reading, MP,Q(T ) is simply
a computation that accepts a state known to satisfy P and returns a state known to
satisfy Q, as opposed to a computation that passes around states paired with proof
objects for the predicates P and Q.

This paper introduces and studies an imperative calculus in which computations
are modelled as Fixpoint Calculus expressions in the refined state monad MP,Q(T ).
More precisely, our calculus, which we refer to as Refined Imperative FPC, or RIF
for short, is a generalization of FPC with dependent types, subtyping, global state
accessed by get and set operations, and computation types refined with precondi-
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tions and postconditions. To specify correctness properties, we include assumptions
and assertions as expressions. The expression assume(s)C adds the formula C{M/s},
where M is the current state, to the log, a collection of formulas assumed to hold.
The expression assert(s)C always returns at once, but we say it succeeds when the
formula C{M/s}, where M is the current state, follows from the log, and otherwise
it fails. We define the syntax, operational semantics, and type system for RIF, and
give a safety result, Theorem 1, which asserts that safety (the lack of all assertion
failures) follows by type-checking. This theorem follows from a direct encoding of
RIF within RCF, together with appeal to a safety theorem for RCF itself. The ap-
pendix includes the direct encoding of our calculus RIF within the existing calculus
RCF.

Our calculus is similar in spirit to HTT (Nanevski et al. 2006) and YNot
(Nanevski et al. 2008), although we use refinement types for states instead of depen-
dent pairs, and we use formulas in classical first-order logic suitable for direct proof
with SMT solvers, instead of constructive higher-order logic. Another difference is
that RIF has a subtype relation, which may be applied to computation types to, for
example, strengthen preconditions or weaken postconditions. A third difference is
that we are not pursuing full program verification, which typically requires some
human interaction, but instead view RIF as a foundation for automatic typecheckers
for behavioural type systems.

If we ignore variable binding, both our refined type MP,Q(T ) and the constructive
types in the work of Filliâtre and Marché (2004) and Nanevski et al. (2008) are
instances of Atkey’s (2009) parameterized state monad, where the parameterization
is over the formulas concerning the type state. When variable binding is included,
the type MP,Q(T ) is no longer a parameterised monad, since the preconditions and
postconditions are of different types as the postcondition can mention the initial
state.

1.1.4 Unifying Behavioural Types for Roles, Stacks, and Histories

Our purpose in introducing RIF is to show that the refined state monad can unify
and extend several automatically-checked behavioural type systems. RIF is para-
metric in the choice of the type of imperative state. We show that by making suit-
able choices of the type state, and by deriving suitable programming interfaces, we
recover several existing behavioural type systems, and uncover some new ones.

We focus on security-related examples where runtime security mechanisms—
based on roles, stacks, and histories—are used by trusted library code to protect
themselves against less trusted callers. Unwarranted access requests result in secu-
rity exceptions.

First, we consider role-based access control (RBAC) (Ferraiolo and Kuhn 1992;
Sandhu et al. 1996) where the current state is a set of activated roles. Each activated
role confers access rights to particular objects.
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Second, we consider permission-based access control, where the current state
includes a set of permissions available to running code. We examine two standard
variants: stack-based access control (SBAC) (Gong 1999; Wallach et al. 2000; Four-
net and Gordon 2003) and history-based access control (HBAC) (Abadi and Fournet
2003). We implement each of the three access control mechanisms as an application
programming interface (API) within RIF.

In each case, checking application code against the API amounts to behavioural
typing, and ensures that application code causes no security exceptions. Hence,
static checking prevents accidental programming errors in trusted code and both
accidental and malicious programming errors in untrusted code.

Our results show the theoretical feasibility of our approach. We have type-
checked all of the example code in this paper by first running a tool that implements
the encoding of RIF into RCF described in the Appendix, and then type-checking
the translated code with F7 and Z3.

The contents of the paper are as follows. Section 1.2 considers access control
with roles. Section 1.3 considers access control with permissions, based either on
stack inspection or a history variable. We use our typed calculus in these sections but
postpone the formal definition to Section 1.4. Finally, Section 1.5 discusses related
work and Section 1.6 offers some conclusions, and a dedication.

Appendix 1.7 recalls the definition of RCF (Bengtson et al. 2008). Appendix 1.8
provides a semantics of the calculus of this paper to RCF.

1.2 Types for Role-Based Access Control

In general, access control policies regulate access to resources based on information
about both the resource and the entity requesting access to the resource, as well as
information about the context of the request. In particular, role-based access control
(RBAC) policies base their decisions on the actions that an entity is allowed to per-
form within an organization—their role. Without loss of generality, we can identify
resources with operations to access these resources, and therefore role-based access
control decisions concern whether a user can perform a given operation based on the
role that the user plays. Thus, roles are a device for indirection: instead of assigning
access rights directly to users, we assign roles to users, and access rights to roles.

In this section, we illustrate the use of our calculus by showing how to express
RBAC policies, and demonstrate the usefulness of refinements on state by showing
how to statically enforce that the appropriate permissions are in place before con-
trolled operations are invoked. This appears to be the first type system for role-based
access control properties—most existing studies on verifying RBAC properties in
the literature use logic programming to reason about policies independently from
code (Li et al. 2002; Becker and Sewell 2004; Becker and Nanz 2007). We build on
the typeful approach to access control introduced by Fournet et al. (2005) where the
access policy is expressed as a set of logical assumptions; relative to that work, the
main innovation is the possibility of de-activating as well as activating access rights.
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1.2.1 Simple RBAC: File System Permissions

As we mentioned in the introduction, our calculus is a generalization of FPC with
dependent types and subtyping. As such, we will use an ML-like syntax for ex-
pressions in the calculus. The calculus also uses a global state to track security
information, and computation types refined with preconditions and postconditions
to express properties of that global state. The security information recorded in the
global state may vary depending on the kind of security guarantees we want to pro-
vide. Therefore, our calculus is parameterized by the security information recorded
in the global state and the operations that manipulate that information.

To use our calculus, we need to instantiate it with an extension API module that
implements the security information tracked in the global state, and the operations to
manipulate that information. The extension API needs to define a concrete state type
that captures the information recorded in the global state. Functions in the extension
API are the only functions that can explicitly manipulate the state via the primitives
get() and set(). Moreover, the extension API defines predicates by assuming logical
formulas; this is the only place where assumptions are allowed.

We present an extension API for role-based access control. In the simplest form
of RBAC, permissions are associated with roles, and therefore we assume a type
role representing the class of roles. The model we have in mind is that roles can be
active or not. To be able to use the permissions associated with a role, that role must
be active. Therefore, the security information to be tracked during computation is
the set of roles that are currently active.

RBAC API:

type state = role list

val activate : r:role→{(s)True} unit {(s’)Add(s’,s,r)}
val deactivate : r:role→{(s)True} unit {(s’)Rem(s’,s,r)}

assume ∀ts,x. Mem(x,ts)⇔ (∃y, vs. ts = y::vs ∧ (x = y ∨Mem(x,vs)))
assume ∀rs,ts,x. Add(rs,ts,x)⇔ (∀y. Mem(y,rs)⇔ (Mem(y,ts) ∨x=y))
assume ∀rs,ts,x. Rem(rs,ts,x)⇔ (∀y. Mem(y,rs)⇔ (Mem(y,ts) ∧¬(x = y)))
assume ∀s. CurrentState(s)⇒ (∀r. Active(r)⇔Mem(r,s))

An extension API supplies three kinds of information. First, it fixes a type for
the global state. Based on the discussion above, the global state of a computation is
the set of roles that are active, hence state, role list, where role is the type for roles,
which is a parameter to the API.

Second, an extension API gives functions to manipulate the global state. The
extension API for primitive RBAC has two functions only: activate to add a role to
the state of active roles, and deactivate to remove a role from the state of active roles.

We use val f : T to give a type to a function in an API. Expressions get computa-
tion types of the form {(s0)C0}x:T {(s1)C1}. Such a computation type is interpreted
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semantically using the refined state monad mentioned in Section 1.1.3, where it cor-
responds to the type M(s0)C0,(s1)C1(T ). In particular, a computation type states that
an expression starts its evaluation with a state satisfying C0 (in which s0 is bound to
that state in C0) and yields a value of type T and a final state satisfying C1 (in which
s0 is bound to the initial state of the computation in C1, s1 is bound to the final state
of the computation, and x is bound to the value returned by the computation). Thus,
for instance, activate is a function that takes role r as input and computes a value
of type unit. That computation takes an unconstrained state (that is, satisfying True),
and returning a state that is the union of the initial state and the newly-activated
role r—recall that a state here is a list of roles. Similarly, deactivate is a function that
takes a role as input and computes a unit value in the presence of an unconstrained
state and producing a final state that is simply the initial state minus the deactivated
role.

The third kind of information contained in an API are logical axioms. Observe
that the postconditions for activate and deactivate use predicates such as Add and
Rem. We define such predicates using assumptions, which let us assume arbitrary
formulas in our assertion logic, formulas that will be taken to be valid in any code
using the API. Ideally, these assumed formulas would be proved sound in some
external proof assistant, in terms of some suitable model, but here we follow an
axiomatic approach. For the purposes of RBAC, we assume not only some set-
theoretic predicates (using lists as a representation for sets), but also a predicate
Active true exactly when a given role is currently active. To define Active, we rely on
a predicate CurrentState, where CurrentState(s) captures the assumptions that s is the
current set of active roles; Active then amounts to membership in the set of active
roles. We can only reason about Active under the assumption of some CurrentState(s).
We shall see that our formulas for reasoning about roles will always be of the form
CurrentState(s)⇒ ..., where s is the current state.

RBAC API Implementation:

// Set-theoretic operations (provided by a library)
val add: l:α list→e:α →{(s)True} r:α list {(s’)s=s’ ∧Add(r,l,e)}
val remove : l:α list→e:α →{(s)True} r:α list {(s’)s=s’ ∧Rem(r,l,e)}

let activate r = let rs = get() in let rs’ = add rs r in set(rs’)
let deactivate r = let rs = get() in let rs’ = remove rs r in set(rs’)

The implementation of activate and deactivate use primitive operations get() and
set() to respectively get and set the state of the computation. We make the assump-
tion that get() and set() may only be used in the implementation of API functions;
in particular, user code cannot use those operations to arbitrarily manipulate the
state. The API functions are meant to encapsulate all state manipulation. Beyond
the use of get() and set(), the implementation of the API functions above also use
set-theoretic operations add and remove to manipulate the content of the state. We
only give the types of these operations—their implementations are the standard list-
based implementations.
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We associate permissions to roles via an access control policy expressed as logi-
cal assumptions. We illustrate this with a simple example, that of modelling access
control in a primitive file system. We assume two kinds of roles: the superuser, and
friends of normal users (represented by their login names):� �

type role = SuperUser | FriendOf of string� �
In this scenario, permissions concern which users can read which files. For simplic-
ity, we consider a policy where a superuser can read all files, while other users can
access specific files, as expressed in the policy. A predicate CanRead(f) expresses
the “file f can be read” permission, given the currently active roles. Here is a simple
policy in line with this description:� �

assume ∀file. Active(SuperUser)⇒CanRead(file)
assume Active(FriendOf("Andy"))⇒CanRead("andy.log")� �

This policy, aside from stating that the superuser can read all files, also states that
if the role FriendOf("Andy") is active, then the file andy.log can be read. For sim-
plicity, we consider only read permissions here. It is straightforward to extend the
example to include write permissions or execute permissions.

The main function we seek to restrict access to is readFile, which intuitively re-
quires that the currently active roles suffice to derive that the file to be read can in
fact be read.� �

val readFile: file:string→{(rs) CurrentState(rs)⇒CanRead(file)} string {(s)s=rs}
let readFile file =

assert (rs)(CurrentState(rs)⇒CanRead(file));
primReadFile file� �

We express this requirement by writing an assertion in the code of readFile, before
the call to the underlying system call primReadFile. The assert expression checks
that the current state (bound to variable rs) proves that CanRead(file) holds, under
the assumption that CurrentState(rs). Such an assertion succeeds if the formula is
provable, and fails otherwise. The main property of our language is given by a safety
theorem: if a program type-checks, then all assertions succeed. In other words, if a
program that uses readFile type-checks, then we are assured that by the time we call
primReadFile, we are permitted to read file, at least according to the access control
policy. The type system, somewhat naturally, forces the precondition of readFile to
ensure that the state can derive CanRead for the file under consideration.

Intuitively, the following expression type-checks:� �
activate(SuperUser); readFile "andy.log"� �

The expression first adds role SuperUser to the state, and the postcondition of
activate notes that the resulting state is the union of the initial state (of which noth-
ing is know) with SuperUser. When readFile is invoked, the precondition states
that the current state must be able to prove CanRead("andy.log"). Because
SuperUser is active and Active(SuperUser) implies CanRead(file) for any file, we
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get CanRead("andy.log"), and we can invoke readFile. The following examples
type-check for similar reasons, since Active(FriendOf "Andy") can prove the for-
mula CanRead("andy.log"):� �

activate(FriendOf "Andy"); readFile "andy.log"
activate(FriendOf "Andy"); deactivate(FriendOf "Jobo");

readFile "andy.log"� �
In contrast, the following example fails to activate any role that gives a CanRead
permission on file "andy.log", and therefore fails to type-check:� �

activate(FriendOf "Ric"); readFile "andy.log" // Does not type-check� �
After activating FriendOf "Ric", the postcondition of activate expresses that the
state contains whatever was in the initial state along with role FriendOf "Ric".
When invoking readFile, the type system tries to establish the precondition, but it
only knows that Active(FriendOf "Ric"), and the policy cannot derive the formula
CanRead("andy.log") from it. Therefore, the type system fails to satisfy the pre-
condition of readFile "andy.log", and reports a type error.

The access control policy need not be limited to a statically known set of files.
Having a full predicate logic at hand affords us much flexibility. To express, for
instance, that any file with extension .txt can be read by anyone, we can use a
predicate Match:� �

assume ∀file.Match(file,"*.txt")⇒CanRead(file)� �
Rather than axiomatizing the Match predicate, we rely on a function glob that does
a dynamic check to see if a file name matches the provided pattern, and in its post-
condition fixes the truth value of the Match predicate on those arguments:� �

val glob : file:string→pat:string→
{(rs) True} r:bool {(rs’) rs=rs’ ∧ (r=true⇒Match(file,pat))}

let glob file pat = if (∗ ... code for globbing ... ∗)
then assume Match(file,path); true

else false� �
The following code therefore type-checks, even when all the activated roles do

not by themselves suffice to give a CanRead permission:� �
activate(FriendOf "Ric");
let f = "log.txt" in

if (glob f "*.txt") then readFile f else "skipped"� �
Similarly, not only can we specify which roles give CanRead permissions for

which files by saying so explicitly in the policy (as above), we can also dynamically
check that a friend of some user can read a file by querying the physical file system
through a primitive function primReadFSPerm(f,u) that checks whether a given user
u (and therefore their friends) can access a given file f), and reflect the result of that
dynamic check into the type system:
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val hasFSReadPermission : f:string→u:string→{(rs) True}

r:bool {(rs’) rs=rs’ ∧ (r=True⇒ (Active(FriendOf(u))⇒CanRead(f)))}
let hasFSReadPermission f u =

if primReadFSPerm (f,u)
then assume Active(FriendOf(u))⇒CanRead(f); true

else false� �
The following code now type-checks:� �

activate(FriendOf "Andy");
if (hasFSReadPermission "somefile" "Andy")

then readFile "somefile"
else "cannot read file"� �

The code first activates the role FriendOf "Andy", and then dynamically checks, by
querying the physical file system, that user "Andy" (and therefore his friends) can
in fact read file "somefile". The type of hasFSReadPermission is such that if the
result of the check is true, the new formula Active(FriendOf("Andy"))⇒CanRead
("somefile") can be used in subsequent expressions—in particular, when call-
ing readFile "somefile". At that point, FriendOf "Andy" is active, and therefore
CanRead("somefile") holds.

1.2.2 Extended RBAC: Health Care Policies

To evaluate how suitable our language is for modelling complex RBAC scenarios,
we embed an example by Becker and Nanz (2007, §4), inspired by policies in elec-
tronic health care.

To model this example, we build on top of the insights gained in Section 1.2.1,
using a more extensive state. Not only do we have roles such as patient, clinician,
and administrator, as before, but we introduce a notion of users that activate and
deactivate those roles, and a database of facts to record information that can be
queried by the policies. In particular, the database will record information such as
which users can activate which roles.

We assume a type id of identities, a type role of roles, and a type fact of facts (see
example below). We take states to have type State, id∗ role list∗ fact list. The API is
now somewhat richer, including operations to deal with identifies and the database
of facts.

Extended RBAC API:

val switch user : u:id→{(s)True} unit {(s’) s’=(u,[],s.store)}
val activate : r:role→{(s)CurrentState(s)⇒CanActivate(r)} unit
{(s’)s=(i,rs,db) ∧s’=(i,rs’,db) ∧Add(rs’,rs,r)}

val deactivate : r:role→{(s)True} unit
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{(s’)s=(i,rs,db) ∧s’=(i,rs’,db) ∧Rem(rs’,rs,r)}
val record : f:fact→{(s)True} unit
{(s’)s=(i,rs,db) ∧s’=(i,rs,db’) ∧Add(db’,db,f)}

val remove : f:fact→{(s)True} unit
{(s’)s=(i,rs,db) ∧s’=(i,rs,db’) ∧Rem(db’,db,f)}

Extended RBAC API Implementation:

let switch user u = let (i,rs,db) = get() in set(u,[],db)
let activate r = let (i,rs,db) = get() in let rs’ = add rs r in set(i,rs’,db)
let deactivate r = let (i,rs,db) = get() in let rs’ = remove rs r in set(i,rs’,db)
let record f = let (i,rs,db) = get() in let db’ = add db f in set(i,rs,db’)
let remove f = let (i,rs,db) = get() in let db’ = remove db f in set(i,rs,db’)

The main difference here is that activate now has precondition stating that the role
can be activated by the current user. The predicate CurrentState(s) states that s is
the current state, and the predicates Ident, Active, and Fact respectively capture the
current identity, the currently active roles, and the currently registered facts. The
predicate CanActivate is defined by the access control policy, as we shall see below.� �

assume ∀s,id,rs,db.CurrentState(s) ∧s=(id,rs,db)⇒ Ident(id)
assume ∀s,id,rs,db.CurrentState(s) ∧s=(id,rs,db)⇒ (∀r.Active(r)⇔Mem(r,rs))
assume ∀s,id,rs,db.CurrentState(s) ∧s=(id,rs,db)⇒ (∀f.Fact(f)⇔Mem(f,db))� �

Identities are simply names, roles include patient, clinician, and administrator,
and the database of facts records information such as which identities can activate
which roles, as well as consents that have been requested and granted.� �

type id = Name of string
type role = Patient | Clinician | Admin
type fact = IsMember of id ∗ role | HasConsented of id ∗ id

| HasRequestedConsent of id ∗ id� �
In order for a user to activate a role, we need to ensure that the current identity

is either allowed to activate the role according to a static policy, or is a member of
the requested role as recorded in the database. In addition, we impose a separation-
of-duty restriction, ensuring that one cannot activate both the Clinician role and the
Administrator role at the same time.� �

assume ∀r.CanActivate(r)⇔ (UserCanActivate(r) ∧NoConflict(r))
assume ∀r,id.(Ident(id) ∧Fact(IsMember(id,r)))⇒UserCanActivate(r)
assume Ident(Name("Andy"))⇒UserCanActivate(Admin)
assume ∀r.NoConflict(r)⇔ ((r=Clinician⇒¬Active(Admin)) ∧

(r=Admin⇒¬Active(Clinician)))� �
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Since role activation may depend on membership information kept in the database,
we define the following primitives for registering and unregistering membership in-
formation, subject to the requirement that they can only be invoked when the Admin
role is active.� �

val register : u:id→ r:role→{(s)CurrentState(s)⇒Active(Admin)} unit
{(s’)s=(i,rs,db) ∧s’=(i,rs,db’) ∧Add(db’,db,IsMember(u,r))}

let register u r = record(IsMember(u,r))

val unregister : u:id→ r:role→{(s)CurrentState(s)⇒Active(Admin)} unit
{(s’)s=(i,rs,db) ∧s’=(i,rs,db’) ∧Rem(db’,db,IsMember(u,r))}

let unregister u r = remove(IsMember(u,r))� �
Consider the following policy for reading electronic health records: users can

read their own EHR, and a clinicians can read any EHR for which they have received
consent.� �

assume ∀u.Ident(u)⇒CanReadEHR(u)
assume ∀u.Active(Clinician) ∧Consented(u)⇒CanReadEHR(u)� �

The main function is readEHR, which read an electronic health record. It asserts
that the current user can in fact read the electronic health record, based on the roles
currently active.� �

val readEHR : file:string→
{(s)CurrentState(s)⇒CanReadEHR(Name(file))} string {(t)s=t}

let readEHR file =
assert (s)(CurrentState(s)⇒CanReadEHR(Name(file)));
(∗ ... read record ... ∗)� �

There remains the issue of consent. A patient can give consent to an individual
to read their EHR, as long as that individual first requested consent from the patient.
We record who requested consent and who consented (and to whom in both cases)
in the database. We provide functions requestConsent and giveConsent that refine the
type of record and ensure that the right identity is used in the consent, and that the
right roles are active:� �

assume ∀u,v.Consented(u)⇔ (Ident(v) ∧Fact(HasConsented(u,v)))

val requestConsent : u:id→v:id→
{(s) CurrentState(s)⇒ (Ident(u) ∧Active(Clinician))} unit
{(s’) s=(i,rs,db) ∧s’=(i,rs,db’) ∧Add(db’,db,HasRequestedConsent(u,v))}

let requestConsent u v = record(HasRequestedConsent(u,v))

val giveConsent : u:id→v:id→{(s) CurrentState(s)⇒
(Ident(u) ∧Active(Patient) ∧Fact(HasRequestedConsent(v,u)))} unit
{(s’)s=(i,rs,db) ∧s’=(i,rs,db’) ∧Add(db’,db,HasConsented(u,v))}

let giveConsent u v = record(HasConsented(u,v))� �
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How can we use the above interface? An application is to type-check access con-
trol properties of workflows for interacting with a medical records server. Roughly
speaking, a workflow is a description of the steps that a group of users can follow to
achieve an objective. Such a workflow can be implemented, for instance, on a ma-
chine such as a web server, or a smartcard. The switch user u primitive corresponds
to a context switch between users, and may be implemented by having the server
present a login window requiring password-based authentication, the primitive re-
turning only if user u correctly logs in.

As an example, we can verify that the following workflow is well-typed against
the above interface. It takes users pat and doc as arguments—where doc is assumed
a clinician—registers pat as a patient, and lets doc read pat’s medical file.� �

val workflow : pat:id→doc:id→
{(s) CurrentState(s)⇒Fact(IsMember(doc,Clinician))} string {(s’)True}

let workflow pat doc =
switch user (Name "Andy"); activate Admin; register pat Patient;
switch user doc; activate Clinician; requestConsent doc pat;
switch user pat; activate Patient; giveConsent pat doc;
switch user doc; activate Clinician; readEHR pat� �

This workflow prescribes that an administrator (here, Name "Andy") must first log
in, to enable the registration of the patient, and then the doctor must log in, to request
consent from the patient, followed by the patient logging in to give consent, at which
point the doctor can log in again to read the medical file. The point here is to force
the author of the workflow to put in sufficient input validation that there will be no
policy-driven error messages at runtime.

1.3 Types for Permission-Based Access Control

The role-based access control systems of the previous section are most applicable
in an interactive setting, where principals inhabiting different roles can influence
the computation as it is running. Without interaction, we can instead work with a
static division of the program code based on its provenance. We assume that each
function is assigned a set of static permissions that enable it to perform certain
side effects, such as file system IO. A classical problem in this setting is the Con-
fused Deputy (Hardy 1988), where untrusted code performs unauthorized side ef-
fects through exploiting a trusted API. This problem has been addressed through
various mechanisms. In this section, we consider stack-based access control (Gong
1999; Wallach et al. 2000) and history-based access control (Abadi and Fournet
2003).

The purpose of stack-based access control (SBAC) is to protect trusted functions
from untrusted callers. Unless explicitly requested, a permission only holds at run-
time if all callers on the call stack statically hold the permission.
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History-based access control (HBAC) also intends to protect trusted code from
the untrusted code it may call, by ensuring that the run-time permissions depend
on the static permissions of every function called so far in the entire program. In
particular, when a function returns, the current run-time permissions can never be
greater than the static permissions of that function. HBAC can be seen as a refine-
ment of SBAC, in the sense that the run-time permissions at any point when using
the HBAC calling conventions are less than those when using SBAC.

In this section, we show how the RIF calculus supports type-checking of both
SBAC and HBAC policies. There are several formalizations of SBAC, some of
which include type systems, Previous type systems for SBAC took a rather sim-
ple view of permissions. To quote Pottier et al. (2005): “In our model, privileges are
identifiers, and expressions cannot compute privileges. It would be desirable to ex-
tend the static framework to at least handle first-class parameters of privileges, so for
example, a Java FilePermission, which takes a parameter that is a specific file, could
be modeled.” Having both computation types and dependent types in our impera-
tive calculus lets us treat not only parameters to privileges, but also have a general
theory of partially ordered privileges. We can also type-check code that computes
privileges, crucially including the privilege-manipulating API functions defined in
Section 1.3.2.

As a side-effect, we can also investigate the differences between SBAC and
HBAC as implemented in our framework. We show one (previously known) ex-
ample where switching from SBAC to HBAC resolves a security hole by throwing a
run-time exception; additionally, static type-checking discovers that the code is not
safe to run under HBAC.

The use of type-checkers allows authors of trusted code to statically exclude
run-time security exceptions relating to lack of privileges. As discussed above, we
provide a more sensitive analysis than previous work, which facilitates the use of
the principle of least privilege. Type-checking can also be applied to untrusted code
before loading it, ensuring the lack of run-time security exceptions.

1.3.1 A Lattice of Permission Sets

As a running example, we introduce the following permissions. The ScreenIO per-
mission is atomic. A FileIO permission is a tuple of an access right of type RW and
a file scope of type Wildcard. The access rights are partially ordered: the owner of a
file can both read and write it. The scope Any extends to any file in the system.
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Partially Ordered Permissions:

type α Wildcard = Any | Just of α

type RW = Read | Write | Owns
type Permission = ScreenIO | FileIO of RW ∗ (string Wildcard)
type Perms = Permission list

When generalizing HBAC and SBAC to the setting where permissions are par-
tially ordered, we run into a problem. Both HBAC and SBAC are built on taking
unions and intersections of sets of atomic permissions. In our setting permissions
are not atomic, but are built from partially ordered components, which makes set-
theoretic union and (especially) intersection unsuitable. As an example, the great-
est permission implied by both FileIO(Owns,Just(logFile)) and FileIO(Read,Any) is
FileIO(Read,Just(logFile)), rather than the empty permission. For this reason, we
need to generalize the usual model of working directly with the lattice of (finite)
subsets of an atomic permission set.

Note the contrast to RBAC, where the set of roles is partially ordered and the
permissions of a lesser role automatically accrue to all greater roles. Structured per-
missions should still be useful in RBAC, since computations on permission sets
could be used to define and check constraints.

To represent and calculate with structured permissions such as wildcards, we
use a simple theory of lattices. Generalizing from the example above, we start with
a partially ordered set (P,≤) of permissions, where p ≤ q iff holding permission
q implies that we also hold p. In this setting, the permissions at any point when
running a program form a downward closed subset of P. Since such sets can be
infinite, we represent them by the cochain of their maximal elements, which we
require to be finite.

Definition 1. If Q⊆ P, we write ↓Q, {x | ∃q∈Q. x≤ q} for the downward closure
of Q. If Q = ↓Q, we say that Q is downward closed. The maximal elements of a set
Q ⊆ P is maxs(Q) , {q ∈ Q | ∀p ∈ Q. q ≤ p⇒ q = p}. Q is a cochain (of P) if
Q = maxs(Q). The maximal lower bounds of q,r ∈ P is mlbs(q,r),maxs({p ∈ P |
p≤ q∧ p≤ r}). P has finite lower bounds (FLB) iff mlbs(q,r) is finite for all for all
q,r ∈ P.

In the following, we assume that P has finite lower bounds. We let Ofin(P) be the
set of finite cochains of P, and define a lattice structure on Ofin(P) as follows. The
greatest lower bound of Q and R is QtR,maxs((↓Q)∪ (↓R)), and the least upper
bound of Q and R is QuR,maxs((↓Q)∩ (↓R)). We write Qv R iff ↓Q⊆ ↓R, “Q
is subsumed by R”.

If all cochains in a poset P are finite, then P trivially has finite lower bounds. In
the example above, string Wildcard has finite lower bounds, but infinite cochains. As
a common special case, if (P,≤) forms a forest with the maximal elements at the
roots then P has FLB and mlbs(p,q) is the smaller of p and q, or empty if they
are incomparable. Returning to the running example, where the permissions form
a forest, we have that mlbs(Owns,Read) = {Read} and mlbs(Any,Just(logFile)) =
{Just(logFile)}.
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The greatest lower bound (glb) of two permission sets ps and qs subsumes pre-
cisely those sets subsumed by both ps and qs. Dually, the least upper bound (lub) of
two permission sets ps and qs is the smallest set subsuming both ps and qs. We can
compute the results of these lattice operations as follows.

Proposition 1 (Computing lattice operations). If P has FLB and Q,R ∈ Ofin(P)
then QtR = maxs(Q∪R) and QuR = maxs(

⋃
{mlbs(q,r) | q ∈ Q,r ∈ R}).

Assume that P1 and P2 both have finite lower bounds. Then P1×P2 has FLB, with
mlbs((p1, p2),(q1,q2)) = mlbs(p1,q1)×mlbs(p2,q2). Furthermore, P1 ] P2 also
has FLB, with Ofin(P1]P2) isomorphic to Ofin(P1)×Ofin(P2).

Proof. Note that maxs and ↓ are idempotent, maxs(↓Q)=maxs(Q) and ↓maxs(Q)=
↓Q. The intersection of two downward closed sets is itself downward closed, and ↓
distributes over ∪ and ×. If Q and R are both cochains and ↓Q = ↓R, then Q = R.

• QtR = maxs((↓Q)∪ (↓R)) = maxs(↓(Q∪R)) = maxs(Q∪R).
• ↓(QuR) = ↓maxs((↓Q)∩ (↓R)) = ↓((↓Q)∩ (↓R)) = (↓Q)∩ (↓R) since (↓Q)∩

(↓R) is downward closed. Then p∈ (↓Q)∩(↓R) iff ∃q∈Q,r ∈ R such that p≤ q
and p ≤ r; that is, iff p ∈ ↓mlbs(q,r). Thus ↓(Qu R) =

⋃
{↓mlbs(q,r) | q ∈

Q,r ∈ R}= ↓
⋃
{mlbs(q,r) | q ∈Q,r ∈ R}. maxs↓(QuR) = QuR since QuR is

a cochain, so QuR = maxs(
⋃
{mlbs(q,r) | q ∈ Q,r ∈ R}).

• ↓mlbs((p1, p2),(q1,q2)) = {(r1,r2) | ri ≤ pi∧ ri ≤ qi for i = 1,2}=
{(r1,r2) | ri ∈ ↓mlbs(pi,qi) for i = 1,2}= (↓mlbs(p1,q1))× (↓mlbs(p2,q2)) =
↓(mlbs(p1,q1)×mlbs(p2,q2)). mlbs(p1,q1)×mlbs(p2,q2) is a cochain since
mlbs(p1,q1) and mlbs(p2,q2) are. Thus mlbs((p1, p2),(q1,q2))=mlbs(p1,q1)×
mlbs(p2,q2).

• The isomorphism is given by Q 7→ (Q∩P1,Q∩P2). ut

We can now compute that {FileIO(Owns,Just(logFile))}u{FileIO(Read,Any)}=
{FileIO(Read,Just(logFile))}, as desired.

We encode the partial order on permissions as a predicate Holds(p,ps) that checks
if a permission p is in the downward closure of the permission set ps. We define the
predicate Subsumed in term of Holds.

Predicate Symbols and Their Definitions:

assume ∀x,y,xs. Holds(FileIO(Owns,y),xs)⇒Holds(FileIO(x,y),xs)
assume ∀x,y,xs. Holds(FileIO(x,Any),xs)⇒Holds(FileIO(x,Just(y)),xs)
assume ∀x,xs. Holds(x,x::xs)
assume ∀x,y,xs. Holds(x,xs)⇒Holds(x,y::xs)
assume ∀xs. Subsumed(xs,xs) ∧Subsumed([],xs)
assume ∀x,xs,ys. Holds(x,ys) ∧Subsumed(xs,ys)⇒Subsumed(x::xs,ys)

We also define predicates for Lub and Glb, and assume the standard lattice axioms
relating these to each other and to Subsumed (not shown). We then assume functions
lub, glb and subsumed that compute the corresponding operations for the permission
language defined above, with the following types.
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Types for Lattice Operations:

val lub: ps:Perms→qs:Perms→{(s) True} res:Perms {(t) s=t ∧Lub(res,ps,qs)}
val glb: ps:Perms→qs:Perms→{(s) True} res:Perms {(t) s=t ∧Glb(res,ps,qs)}
val subsumed: ps:Perms→qs:Perms→
{(s) True} x:bool {(t) s=t ∧ (x=True⇔Subsumed(ps,qs))}

1.3.2 Stack-Based Access Control

In order to compare history- and stack-based access control in the same framework,
we begin by implementing API functions for requesting and testing permissions. We
let state be a record type with two fields: state, {ast:Perms; dy:Perms}. The ast field
contains the current static permissions, which are used only when requesting addi-
tional dynamic permissions (see request below). The dy field contains the current
dynamically requested permissions. Computations have type (α ;req) SBACcomp,
for some return type α and required initial dynamic permissions req. An SBACthunk
wraps a computation in a function with unit argument type.

The API functions have the following types and implementations. The become
function is used (notionally by the run-time system) when calling a function that
may have different static permissions from its caller. It first sets the static permis-
sions to those of the called code. Then, since the called function may be untrusted,
it reduces the dynamic permissions to the greatest lower bound of the current dy-
namic permissions and the static permissions of the called function. Dually, upon
return the run-time system calls sbacReturn with the original permissions returned
by become, restoring them. The request function augments the dynamic permissions,
after checking that the static context (Subsumed(ps,st)) permits it. We check that the
permissions ps dynamically hold using the function demand; it has type ps:Perms
→ (unit;ps)SBACcomp.

SBAC API and Calling Convention:

type (α ;req:Perms) SBACcomp = {(s) Subsumed(req,s.dy)} α {(t) s=t}
type (α ;req:Perms) SBACthunk = unit→ (α ;req) SBACcomp
val become: ps:Perms→{(s)True}s’:State{(t) s=s’ ∧ t.ast = ps ∧Glb(t.dy,ps,s.dy)}
val sbacReturn: olds:State→{(s) True} unit {(t) t=olds}
val permitOnly: ps:Perms→{(s) True}unit{(t) s.ast = t.ast ∧Glb(t.dy,ps,s.dy)}
val request: ps:Perms→
{(s) Subsumed(ps,s.ast)} unit {(t) s.ast = t.ast ∧Lub(t.dy,ps,s.dy) }

val demand: ps:Perms→ (unit;ps) SBACcomp

The postcondition of an SBACcomp is that the state is unchanged. In order to re-
cover formulas that hold about the state, we use subtyping. As usual, a subtype of a
function type may return a subtype of the original computation type. In a subtype G
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of a computation type F , we can strengthen the precondition. The postcondition of G
must also be weaker than (implied by) the precondition of G together with the post-
condition of F . As an example, {(s)C}α {(t)C{t/s}} is a subtype of (α ;[])SBACcomp
for every C, since `C⇒ True and ` (C∧ s = t)⇒C{t/s}. Subtyping is used to en-
sure that pre- and postconditions match up when sequencing computations using
let. We also use subtyping to propagate assumptions that do not mention the state,
such as the definitions of predicates.

In the implementations of request and demand below, we assert that subsumed
always returns true. This corresponds to requiring that the caller has sufficient per-
missions. Since no assert fails in a well-typed program, any execution of such a
program always has sufficient run-time permissions.
SBAC API Implementation:

let sbacReturn s = set s

let become ps =
let {ast=st;dy=dy} = get() in let dz = glb ps dy in
set {ast=ps;dy=dz}; {ast=st;dy=dy}

let permitOnly ps =
let {ast=st;dy=dy} = get() in let dz = glb ps dy in set ({ast=st;dy=dz})

let request ps =
let {ast=st;dy=dy} = get() in let x = subsumed ps st in
if x then let dz = lub ps dy in set {ast=st; dy=dz}
else assertFalse ; failwith "SecurityException: request"

let demand ps =
let {ast= ; dy=dy} = get() in let x = subsumed ps dy in
if x then () else assertFalse; failwith "SecurityException: demand"

To exercise this framework, we work in a setting with two principals. Agent is
untrusted, and can perform screen IO, read a version file and owns a temporary file.
System can read and write every file. We define three trusted functions, that either
run primitive (non-refined) functions or run as System. Function readFile demands
that the read permission for its argument holds dynamically. Similarly deleteFile
requires a write permission. Finally cleanupSBAC takes a function returning a file-
name, and then deletes the file returned by the function.� �

let Applet = [ScreenIO;FileIO(Read,Just(version));FileIO(Owns,Just(tempFile))]
let System = [ScreenIO;FileIO(Write,Any);FileIO(Read,Any)]

val readFile: a:string→ (string;[FileIO(Read,Just(a))]) SBACcomp
let readFile n = let olds = become System in demand [FileIO(Read,Just(n))] ;

let res = "Content of "ˆn in sbacReturn olds; res

val deleteFile: a:string→ (string;[FileIO(Write,Just(a))]) SBACcomp
let deleteFile n = let olds = become System in demand [FileIO(Write,Just(n))] ;

let res = primitiveDelete n in sbacReturn olds; res



1 Roles, Stacks, Histories: A Triple for Hoare 21

val cleanupSBAC: (string;[]) SBACthunk→ (unit;[]) SBACcomp
let cleanupSBAC f = let olds = become System in request [FileIO(Write,Any)];

let s = f () in let res = deleteFile s in sbacReturn olds; res� �
We now give some examples of untrusted code using these trusted functions and

the SBAC calling conventions. In SBAC1, an applet attempts to read the version
file. Since Applet has the necessary permission, this function is well-typed at type
unit SBACcomp. In SBAC2, the applet attempts to delete a password file. Since the
applet does not have the necessary permissions, a runtime exception is thrown when
executing the code—and we cannot type the function SBAC2 at type unit SBACcomp.

However, in SBAC3, the SBAC abstraction fails to protect the password file. Here
the applet instead passes an untrusted function to cleanup. Since the permissions are
reset after returning from the untrusted function, the cleanup function deletes the
password file. Moreover, SBAC3 type-checks.� �

let SBAC1: (unit;[]) SBACthunk = fun ()→ let olds = become Applet in
request [FileIO(Read,Just(version))]; readFile version; sbacReturn olds

//Does not typecheck
let SBAC2 = fun ()→ let olds = become Applet in

request [FileIO(Read,Just("passwd"))]; deleteFile "passwd";
sbacReturn olds

let aFunSBAC: (string;[]) SBACthunk = fun ()→ let olds = become Applet in
let res = "passwd" in sbacReturn olds; res

let SBAC3: (unit;[]) SBACthunk = fun ()→ let olds = become Applet in
cleanupSBAC aFunSBAC; sbacReturn olds� �

1.3.3 History-Based Access Control

The HBAC calling convention was defined (Abadi and Fournet 2003) to protect
against the kind of attack that SBAC fails to prevent in SBAC3 above. To protect
callers from untrusted functions, HBAC reduces the dynamic permissions after call-
ing an untrusted function. A computation in HBAC of type (α ;req,pres) HBACcomp
returning type α preserves the static permissions and does not increase the dynamic
permissions. It also requires permissions req and preserves permissions pres. As
above, a HBACthunk is a function from unit returning an HBACcomp. The HBAC
calling convention is implemented by the function hbacReturn, whic resets the static
condition and reduces the dynamic conditions to at most the initial ones.

The HBAC API extends the SBAC API with two functions for structured control
of permissions, grant and accept, which can be seen as scoped versions of request.
We use grant to run a subcomputation with augmented permissions. The second ar-
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gument to grant ps is a (α ;ps,[]) HBACthunk, which may assume that the permissions
ps hold upon entry. We can only call grant itself if the current static permissions
subsume ps. Dually, accept allows us to recover permissions that might have been
lost when running a subcomputation. accept ps takes an arbitrary HBACthunk, and
guarantees that at least the glb (intersection) between ps and the initial dynamic
permissions holds upon exit. As before, we can only call accept if the current static
permissions subsume ps.

HBAC API and Calling Convention:

type (α ;req:Perms,pres:Perms) HBACcomp =
{(s) Subsumed(req,s.dy) } α {(t) s.ast = t.ast ∧Subsumed(t.dy,s.dy)
∧ (∀qs. Subsumed(qs,pres) ∧Subsumed(qs,s.dy)⇒Subsumed(qs,t.dy))}

type (α ;req:Perms,pres:Perms) HBACthunk = unit→ (α ;req,pres) HBACcomp
val hbacReturn: os:State→{(s) True} unit {(t) t.ast=os.ast ∧Glb(t.dy,s.dy,os.dy)}
val grant: ps:Perms→ (α ;ps,[]) HBACthunk→
{(s0) Subsumed(ps,s0.ast)} α {(s3) s3.ast=s0.ast ∧Subsumed(s3.dy,s0.dy)}

val accept: ps:Perms→ (α ;[],[]) HBACthunk→
{(s) Subsumed(ps,s.ast)} α {(t)s.ast = t.ast ∧
(∀qs. Subsumed(qs,ps) ∧Subsumed(qs,s.dy)⇒Subsumed(qs,t.dy))}

Here (α ;req) SBACcomp is a subtype of (α ;req,pres) HBACcomp for every pres.

HBAC API implementation:

let hbacReturn s = let {ast=oldst; dy=oldy} = s in let {ast=st;dy=dy} = get() in
let dz = glb dy oldy in set {ast=oldst;dy=dz}

private val getDy: unit→{(s) True} dy:Perms {(t) t = s ∧ t.dy = dy}
let getDy () = let {ast= ;dy=dy} = get() in dy

let grant ps a = let dy = getDy () in request ps; let res = a () in permitOnly dy; res

let accept ps a = let dy = getDy () in let res = a () in request ps; permitOnly dy; res

As seen above, the postcondition of an hbacComp does not set a lower bound
for the dynamic permissions. Because of this, we cannot type-check the cleanup
function with argument type string HBACcomp. Indeed, in this example the dynamic
permissions are reduced to at most Applet, which is insufficient to delete the pass-
word file.

In example HBAC1 we instead use cleanup grant. This function prudently checks
the return value of its untrusted argument, and uses grant to give precisely the re-
quired permission to deleteFile. If the check fails, we instead give an error message
(not to be confused with a security exception). For this reason, HBAC1 type-checks.� �

let cleanupHBAC f = let olds = become System in
request [FileIO(Write,Any)]; let s = f () in deleteFile s ; hbacReturn olds

let cleanup grant : (string;[],[]) HBACthunk→ (unit;[],[]) HBACcomp =
fun f→ let olds = become System; let s = f () in
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(if (s = tempFile) then let h = deleteFile s in grant [FileIO(Write,Just(s))] h
else print "Check of untrusted return value failed.");

hbacReturn olds

let aFunHBAC: (string;[],[]) HBACthunk = fun ()→
let olds = become Applet in let res = "passwd" in hbacReturn olds ; res

let HBAC1: (unit;[],[]) HBACthunk = fun ()→
let olds = become Applet in cleanup grant Applet fun ; hbacReturn olds� �

However, cleanupHBAC will delete the given file if the function it calls preserves
the relevant write permission. This can cause a vulnerability. For instance, assume
a library function expand that (notionally) expands environment variables in its
argument. Such a library function would be statically trusted, and passing it to
cleanup HBAC will result in the sensitive file being deleted. Moreover, we can type-
check expand at type string→cleanupArg, where a cleanupArg preserves all System
permissions, including FileIO(Write,Just("passwd")), when run.� �

type cleanupArg: (string;[],System) HBACthunk

val cleanupHBAC: cleanupArg→ (unit;[],System) HBACthunk

//Does not type-check, since aFunHBAC is not a cleanupArg
let HBAC2 = fun ()→ let olds = become Applet in

cleanupHBAC aFunHBAC ; hbacReturn olds

let expand:string→cleanupArg = fun n→ fun ()→
let olds = become System in let res = n in hbacReturn olds ; n

let HBAC3:(unit;[],[]) HBACthunk = fun ()→ let olds = become Applet in
cleanup HBAC (expand "passwd") ; hbacReturn olds� �

Here HBAC provides a middle ground when compared to SBAC on the one hand
and taint-tracking systems on the other, in regards to accuracy and complexity.

In the examples above, well-typed code does not depend on the actual state in
which it is run. Indeed, we could dispense with the state-passing entirely. However,
we can also introduce a function which lets us check if we hold certain run-time
permissions. When this function is part of the API, we need to keep an explicit
permission state (in the general case).

API Function for Checking Run-time Permissions:

val check: ps:Perms→{(s)True} b:bool {(t)s=t ∧ (b=true⇒Subsumed(ps,t.dy))}
let check ps = let dy = getDy () in subsumed ps dy

We can use this function in the following (type-safe) way.� �
let HBAC4:(unit;[],[]) HBACthunk = fun ()→ let olds = become Applet in

(if check [FileIO(Write,Just("passwd"))]
then deleteFile "passwd"
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else print "Not enough permissions: giving up.");
hbacReturn olds� �

1.4 A Calculus for the Refined State Monad

In this section, we present the formal definition of RIF, the calculus we have been
using to model security mechanisms based on roles, stacks, and histories. We be-
gin with its syntax and operational semantics in Section 1.4.1 and Section 1.4.2.
Section 1.4.3 describes the type system of RIF and its soundness with respect to
the operational semantics. Finally, Section 1.4.4 describes how the calculus may be
instantiated by suitable choice of the state type.

1.4.1 Syntax

Our starting point is the Fixpoint Calculus (FPC) (Plotkin 1985; Gunter 1992), a
deterministic call-by-value λ -calculus with sums, pairs and iso-recursive data struc-
tures.

Syntax of the Core Fixpoint Calculus:

s,x,y,z variable
h ::= value constructor

inl left constructor of sum type
inr right constructor of sum type
fold constructor of recursive type

M,N ::= value
x variable
() unit
fun x→ A function (scope of x is A)
(M,N) pair
h M construction

A,B ::= expression
M value
M N application
M = N syntactic equality
let x = A in B let (scope of x is B)
let (x,y) = M in A pair split (scope of x, y is A)
match M with h x→ A else B constructor match (scope of x is A)

We identify all phrases of syntax up to the consistent renaming of bound vari-
ables. In general we write φ{ψ/x} for the outcome of substituting the phrase ψ for
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each free occurrence of the variable x in the phrase φ . We write fv(φ) for the set of
variables occurring free in the phrase φ .

A value may be a variable x, the unit value (), a function funx→A, a pair (M,N),
or a construction. The constructions inl M and inr M are the two sorts of value of sum
type, while the construction fold M is a value of an iso-recursive type. A first-order
value is any value not containing any instance of fun x→ A.

In our formulation of FPC, the syntax of expressions is in a reduced form in the
style of A-normal form (Sabry and Felleisen 1993), where sequential composition
of redexes is achieved by inserting suitable let-expressions. The other expressions
are function application M N, equality M = N (which tests whether the values M
and N are syntactically identical), pair splitting let (x,y) = M in A, and constructor
matching match M with h x→ A else B.

To complete our calculus, we augment FPC with the following operations for
manipulating and writing assertions about a global state. The state is implicit and
is simply a value of the calculus. We also assume an untyped first-order logic with
equality over values, equipped with a deducibility relation S `C, from finite multi-
sets of formulas to formulas.

Completing the Syntax: Adding Global State to the Fixpoint Calculus

A,B ::= expression
· · · expressions of the Fixpoint Calculus
get() get current state
set(M) set current state
assume (s)C assumption of formula C (scope of s is C)
assert (s)C assertion of formula C (scope of s is C)

C ::= formula
p(M1, . . . ,Mn) predicate – p a predicate symbol
M = M′ equation
C∧C′ conjunction
C∨C′ disjunction
¬C negation
∀x.C universal quantification
∃x.C existential quantification

A formula C is first-order if and only if it only contains first-order values. A
collection S is first-order if and only if it only contains first-order formulas.

The expression get() returns the current state as its value. The expression set(M)
updates the current state with the value M and returns the unit value ().

We specify intended properties of programs by embedding assertions, which are
formulas expected to hold with respect to the log, a finite multiset of assumed formu-
las. The expression assume (s)C adds the formula C{M/s} to the logged formulas,
where M is the current state, and returns (). The expression assert (s)C immediately
returns (); we say the assertion succeeds if the formula C{M/s} is deducible from the
logged formulas, and otherwise that it fails. This style of embedding assumptions
and assertions within expressions is in the spirit of the pioneering work of Floyd,
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Hoare, and Dijkstra on imperative programs; the formal details are an imperative
extension of assumptions and assertions in RCF (Bengtson et al. 2008).

We use some syntactic sugar to make it easier to write and understand examples.
We write A;B for let = A in B. We define boolean values as false , inl () and
true , inr (). Conditional statements can then be defined as if M then A else B ,
match M with inr x→ A else B. We write let rec f x = A in B as an abbreviation for
defining a recursive function f , where the scope of f is A and B, and the scope of x
is A. When s does not occur in C, we simply write C for (s)C. In our examples, we
often use a more ML-like syntax, lessening the A-normal form restrictions of our
calculus. In particular, we use let f x = A for let f = funx→ A, if A then B1 else B2
for let x = A in if x then B1 else B2 (where x 6∈ fv(B1,B2)), let (x,y) = A in B
for let z = A in let (x,y) = z in B (where z 6∈ fv(B)), and so on. See Bengtson
et al. (2008), for example, for a discussion of how to recover standard functional
programming syntax and data types like Booleans and lists within the core Fixpoint
Calculus.

1.4.2 Semantics

We formalize the semantics of our calculus as a small-step reduction relation on
configurations, each of which is a triple (A,N,S) consisting of a closed expression
A, a state N, and a log S, which is a multiset of formulas generated by assumptions.
A configuration (A,N,S) is first-order if and only if N, S and all formulas occurring
in A are first-order.

The present the rules for reduction in two groups. The rules in the first group are
independent of the current state, and correspond to the semantics of core FPC.

Reductions for the Core Calculus: (A,N,S)−→ (A′,N′,S′)

R ::= [ ] | let x = R in A evaluation context

(R[A],N,S)−→ (R[A′],N′,S′) if (A,N,S)−→ (A′,N′,S′) (RED CTX)
((fun x→ A) M,N,S)−→ (A{M/x},N,S) (RED FUN)
(M1 = M2,N,S)−→ (true,N,S) if M1 = M2 (RED EQ)
(M1 = M2,N,S)−→ (false,N,S) if M1 6= M2 (RED NEQ)
(let x = M in A,N,S)−→ (A{M/x},N,S) (RED LET)
(let (x,y) = (M1,M2) in A,N,S)−→ (A{M1/x}{M2/y},N,S) (RED SPLIT)
(match (h M) with h x→ A else B,N,S)−→ (A{M/x},N,S) (RED MATCH)
(match (h′ M) with h x→ A else B,N,S)−→ (B,N,S) if h 6= h′(RED MISMATCH)

The second group of rules formalizes the semantics of assumptions, assertions
and the get and set operators, described informally in the previous section.

Reductions Related to State: (A,N,S)−→ (A′,N′,S′)

(get(),N,S)−→ (N,N,S) (RED GET)
(set(M),N,S)−→ ((),M,S) (RED SET)
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(assume (s)C,N,S)−→ ((),N,S∪{C{N/s}}) (RED ASSUME)
(assert (s)C,N,S)−→ ((),N,S) (RED ASSERT)

We say an expression is safe if none of its assertions may fail at runtime. A con-
figuration (A,N,S) has failed when A = R[assert (s)C] for some evaluation context
R, where S∪ {C{N/s}} is not first-order or we cannot derive S ` C{N/s}. A con-
figuration (A,N,S) is safe if and only if there is no failed configuration reachable
from (A,N,S), that is, for all (A′,N′,S′), if (A,N,S)−→∗ (A′,N′,S′) then (A′,N′,S′)
has not failed. The safety of a (first-order) configuration can always be assured by
carefully chosen assumptions (for example, assume (s)False). For this reason, user
code should use assumptions with prudence (and possibly not at all).

The purpose of the type system in the next section is to establish safety by typing.

1.4.3 Types

There are two categories of type: value types characterize values, while computation
types characterize the imperative computations denoted by expressions. Computa-
tion types resemble Hoare triples, with preconditions and postconditions.

Syntax of Value Types and Computation Types:

T,U,V ::= (value) type
α type variable
unit unit type
Πx : T. F dependent function type (scope of x is F)
Σx : T. U dependent pair type (scope of x is U)
T +U disjoint sum type
µα.T iso-recursive type (scope of α is T )

F,G ::= computation type
{(s0)C0}x:T {(s1)C1} (scope of s0 is C0,T,C1, and scope of s1,x is C1)

Value types are based on the types of the Fixpoint Calculus, except that function
types Πx : T. F and pair types Σx : T. U are dependent. In our examples we use the
F7-style notations x : T → F and x : T ∗U instead of Πx : T. F and Σx : T. U . If the
bound variable x is not used, these types degenerate to simple types. In particular,
if x is not free in U , we write T ∗U for x : T ∗U , and if x is not free in F , we write
T → F for x : T → F . A value type T is first-order if and only if T contains no
occurrences of Πx : U. F (and hence contains no computation types). For the type
Πx : T. F to be well-formed, we require that either T is a first-order type or that x
is not free in F . Similarly, for the type Σx : T. U to be well-formed, we require that
either T is a first-order type or that x is not free in U .

A computation type {(s0)C0}x:T {(s1)C1}means the following: if an expression
has this type and it is started in an initial state s0 satisfying the precondition C0,
and it terminates in final state s1 with an answer x, then postcondition C1 holds. As
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above, we write {(s0)C0}T {(s1)C1} for {(s0)C0}x:T {(s1)C1} if x is not free in C1.
If T is not first-order, we require that x is not free in C1.

When we write a type T in a context where a computation type is expected,
we intend T as a shorthand for the computation type {(s0)True}T {(s1)s1 = s0}.
This is convenient for writing curried functions. Thus, the curried function type
x : T → y : U → F stands for Πx : T. {(s′0)True}Πy : U. F {(s′1)s′1 = s′0}.

Our calculus is parameterized by a type state representing the type of data in the
state threaded through a computation, and which we take to be an abbreviation for
a closed RIF type not involving function types—that is, a closed first-order type.

Our typing rules are specified with respect to typing environments, given as fol-
lows, which contain value types of variables, temporary subtyping assumptions for
iso-recursive types, and the names of the state variables in scope.

Syntax of Typing Environments:

µ ::= environment entry
α <: α ′ subtype (α 6= α ′)
s state variable
x : T variable

E ::=∅ | E,µ environment

dom(α <: α ′) = {α,α ′} dom(s) = {s} dom(x : T ) = {x}
dom(E,µ) = dom(E)∪dom(µ) dom(∅) =∅
fov(E) = {s ∈ E}∪{x ∈ dom(E) | (x : T ) ∈ E, T is first-order}

Our type system consists of several inductively defined judgments.

Judgments:

E ` � E is syntactically well-formed
E ` T in E, type T is syntactically well-formed
E ` F in E, type F is syntactically well-formed
E `C fo in E, formula C is first-order

E ` T <: U in E, type T is a subtype of type U
E ` F <: G in E, type F is a subtype of type G

E `M : T in E, value M has type T
E ` A : F in E, expression A has computation type F

The rules defining these judgments are displayed in a series of groups. First,
we describe the rules defining when environments, formulas, and value and com-
putation types are well-formed. An environment is well-formed if its entries have
pair-wise disjoint domains. A formula is well-formed if all its free variables have
first-order type in the environment. A type is well-formed if its free variables have
first-order type in the environment.

Rules of Well-Formedness:
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(ENV EMPTY)

∅ ` �

(ENV ENTRY)
E ` �
fv(µ)⊆ fov(E)
dom(µ)∩dom(E) =∅

E,µ ` �

(FORM)
E ` �
C is first-order
fv(C)⊆ fov(E)

E `C fo

(ENV TYPE)
E ` �
fv(T )⊆ fov(E)

E ` T

First-order values may occur in types, but only within formulas; since our logic
is untyped, these well-formedness rules need not constrain values occurring within
types to be themselves well-typed. We do constrain variables occurring in formulas
to have first-order types.

General Rules for Expressions:

(EXP RETURN)
E,s0 `M : T

E `M : {(s0)True} :T {(s1)s0 = s1}

(STATEFUL EXP LET)
E ` A : {(s0)C0}x1:T1 {(s1)C1}
E,s0,x1 : T1 ` B : {(s1)C1}x2:T2 {(s2)C2}
{s1,x1}∩ fv(T2,C2) =∅

E ` let x1 = A in B : {(s0)C0}x2:T2 {(s2)C2}
(EXP EQ)
E `M : T E ` N : U x /∈ fv(M,N) E,s0,s1 `C fo
C = (s0 = s1)∧ (x = true⇔M = N) T,U first-order

E `M = N : {(s0)True}x:bool{(s1)C}

In (EXP RETURN), when returning a value from a computation, the state is un-
changed. In (EXP EQ), the return value of an equality test is refined with the logi-
cal formula expressing the test. The rule (STATEFUL EXP LET) glues together two
computation types if the postcondition of the first matches the precondition of the
second.

Assumptions and Assertions:

(EXP ASSUME)
E,s0,s1 ` � E,s0 `C fo

E ` assume (s0)C : {(s0)True}unit{(s1)((s0 = s1)∧C)}
(EXP ASSERT)

E,s0,s1 ` � E,s0 `C fo

E ` assert (s0)C : {(s0)C}unit{(s1)s0 = s1}

In (EXP ASSUME), an assumption assume (s)C has C as postcondition, and does
not modify the state. Dually, in (EXP ASSERT), an assertion assert (s)C has C as
precondition.

Rules for State Manipulation:

(STATEFUL GET)
E,s0,x1 : state,s1 ` �

E ` get() : {(s0)True}x1:state{(s1)x1 = s0∧ s1 = s0}
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(STATEFUL SET)
E `M : state E,s0,s1 ` �

E ` set(M) : {(s0)True}unit{(s1)s1 = M}

In (STATEFUL GET), the type of get() records that the value read is the current
state. In (STATEFUL SET), the postcondition of set(M) states that M is the new state.
The postcondition of set(M) does not mention the initial state. We can recover this
information through subtyping, below.

Subtyping for Computations:

(SUB COMP)
E,s0 `C0 fo E,s0 `C′0 fo
E,s0,x:T,s1 `C1 fo E,s0,x:T ′,s1 `C′1 fo
C′0 `C0 E,s0 ` T <: T ′ (C′0∧C1) `C′1

E ` {(s0)C0}x:T {(s1)C1}<: {(s0)C′0}x:T ′ {(s1)C′1}

(EXP SUBSUM)
E ` A : F E ` F <: F ′

E ` A : F ′

In (SUB COMP), when computing the supertype of a computation type, we may
strengthen the precondition, and weaken the postcondition relative to the strength-
ened precondition. For example, since (C0∧C1) ` (C0∧C1), we have:

E ` {(s0)C0}x:T {(s1)C1}<: {(s0)C0}x:T {(s1)C0∧C1}

Next, we present rules grouped by the different forms of value type. When type-
checking values, we may gain information about their structure. We record this in-
formation by adding it to the precondition of the computation that uses the data, but
only if the value being type-checked is first-order.

Augmenting the Precondition of a Computation Type:

C ;T F , {(s1)C∧C1}x:U {(s2)C2} if T first-order
C ;T F , F otherwise

where F = {(s1)C1}x:U {(s2)C2} and s1 /∈ fv(C)

Rules for Unit and Variables:

(VAL UNIT)
E ` �

E ` () : unit

(VAL VAR)
E ` � (x : T ) ∈ E

E ` x : T

The unit type has only one inhabitant (). The rule (VAL VAR) looks up the type
of a variable in the environment.

Rules for Pairs:

(VAL PAIR)
E `M : T E ` N : U{M/x}

E ` (M,N) : (Σx : T. U)

(STATEFUL EXP SPLIT)
E `M : (Σx : T. U)
E,x : T,y : U ` A : ((x,y) = M);Σx:T. U F
{x,y}∩ fv(F) =∅

E ` let (x,y) = M in A : F
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In (STATEFUL EXP SPLIT), when splitting a pair, we strengthen the precondition
of the computation with the information derived from the pair split.

Rules for Sums and Recursive Types:

inl:(T,T+U) inr:(U,T+U) fold:(T{µα.T/α},µα.T )

(VAL INL INR FOLD)
h : (T,U) E `M : T E `U

E ` h M : U

(STATEFUL EXP MATCH INL INR FOLD)
E `M : T h : (U,T ) x /∈ fv(F)
E,x : U ` A : (h x = M);T F
E ` B : (∀x.h x 6= M);T F

E `match M with h x→ A else B : F

The typing rules for dependent functions are standard.

Rules for Functions:

(STATEFUL VAL FUN)
E,x : T ` A : F

E ` fun x→ A : (Πx : T. F)

(STATEFUL EXP APPL)
E `M : (Πx : T. F) E ` N : T

E `M N : F{N/x}

The rules for constructions h M depend on an auxiliary relation h : (T,U) that
gives the argument T and result U of each constructor h. As in (STATEFUL EXP
SPLIT), the rule (STATEFUL EXP MATCH INL INR FOLD) strengthens the precon-
ditions of the different branches with information derived from the branching con-
dition.

We complete the system with the following rules of subtyping for value types.

Subtyping for Value Types:

(SUB UNIT)
E ` �

E ` unit <: unit

(SUB SUM)
E ` T <: T ′ E `U <: U ′

E ` (T +U)<: (T ′+U ′)

(STATEFUL SUB FUN)
E ` T ′ <: T E,x : T ′ ` F <: F ′

E ` (Πx : T. F)<: (Πx : T ′. F ′)

(SUB PAIR)
E ` T <: T ′ E,x : T `U <: U ′

E ` (Σx : T. U)<: (Σx : T ′. U ′)

(SUB VAR)
E ` � (α <: α ′) ∈ E

E ` α <: α ′

(SUB REC)
E,α <: α ′ ` T <: T ′ α /∈ fv(T ′) α ′ /∈ fv(T )

E ` (µα.T )<: (µα ′.T ′)

These rules are essentially standard (Cardelli 1986; Pierce and Sangiorgi 1996;
Aspinall and Compagnoni 2001). In (SUB REC), when checking subtyping of recur-
sive types, we use the environment to keep track of assumptions introduced when
unfolding the types.

The main result of this section is that a well-typed expression run in a state sat-
isfying its precondition is safe, that is, no assertions fail. Using this result, we can
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implement different type systems for reasoning about stateful computation in the
calculus.

Theorem 1 (Safety).
If ∅ ` A : {(s)C} : T {(s′)True}, ∅ `C{M/s} and ∅ `M : state then the configura-
tion (A,M,∅) is safe.

The proof of this theorem uses a state-passing translation of RIF into RCF. In
particular, a computation type {(s0)C0}x:T {(s1)C1} is translated to the refined state
monad MC0,C1([[T ]]) described in the introduction, where [[T ]] is the translation of the
value type T . We prove the translation to preserve types, allowing us to appeal to
the safety theorem for well-typed RCF programs. We give this translation and proof
of the safety theorem in the Appendix.

1.4.4 Pragmatics

We find it useful to organize our code into modules. Rather than formalize mod-
ules in the syntax, we follow the conventions of Bengtson et al. (2008). A mod-
ule consists of a set of function names f1, . . . , fk with corresponding implemen-
tations M1, . . . ,Mk and associated types T1, . . . ,Tk. It may also include predicate
symbols p and an assumption assume (s)C. (Without loss of generality, we sup-
pose there is a single such assume expression, but clearly multiple assume expres-
sions can be reduced to a single assume expression with a conjunction of the as-
sumed formulas.) A module is well-formed if the functions type-check at the de-
clared function types, under the given assumptions, that is, if for all i ∈ [1..k]:
f1 : T1, . . . , fk : Tk ` let = assume (s)C in Mi : Ti. All modules used in this pa-
per are well-formed. We use let f = M to define the implementation of a function in
a module, and val f : T for its associated type. We sometimes also use let f : T = M
to capture the same information.

Type-checking a computation A (at type F) in the context of a module with
functions f1, . . . , fk with implementations M1, . . . ,Mk and types T1, . . . ,Tk corre-
sponds to type-checking f1 : T1, . . . , fk : Tk ` let = assume (s)C in A : F and
executing A in the context of that module corresponds to executing the expression
assume (s)C; let f1 = M1 in . . . let fn = Mn in A.

As illustrated in previous sections, to use our calculus, we first instantiate it with
an extension API module that embodies the behavioural type system that we want
to capture. In particular, functions in an extension API module perform all the re-
quired state manipulations. These extension API functions are written in the internal
language described earlier, using the state-manipulation primitives get() and set().
Moreover, the extension API defines a concrete state type.
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1.5 Related Work

We discuss related work on type systems for access control. Pottier et al. (2005)
develop a type and effect system for stack-based access control. As in our work,
the goal is to prevent security exceptions. Our work is intended to show that their
type system may be generalized so that effects are represented as formulas. Hence,
our work is more flexible in that we can deal with an arbitrary lattice of dependent
permissions; their system is limited to a finite set of permissions.

Besson et al. (2004) develop a static analysis for .NET libraries, to discover
anomalies in the security policy implemented by stack inspection. The tool depends
on a flow analysis rather than a type system.

A separate line of work investigates the information flow properties of stack-
based and history-based access control (Banerjee and Naumann 2005b,a; Pistoia
et al. 2007a). We believe our type system could be adapted to check information
flow, but this remains future work. Another line of future investigation is type infer-
ence; ideas from the study of refinement types may be helpful (Rondon et al. 2008;
Knowles and Flanagan 2007).

Abadi et al. (1993) initiated the study of logic for access control in distributed
systems; they propose a propositional logic with a says-modality to indicate the in-
tentions of different principals. This logic is used by Wallach et al. (2000) to provide
a logical semantics of stack inspection. Abadi (2006) develops an approach to access
control in which the formulas of a constructive version of the logic are interpreted
as types. AURA (Jia et al. 2008) is a language that is based, in part, on this idea.

Fournet et al. (2005) introduced the idea of typechecking code to ensure confor-
mance to a logic-based authorization policy. A series of papers develops the idea
for distributed systems modelled with process calculi (Fournet et al. 2007; Maffeis
et al. 2008). In this line of work, access rights may be granted but not retracted. Our
approach in Section 1.2 is different in that we deal with roles that may be activated
and deactivated.

1.6 Conclusion

We described a higher-order imperative language whose semantics is based on the
state monad, refined with preconditions and postconditions. By making different
choices for the underlying state type, and supplying suitable primitive functions, we
gave semantics for standard access control mechanisms based on stacks, histories,
and roles. Type-checking ensures the absence of security exceptions, a common
problem for code-based access control.

This work is dedicated to Tony Hoare, in part in gratitude for his useful feedback
over the years on various behavioural type systems for process calculi. Some of
those calculi had a great deal of innovative syntax. So we hope he will endorse our
general conclusion, that it is better to design behavioural type systems using types
refined with logical formulas, than to invent still more syntax.
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Appendix

1.7 RCF: Refined Concurrent FPC

Our theory of RIF is based on Refined Concurrent FPC, a typed concurrent λ -
calculus. This section gives the formal definitions of the calculus, and states the
properties relied on in this paper. For fuller explanations, please consult the original
report on RCF (Bengtson et al. 2008) or some recent tutorial notes (?).

Formally, RCF is parameterized by an authorization logic, which is specified by a
set of formulas C, and a deducibility relation S `C, from finite multisets of formulas
to formulas. For the purposes of this paper, we assume the logic is FOL/FO, which
is first-order logic together with axiom schemes for the disjointness and injectivity
of the syntactic constructors of closed first-order RCF values.

Syntax of Formulas:

p predicate symbol
C ::= formula

p(M1, . . . ,Mn) atomic formula, Mi first-order
M = M′ equation, M and M′ first-order
C∧C′ conjunction
C∨C′ disjunction
¬C negation
∀x.C universal quantification
∃x.C existential quantification

True, () = ()

False, ¬True
M 6= M′ , ¬(M = M′)
(C⇒C′), (¬C∨C′)
(C⇔C′), (C⇒C′)∧ (C′⇒C)

Properties of Deducibility: S `C

S,C stands for S∪{C}; in (SUBST), σ ranges over substitutions of values for
variables and permutations of names.

(AXIOM)

C `C

(MON)
S `C

S,C′ `C

(SUBST)
S `C

Sσ `Cσ

(CUT)
S `C S,C `C′

S `C′

(AND INTRO)
S `C0 S `C1

S `C0∧C1

(AND ELIM)
S `C0∧C1

S `Ci

(OR INTRO)
S `Ci

S `C0∨C1
i = 0,1
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(EQ)

∅ `M = M

(INEQ)
M 6= N
fv(M,N) =∅
∅ `M 6= N

(INEQ CONS)
h N = M for no N
fv(M) =∅
∅ ` ∀x.hx 6= M

(EXISTS INTRO)
S `C{M/x}

S ` ∃x.C

(EXISTS ELIM)
S ` ∃x.C S,C `C′ x /∈ fv(S,C′)

S `C′

FOL/FO is first-order logic with the following additional axiom schemas (Bengt-
son et al. 2008). The intended universe of FOL/FO is the free algebra of the con-
structors of closed first-order values. A syntactic function symbol is one used to
represent such a value as a term. Each RCF name is a constant, that is, a nullary
syntactic function symbol.

Additional Rules for FOL/FO:

(F DISJOINT)
f 6= f ′ syntactic

S ` ∀x.∀y. f (x) 6= f ′(y)

(F INJECTIVE)
f syntactic

S ` ∀x.∀y. f (x) = f (y)⇒ x = y

The expressions and values of RCF are as follows. It consists of the core Fix-
point Calculus, together with constructs for communication and concurrency from
the π-calculus, and assumptions and assertions from Dijkstra’s guarded command
language.

Syntax of RCF Values and Expressions:

a,b,c name
x,y,z variable
h ::= value constructor

inl left constructor of sum type
inr right constructor of sum type
fold constructor of recursive type

M,N ::= value
x variable
() unit
fun x→ A function (scope of x is A)
(M,N) pair
h M construction

A,B ::= expression
M value
M N application
M = N syntactic equality
let x = A in B let (scope of x is B)
let (x,y) = M in A pair split (scope of x, y is A)
match M with h x→ A else B constructor match (scope of x is A)
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(νa)A restriction (scope of a is A)
A � B fork
a!M transmission of M on channel a
a? receive message off channel
assume C assumption of formula C
assert C assertion of formula C

false, inl () true, inr ()

We follow similar syntactic conventions as in RIF but additionally its syntax
includes names as well as variables. We write fn(φ) for the set of names occurring
free in φ , and also fnfv(φ) = fv(φ)∪ fn(φ), the set of both names and variables
occurring free in φ .

Expressions represent run-time configurations as well as source code. Structures
S are normal forms for expressions, and formalize the idea that a configuration has
three parts: (1) the log, a multiset ∏i∈1..m assume Ci of assumed formulas; (2) a
series of messages M j sent on channels but not yet received; and (3) a series of
elementary expressions ek being evaluated in parallel contexts.

We give structures below, together with a notion of static safety, which means
that all active assertions in a structure are deducible in the logic from the active
assumptions. We additionally require all formulas to be first-order, since the logic
only speaks about first-order values.

Structures and Static Safety:

e ::= M |M N |M = N | let (x,y) = M in A |
match M with h x→ A else B | a? | assert C

∏i∈1..n Ai , () � A1 � . . . � An
L ::= {} | (let x = L in B)

S ::= (νa1) . . .(νa`)(∏i∈1..m assume Ci) � (∏ j∈1..n c j!M j) � (∏k∈1..oLk{ek}))
Let structure S be statically safe if and only if, for all p ∈ 1..o and C,
if ep = assert C then C1, . . . ,Cm and C are first-order, and {C1, . . . ,Cm} `C.

Next, we present the heating relation, AV A′, which relates expression up to
various structural re-arrangements. In particular, every expression can be related to
a structure via heating.

Heating: AV A′

Axioms A≡ A′ are read as both AV A′ and A′V A.

AV A (HEAT REFL)
AV A′′ if AV A′ and A′V A′′ (HEAT TRANS)

AV A′⇒ let x = A in BV let x = A′ in B (HEAT LET)
AV A′⇒ (νa)AV (νa)A′ (HEAT RES)
AV A′⇒ (A � B)V (A′ � B) (HEAT FORK 1)
AV A′⇒ (B � A)V (B � A′) (HEAT FORK 2)
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() � A≡ A (HEAT FORK ())
a!MV a!M � () (HEAT MSG ())
assume CV assume C � () (HEAT ASSUME ())

a /∈ fn(A′)⇒ A′ � ((νa)A)V (νa)(A′ � A) (HEAT RES FORK 1)
a /∈ fn(A′)⇒ ((νa)A) � A′V (νa)(A � A′) (HEAT RES FORK 2)
a /∈ fn(B)⇒

let x = (νa)A in BV (νa)let x = A in B
(HEAT RES LET)

(A � A′) � A′′ ≡ A � (A′ � A′′) (HEAT FORK ASSOC)
(A � A′) � A′′V (A′ � A) � A′′ (HEAT FORK COMM)
let x = (A � A′) in B≡

A � (let x = A′ in B)
(HEAT FORK LET)

Lemma 1 (Structure). For every expression A, there is a structure S with AV S.

The reduction relation, A→ A′, is the operational semantics of RCF.

Reduction: A→ A′

(fun x→ A) N→ A{N/x} (R RED FUN)
(let (x1,x2) = (N1,N2) in A)→ A{N1/x1}{N2/x2} (R RED SPLIT)
(match M with h x→ A else B)→{

A{N/x} if M = h N for some N
B otherwise

(R RED MATCH)

M = N→
{

true if M = N
false otherwise (R RED EQ)

a!M � a?→M (R RED COMM)
assert C→ () (R RED ASSERT)
let x = M in A→ A{M/x} (R RED LET VAL)

A→ A′⇒ let x = A in B→ let x = A′ in B (R RED LET)
A→ A′⇒ (νa)A→ (νa)A′ (R RED RES)
A→ A′⇒ (A � B)→ (A′ � B) (R RED FORK 1)
A→ A′⇒ (B � A)→ (B � A′) (R RED FORK 2)

A→ A′ if AV B,B→ B′,B′V A′ (R RED HEAT)

We define expression safety as follows. A closed expression A is safe if and only
if, in all evaluations of A, all assertions succeed.

Expression Safety:

An expression A is safe if and only if, for all A′ and S, if A→∗ A′ and A′V S,
then S is statically safe.

The purpose of the system of refinement types for RCF is to verify by typing
that an expression is safe. The types of RCF are as follows. The starting point is the
system of unit, function, pair, sum, and iso-recursive types of FPC, to which we add
refinement types {x : T |C}, while making function and pair types dependent.
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Syntax of Types:

H,T,U,V ::= type
α type variable
unit unit type
Πx : T. U dependent function type (scope of x is U)
Σx : T. U dependent pair type (scope of x is U)
T +U disjoint sum type
µα.T iso-recursive type (scope of α is T )
{x : T |C} refinement type (scope of x is C)

A type T is first-order if and only if T contains no occurrences of Πx : T. U . For
a type Πx : T. F or Σx : T.U or {x : T |C} to be well-formed, we require that either
T is a first-order type or that x is not free in F , U , or C, respectively.

Some Derivable Types:

{C}, { : unit |C} (ok-type)
bool, unit+unit
nat, µα.unit+α

(T )list, µα.unit+(T ×α)

[x1 : T1]{C1}→U ,Πx1 : {x1 : T1 |C1}. U

(x1 : T1 ∗ · · · ∗ xn : Tn){C},
{

Σx1 : T1. . . .Σxn−1 : Tn−1. {xn : Tn |C} if n > 0
{C} otherwise

Below, we define the syntax of typing environments, E, for tracking the identi-
fiers (type variables, names, and (value) variables) in scope during typechecking.

Syntax of Typing Environments:

µ ::= environment entry
α <: α ′ subtype (α 6= α ′)
a l T name of a typed channel
x : T variable

E ::= µ1, . . . ,µn environment

dom(α <: α ′) = {α,α ′} fnfv(α <: α ′) =∅
dom(a l T ) = {a} fnfv(a l T ) = fnfv(T )
dom(x : T ) = {x} fnfv(x : T ) = fnfv(T )

dom(µ1, . . . ,µn) = dom(µ1)∪·· ·∪dom(µn)
fov(E) = {x ∈ dom(E) | (x : T ) ∈ E with T first-order}
recvar(E) = {α | α ∈ dom(E)}

The type system consists of five inductively defined judgments.

Judgments (E ` J):

E ` � E is syntactically well-formed
E ` T in E, type T is syntactically well-formed
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E `C fo formula C is first-order in E
E `C formula C is derivable from E
E ` T <: U in E, type T is a subtype of type U
E ` A : T in E, expression A has type T

The judgments E ` �, E ` T , and E ` C are inductively defined by the rules in
the following table.

Rules of Well-Formedness and Deduction:

(R ENV EMPTY)

∅ ` �

(R ENV ENTRY)
E ` �
fnfv(µ)⊆ dom(E)
dom(µ)∩dom(E) =∅

E,µ ` �

(R TYPE)

E ` �
fnfv(T )⊆ dom(E)

E ` T

(R DERIVE)
E `C fo
forms(E) `C

E `C

(R FORM)
E ` � C is first-order
fn(C)⊆ dom(E) fv(C)⊆ fov(E)

E `C fo

forms(E),{C{
y/x}}∪ forms(y : T ) if E = (y : {x : T |C})

forms(E1)∪ forms(E2) if E = (E1,E2)
∅ otherwise

The judgment E ` T <: T ′ is inductively defined by the following rules.

Rules for Subtyping:

(R SUB REFL)
E ` T recvar(E)∩ fnfv(T ) =∅

E ` T <: T

(R SUB UNIT)
E ` �

E ` unit <: unit

(R SUB FUN)
E ` T ′ <: T E,x : T ′ `U <: U ′

E ` (Πx : T. U)<: (Πx : T ′. U ′)

(R SUB PAIR)
E ` T <: T ′ E,x : T `U <: U ′

E ` (Σx : T. U)<: (Σx : T ′. U ′)

(R SUB SUM)
E ` T <: T ′ E `U <: U ′

E ` (T +T ′)<: (U +U ′)

(R SUB VAR)
E ` � (α <: α ′) ∈ E

E ` α <: α ′

(R SUB REC)
E,α <: α ′ ` T <: T ′ α /∈ fnfv(T ′) α ′ /∈ fnfv(T )

E ` (µα.T )<: (µα ′.T ′)

(R SUB REFINE LEFT)
E ` {x : T |C} E ` T <: T ′

E ` {x : T |C}<: T ′

(R SUB REFINE RIGHT)
E ` T <: T ′ E,x : T `C

E ` T <: {x : T ′ |C}



1 Roles, Stacks, Histories: A Triple for Hoare 41

The judgment E ` A : T is inductively defined by the rules in the following table.
We write E +C , E, : {C} if E `C fo. Otherwise, E +C , E.

Rules for Typing Expressions:

(R VAL VAR)
E ` � (x : T ) ∈ E

E ` x : T

(R EXP SUBSUM)
E ` A : T E ` T <: T ′

E ` A : T ′

(R EXP EQ)
E `M : T E ` N : U x /∈ fv(M,N)

E `M = N : {x : bool | x = true⇔M = N}

(R EXP ASSUME)
E `C fo

E ` assume C : { : unit |C}
(R EXP ASSERT)

E `C

E ` assert C : unit

(R EXP LET)
E ` A : T E,x : T ` B : U x /∈ fv(U)

E ` let x = A in B : U

(R VAL UNIT)
E ` �

E ` () : unit

(R VAL FUN)
E,x : T ` A : U

E ` fun x→ A : (Πx : T. U)

(R EXP APPL)
E `M : (Πx : T. U) E ` N : T

E `M N : U{N/x}

(R VAL PAIR)
E `M : T E ` N : U{M/x}

E ` (M,N) : (Σx : T. U)

(R EXP SPLIT)
E `M : (Σx : T. U)
E,x : T,y : U +((x,y) = M) ` A : V
{x,y}∩ fv(V ) =∅

E ` let (x,y) = M in A : V

inl:(T,T+U) inr:(U,T+U) fold:(T{µα.T/α},µα.T )

(R VAL INL INR FOLD)
h : (T,U) E `M : T E `U

E ` h M : U

(R EXP MATCH INL INR FOLD)
E `M : T h : (U,T )
E,x : H +(h x = M) ` A : U x /∈ fv(U)
E +(∀x.h x 6= M) ` B : U

E `match M with h x→ A else B : U

(R VAL REFINE)
E `M : T E `C{M/x}

E `M : {x : T |C}

(R EXP RES)
E,a l T ` A : U a /∈ fn(U)

E ` (νa)A : U

(R EXP SEND)
E `M : T (a l T ) ∈ E

E ` a!M : unit

(R EXP RECV)
E ` � (a l T ) ∈ E

E ` a? : T

(R EXP FORK)
E, : {A2} ` A1 : T1 E, : {A1} ` A2 : T2

E ` (A1 � A2) : T2

(νa)A, (∃a.A) A1 � A2 , (A1∧A2) let x = A1 in A2 , A1 assume C ,C

A, True if A matches no other rule

To state the following general properties of all the judgments of our system, we
let J range over {�,T,C,C fo,T :: ν ,T <: T ′,A : T}.
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Admissible Rules:

(R BOUND WEAKENING)
E ` T ′ <: T E,x : T,E ′ ` J

E,x : T ′,E ′ ` J

(R BOUND UNREFINE)
E,x : T,E ′ ` J

E,x : {x : T |C},E ′ ` J
(R WEAKENING)

E,E ′ ` J
E,x : T,E ′ ` J

(R EXCHANGE)
E,µ1,µ2,E ′ ` J dom(µ1)∩ fnfv(µ2) =∅

E,µ2,µ1,E ′ ` J
(R SUB REFINE)
E ` T <: T ′ E,x : {x : T |C} `C′

E ` {x : T |C}<: {x : T ′ |C′}

(R SUB REFINE LEFT REFL)
E ` {x : T |C}

E ` {x : T |C}<: T

The primary soundness results about RCF, proved elsewhere (Bengtson et al.
2008), are as follows. Let E be executable if and only if recvar(E) =∅.

Lemma 2 (Static Safety).
If ∅ ` S : T then S is statically safe.

Proposition 2 (V Preserves Types).
If E is executable and E ` A : T and AV A′ then E ` A′ : T .

Proposition 3 (→ Preserves Types).
If E is executable, fv(A) =∅, and E ` A : T and A→ A′ then E ` A′ : T .

Theorem 2 (Safety).
If ∅ ` A : T then A is safe.

1.8 Semantics of RIF by Translation to RCF

We give a semantics to RIF through translation to the sequential fragment of RCF.
For our purposes, this fragment is virtually identical to the source language, except
for the lack of binders on assert C and assume C. The translation of values and
formulas is homomorphic.

V[[M]] is the translation of the value M in the source language to a value in RCF.

Translation of Values: V[[M]]

V[[x]], x
V[[()]], ()

V[[fun x→ A]], fun x→ E[[A]]
V[[(M,N)]], (V[[M]],V[[N]])

V[[h M]], h (V[[M]])
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We want to work in a single, unified authorization logic for both the source and
the target of the translation. We prove that (first-order) formulas are mapped to them-
selves by formula translation; equiprovability trivially follows.

Let [[C]] be the translation of the formula C.

Translation of Formulas: [[C]]

[[p(M1, . . . ,Mn)]], p(V[[M1]], . . . ,V[[Mn]])

[[M = M′]], V[[M]] = V[[M′]]
[[C∧C′]], [[C]]∧ [[C′]]
[[C∨C′]], [[C]]∨ [[C′]]
[[¬C]], ¬[[C]]

[[∀x.C]], ∀x.[[C]]

[[∃x.C]], ∃x.[[C]]

A formula C is first-order if it contains only first-order values.

Lemma 3. If M is a first-order value then [[M]] = M, and if C is a first-order formula
then C = [[C]].

Proof. By inductions on the structure of M and C. ut

Corollary 1 (Equiprovability).

• If C is a first-order formula, then `C iff ` [[C]].
• If C and all formulas in S are first-order, then S `C iff [[S]] ` [[C]].

Let E[[A]] be the translation of an expression A in the source language to a function
in RCF. This function receives the current state and returns a pair, consisting of
the original return value and the resulting state. Intuitively, the translation threads a
state through the original computation. We rely on an auxiliary translation Ec[[A]]s
on expressions to reduce the number of administrative redexes.

Translation of Expressions: E[[A]] and Ec[[A]]s

E[[A]], fun s→ Ec[[A]]s (s /∈ fv(A))

Ec[[M]]s, (V[[M]],s)
Ec[[M N]]s, let f = V[[M]] V[[N]] in f s
Ec[[M = N]]s, let b = (V[[M]] = V[[N]]) in (b,s)
Ec[[let x = A in B]]s, let y = Ec[[A]]s in let (x,s′) = y in Ec[[B]]s′ (y,s′ /∈ fv(B))
Ec[[let (x,y) = M in A]]s, let (x,y) = V[[M]] in Ec[[A]]s
Ec[[match M with h x→ A else B]]s,match V[[M]] with h x→ Ec[[A]]s else Ec[[B]]s
Ec[[assume (s)C]]s, let = assume [[C]] in ((),s)
Ec[[assert (s)C]]s, let = assert [[C]] in ((),s)
Ec[[get()]]s, (s,s)
Ec[[set(M)]]s, ((),V[[M]])
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The translation of types is straightforward. We translate computation types into
a function type that takes a refinement of the state type and returns a pair of the
original return type and a refined state.

Translation of Types: T[[T ]],T[[F ]]

T[[α]], α

T[[unit]], unit
T[[Πx : T. F ]],Πx : T[[T ]]. T[[F ]]

T[[Σx : T. U ]], Σx : T[[T ]]. T[[U ]]

T[[T +U ]], T[[T ]]+T[[U ]]

T[[µα.T ]], µα.T[[T ]]

T[[{(s0)C0}x1:T1 {(s1)C1}]],Πs0 : {s0 : state | [[C0]]}.
Σx1 : T[[T1]]. {s1 : state | [[C1]]}

Closed first-order types are translated to themselves, so T[[state]] = state. The
translation of environments is also straightforward; we make explicit that state vari-
ables are of type state.

Translation of Environments: [[E]]

[[∅]],∅
[[E,µ]], [[E]], [[µ]]
[[α <: α ′]], (α <: α ′)

[[s]], (s : state)
[[x : T ]], x : T[[T ]]

The state-passing translation of expressions and values is type-preserving.

Proposition 4 (Static Adequacy).

(1) If E ` � then [[E]] ` �.
(2) If E ` T then [[E]] ` T[[T ]].
(3) If E ` F then [[E]] ` T[[F ]].
(4) If E `C fo then [[E]] ` [[C]] fo.
(5) If E ` T <: U then [[E]] ` T[[T ]]<: T[[U ]].
(6) If E ` F <: G then [[E]] ` T[[F ]]<: T[[G]].
(7) If E `M : T then [[E]] ` V[[M]] : T[[T ]].
(8) If E ` A : F then [[E]] ` E[[A]] : T[[F ]] using (R VAL FUN) as the top-level rule of

the derivation.

The proof of the proposition relies on several lemmas, as follows.

Lemma 4 (Free Variable Preservation).

(1) fnfv(V[[M]]) = fv(M), fnfv(E[[A]]) = fv(A) and fnfv(Ec[[A]]s) = fv(A)∪{s}.
(2) fnfv(T[[T ]]) = fv(T ) and fnfv(T[[F ]]) = fv(F).
(3) fnfv([[µ]]) = fv(µ) and fnfv([[E]]) = fv(E).

Proof. By structural inductions. ut
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Lemma 5 (Environment Translation).

(1) dom([[µ]]) = dom(µ) and dom([[E]]) = dom(E).
(2) If µ ∈ E then [[µ]] ∈ [[E]].

Proof. By induction on E; trivial. ut

Lemma 6 (Substitutivity).

(1) V[[N{M/x}]] = V[[N]]{V[[M]]/x}.
(2) E[[A{M/x}]] = E[[A]]{V[[M]]/x}.
(3) Ec[[A{M/x}]]s = Ec[[A]]s{V[[M]]/x} if s /∈ fv(M,x).
(4) T[[T{M/x}]] = T[[T ]]{V[[M]]/x}.
(5) T[[F{M/x}]] = T[[F ]]{V[[M]]/x}.
(6) [[C{M/x}]] = [[C]]{V[[M]]/x}.
(7) T[[T{U/α}]] = T[[T ]]{T[[U ]]/α}.
(8) T[[F{U/α}]] = T[[F ]]{T[[U ]]/α}.

Proof. By structural inductions. ut

Proof (Proposition 4).
The rule (R BOUND UNREFINE) is used throughout this proof, with T = state.

(1) By induction on E. The base case E =∅ is trivial.
For the induction case, we assume that E ` � and E = E ′,µ . By induction
[[E ′]] ` �. By assumption dom(E ′) ∩ dom(µ) = ∅ and dom(E ′) ⊇ fv(µ). By
Lemma 5 dom(E ′) = dom([[E ′]]) and dom(µ) = dom([[µ]]). By Lemma 4 fv(µ) =
fnfv([[µ]]). Thus dom([[E ′]]) ∩ dom([[µ]]) = ∅ and dom([[E ′]]) ⊇ fnfv([[µ]]), so
[[E]] ` �.

(2,3,4) Since T[[T ]] is first-order whenever T is, this follows from Lemma 4 and Lemma 5.
(5,6) By induction on the derivation. Base cases:

(SUB UNIT) derives E ` unit <: unit from E ` �. By 1, [[E]] ` �, so [[E]] ` unit <:
unit.

(SUB VAR) derives E ` α <: α ′ from (α <: α ′) ∈ E and E ` �. By 1, [[E]] ` �,
and by Lemma 5 we have (α <: α ′) ∈ [[E]]. Thus [[E]] ` α <: α ′.

Induction cases:

(SUB SUM) derives E ` (T +U)<: (T ′+U ′) from E ` T <: T ′ and E `U <:
U ′. By induction [[E]] ` T[[T ]] <: T[[T ′]] and [[E]] ` T[[U ]] <: T[[U ′]], so [[E]] `
(T[[T ]]+T[[U ]])<: (T[[T ′]]+T[[U ′]]). Applying the definition of T[[T +U ]], this
gives [[E]] ` T[[T +U ]]<: T[[T ′+U ′]].

(SUB PAIR) derives E ` Σx : T. U <: Σx : T ′. U ′ from E ` T <: T ′ and E,x :
T ` U <: U ′. By induction [[E]] ` T[[T ]] <: T[[T ′]] and [[E,x : T ]] ` T[[U ]] <:
T[[U ′]]. By definition [[E,x : T ]] = [[E]],x : T[[T ]], so [[E]] ` Σx : T[[T ]]. T[[U ]] <:
Σx : T[[T ′]]. T[[U ′]]. Applying the definition of T[[Σx : T. U ]], this gives [[E]] `
T[[Σx : T. U ]]<: T[[Σx : T ′. U ′]].
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(SUB REC) derives (µα.T )<: (µα ′.T ′) from E,α <: α ′ `T <: T ′, α /∈ fv(T ′)
and α ′ /∈ fv(T ).
By induction [[E,α <: α ′]] ` T[[T ]] <: T[[T ′]]. By definition [[E,α <: α ′]] =
[[E]],α <: α ′. By Lemma 4 α /∈ fv(T[[T ′]]) and α ′ /∈ fv(T[[T ]]), so [[E]] `
(µα.T[[T ]]) <: (µα ′.T[[T ′]]). Applying the definition of T[[µβ .U ]], this gives
[[E]] ` T[[µα.T ]]<: T[[µα ′.T ′]].

(SUB COMP) derives E ` F <: F ′ from fv(C0,C′0)⊆ dom(E,s0), fv(C1,C′1)⊆
dom(E,s0,x,s1), vld(C′0 ⇒ C0), vld((C′0 ∧C1)⇒ C′1) and E,s0 ` T <: T ′,
where F = {(s0)C0}x:T {(s1)C1}, and the same for F ′.
By induction [[E]],s0 : state ` T[[T ]] <: T[[T ′]] (*). By Lemma 4 and Lemma 5
fnfv([[C0]], [[C′0]]) ⊆ dom([[E,s0]]) and fv([[C1]], [[C′1]]) ⊆ dom([[E,s0,x,s1]]). By
Corollary 1, vld([[C′0]]⇒ [[C0]]) (**) and vld(([[C′0]]∧ [[C1]])⇒ [[C′1]]) (***). By
definition T[[F ]] = Πs : {s0 : state | [[C0]]}. Σx : T. {s1 : state | [[C1]]} and the
same for F ′.
We derive [[E]] ` T[[F ]]<: T[[F ′]] by (R SUB FUN) ((R SUB REFINE) ((R SUB
REFL), (R DERIVE) (**)), (R SUB PAIR) ((R BOUND WEAKENING) (*), (R
SUB REFINE) ((R SUB REFL), (R DERIVE) (***)))).

(7,8) By induction on the derivation. Base cases:

(VAL VAR) derives E ` x : T from (x : T )∈E and E ` �. By Lemma 5 [[x : T ]]∈
[[E]], where [[x : T ]] = x : T[[T ]] by definition. By (1) [[E]] ` �, so [[E]] ` x : T[[T ]].
Since V[[x]] = x, [[E]] ` V[[x]] : T[[T ]].

(EXP ASSUME) derives E ` assume (s)C : {(s)True} :unit{(s1)((s= s1)∧C)}
from E,s,s1 ` � and fv(C)⊆ dom(E,s). Let M , E[[assume (s)C]] = fun s→
let = assume [[C]] in ((),s) (by definition) and

T[[{(s)True} :unit{(s1)((s = s1)∧C)}]] =
Πs : {s : state | True}. Σ : unit. {s1 : state | s = s1∧ [[C]]}

which we can write as Πs : T. Σ : unit.U . Then [[E]] `M : Πs : T. Σ : unit.U
can be derived by the following tree: (R VAL FUN) ((R EXP LET) [T = {[[C]]}]
((R EXP ASSUME), (R VAL PAIR) ((R VAL UNIT), (R VAL REFINE) ((R VAL
VAR), (R DERIVE))))).

(EXP ASSERT) derives E ` assert (s)C : {(s)C} :unit{(s1)s= s1} from E,s,s1 `
� and fv(C) ⊆ dom(E,s). Let M , E[[assert (s)C]] so that M = fun s →
let = assert [[C]] in ((),s) (by definition) and

T[[{(s)C} :unit{(s1)s = s1}]] =
Πs : {s : state | [[C]]}. Σ : unit. {s1 : state | s = s1}

which we can write as Πs : T. Σ : unit.U . Then [[E]] `M : Πs : T. Σ : unit.U
can be derived by the following tree: (R VAL FUN) ((R EXP LET) [T = unit]
((R EXP ASSERT) ((R DERIVE)), (R VAL PAIR) ((R VAL UNIT), (R VAL
REFINE) ((R VAL VAR), (R DERIVE))))).
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(VAL UNIT) derives E ` () : unit from E ` �. By 1 [[E]] ` �, so [[E]] ` () : unit.
By definition V[[()]] = () and T[[unit]] = unit, so [[E]] ` V[[()]] : T[[unit]].

Induction cases:

(EXP SUBSUM) derives E ` A : F ′ from E ` A : F and E ` F <: F ′, where
F = {(s0)C0}x:T {(s1)C1}, and the same for F ′.
By induction [[E]]`E[[A]] : T[[F ]] using (R VAL FUN) as the top-level rule. Then
[[E]],s0 : T ` Ec[[A]]s0 : U .
The only rule that can derive E ` F <: F ′ is (SUB COMP). By its precondi-
tions fv(C0,C′0) ⊆ dom(E,s0), fv(C1,C′1) ⊆ dom(E,s0,x,s1), vld(C′0 ⇒ C0),
vld((C′0∧C1)⇒C′1) and E,s0 ` T <: T ′.
By induction [[E]],s0 : state ` T[[T ]] <: T[[T ′]] (*). By Lemma 4 and Lemma 5
fv([[C0]], [[C′0]])⊆ dom([[E,s0]]) and fv([[C1]], [[C′1]])⊆ dom([[E,s0,x,s1]]). By Corol-
lary 1 vld([[C′0]]⇒ [[C0]]) (**) and vld(([[C′0]]∧ [[C1]])⇒ [[C′1]]) (***).
We derive [[E]] ` E[[A]] : T[[F ′]] by (R VAL FUN) ((R EXP SUBSUM) ((R
BOUND WEAKENING) ((R SUB REFINE) ((R SUB REFL), (R DERIVE) (**)),
(R SUB PAIR) ((R BOUND WEAKENING) ((R SUB REFINE LEFT REFL) (*),
(R SUB REFINE) ((R SUB REFL), (R DERIVE) (***)))).

(EXP RETURN) derives E `M : {(s0)True} :T {(s1)s0 = s1} from E,s0 `M :
T . By induction [[E,s0]] ` V[[M]] : T[[T ]]. By definition [[E,s0]] = [[E]],s0:state
and E[[M]] = fun s0→ (V[[M]],s0) (for some (s0 /∈ fv(M))). Moreover, let

U , T[[{(s0)True} :T {(s1)s0 = s1}]] =
Πs0 : {s0 : state | True}. Σ : T[[T ]]. {s1 : state | s0 = s1}

We derive [[E]] ` E[[M]] : U by (R VAL FUN) ((R VAL PAIR) (Induction Hy-
pothesis, (R VAL REFINE) ((R VAL VAR), (R DERIVE)))).

(EXP EQ) derives E `M = N : {(s0)True}x:bool{(s1)s1 = s0∧C} where C =
(x= true⇔M =N) from E `M : T , E `N : U , x /∈ fv(M,N) and E,s0,s1 ` �.
By induction [[E]] ` V[[M]] : T[[T ]] and [[E]] ` V[[N]] : T[[U ]]. By Lemma 4 x /∈
fv(V[[M]],V[[N]]). Thus [[E]] ` M′ : T ′ (*), where M′ , (V[[M]] = V[[N]]) and
T ′ , {x:bool | [[C]]}.
By definition, E[[M =N]] = funs→ let b = (V[[M]] = V[[N]]) in (b,s)= funs→
N′, where N′ , let b = M′ in (b,s), and

T[[{(s)True}x:bool{(s1)s = s1∧C}]] =
Πs : {s : state | True}. Σ : unit. {s1 : state | s = s1∧ [[C]]}

which we can write as Πs : U ′. Σx : bool. U ′′. We derive [[E]] ` fun s→ N′ :
Πs : T. Σx : bool.U by (R VAL FUN) ((R EXP LET)[T ′] (*, (R VAL PAIR) ((R
VAL VAR), (R VAL REFINE) ((R VAL VAR), (R DERIVE))))).

(STATEFUL EXP LET) derives the judgment

E ` let x1 = A in B : {(s0)C0}x2:T2 {(s2)C2}
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from E ` A : {(s0)C0}x1:T1 {(s1)C1} and

E,s0,x1 : T1 ` B : {(s1)C1}x2:T2 {(s2)C2}

where {s1,x1}∩ fv(T2,C2) =∅. By induction, we have

[[E]] ` E[[A]] : T[[{(s0)C0}x1:T1 {(s1)C1}]]

and [[E,s0,x1 : T1]] ` E[[B]] : T[[{(s1)C1}x2:T2 {(s2)C2}]] using (R VAL FUN) as
the top-level rule.
By Lemma 4 {s1,x1}∩ fv(T[[T2]], [[C2]]) =∅. By definition
[[E,s0,x1 : T1]] = [[E]], s0 : state, x1 : T[[T1]],
E[[let x1 = A in B]] = fun s0→ let (x1,s1) = Ec[[A]]s0 in Ec[[B]]s1 and

T[[{(si)Ci}x j:Tj {(s j)C j}]] =
Πsi : {si : state | [[Ci]]}. Σx j : T[[Tj]]. {s j : state | [[C j]]}

which we can write as Πsi : Ui. Ui j.
By (R VAL FUN) we get [[E]],s0 : U0 ` Ec[[A]]s0 : U01 (*) and
[[E,s0,x1 : T1]],s1 : U1 ` Ec[[B]]s1 : U12 **. Then [[E]]`E[[let x1 =A in B]] : Πs0 :
U0. U01 by (R VAL FUN) ((R EXP LET)[U01] (*, (R EXP SPLIT) ((R VAL
VAR),**))).

(VAL PAIR) derives E ` (M,N) : Σx : T.U from E `M : T and E `N : U{M/x}.
By induction [[E]] ` V[[M]] : T[[T ]] and [[E]] ` V[[N]] : T[[U{M/x}]]. By Lemma 6
T[[U{M/x}]] = T[[U ]]{V[[M]]/x}, so [[E]] ` (V[[M]],V[[N]]) : Σx : T[[T ]]. T[[U ]]. By
definition V[[(M,N)]] = (V[[M]],V[[N]]) and Σx : T[[T ]]. T[[U ]] = T[[Σx : T. U ]],
so [[E]] ` V[[(M,N)]] : T[[Σx : T. U ]].

(STATEFUL EXP SPLIT) derives E ` let (x,y) = M in A : F from E `M : (Σx :
T. U), E,x : T,y : U ` A : ((x,y) = M); F and {x,y}∩ fv(F) =∅.
Assume that F = {(s)C1}z:T ′ {(s2)C2}; then ((x,y)=M);F = {(s)((x,y)=
M)∧C1}z:T ′ {(s2)C2}.
By Lemma 4 {x,y} ∩ fnfv(T[[F ]]) = ∅. By induction [[E]] ` V[[M]] : (Σx :
T[[T ]]. T[[U ]]) (*) and [[E]],x : T[[T ]],y : T[[U ]] ` E[[A]] : U ′ where

U ′,Πs : {s : state | ((x,y)=V[[M]])∧ [[C1]]}. Σz :T[[T ′]]. {s2 : state | [[C2]]}

(which we can write as Πs : U ′1. U ′2) using (R VAL FUN) as the top-level rule.
Then [[E]],x : T[[T ]],y : T[[U ]],s : U ′1 ` E[[A]]s : U ′2(**).
Let N , E[[let (x,y) = M in A]] = fun s→ let (x,y) = V[[M]] in Ec[[A]]s (by
definition). We derive [[E]] ` N : T[[F ]] by (R VAL FUN) ((R EXP SPLIT) (*,
**)).

(STATEFUL VAL FUN) derives E ` fun x→ A : Πx : T. F from E,x : T ` A :
F . By induction [[E,x : T ]] ` E[[A]] : T[[F ]]. By definition [[E,x : T ]] = [[E]],x :
T[[T ]], so [[E]] ` fun x→ E[[A]] : Πx : T[[T ]]. T[[F ]]. By definition V[[fun x→
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A]] = funx→ E[[A]] and T[[Πx : T. F ]] = Πx : T[[T ]]. T[[F ]], so [[E]] ` V[[funx→
A]] : T[[Πx : T. F ]].

(STATEFUL EXP APPL) derives E ` M N : F{N/x} from E ` M : (Πx : T. F)
and E ` N : T . By induction [[E]] ` V[[M]] : (Πx : T[[T ]]. T[[F ]]) (*) and [[E]] `
V[[N]] : T[[T ]](**).
By definition E[[M N]] = funs→ let f = V[[M]] V[[N]] in f s. Then, [[E]]`E[[M N]] :
T[[F ]]{V[[N]]/x} by (R VAL FUN) ((R EXP LET) [T[[F ]]{V[[N]]/x}] ((R EXP APPL)
(*, **), (R EXP APPL) ((R VAL VAR), (R VAL VAR)))).
Finally, by Lemma 6 T[[F{N/x}]] = T[[F ]]{V[[N]]/x}.

(VAL INL INR FOLD) derives E ` h M : U from h : (T,U), E `U and E `M :
T . By induction [[E]] ` V[[M]] : T[[T ]]. Using Lemma 6 h : (T[[T ]],T[[U ]]). By
(2) [[E]] ` T[[T ]], so [[E]] ` h V[[M]] : T[[U ]]. By definition h V[[M]] = V[[h M]], so
[[E]] ` V[[h M]] : T[[U ]].

(STATEFUL EXP MATCH INL INR FOLD) derives E ` match M with h x→
A else B : F from E `M : T , h : (U,T ), x /∈ fv(F), E,x : U ` A : (h x =M); F
and E ` B : (∀x.h x 6= M); F .
Assume that F = {(s)C1}z:T ′ {(s2)C2}; then C ;F = {(s)C∧C1}z:T ′ {(s2)C2}.
By Lemma 4 x /∈ fnfv(T[[F ]]). Using Lemma 6 h : (T[[T ]],T[[U ]]).
By induction [[E]] ` V[[M]] : T[[T ]] (*), [[E]],x : T[[U ]] ` E[[A]] : U (h x=V[[M]]) and
[[E]] ` E[[B]] : U (∀x.h x 6=V[[M]]) where

UC , Πs : {s : state | [[C ∧ C1]]}. Σz : T[[T ′]]. {s2 : state | [[C2]]}

(which we can write as Πs : UC
1 .U2) using (R VAL FUN) as the top-level rule.

Then [[E]],x : T[[U ]],s : UC
1 ` E[[A]]s : U2(**) and [[E]],s : UC

1 ` E[[B]]s : U2(***)
Let N , E[[match M with h x→ A else B]] = funs→match V[[M]] with h x→
Ec[[A]]s else Ec[[B]]s (by definition). We derive [[E]] `N : T[[F ]] by (R VAL FUN)
((R EXP MATCH INL INR FOLD) (*, (R EXCHANGE)[E ′ = ∅] ((R BOUND
WEAKENING) [{s : state | [[C1]]} <: {s : state | (∀x.h x 6= V[[M]]) ∧ [[C1]]}]
((R SUB REFINE) ((R SUB REFL), (R DERIVE)), (R WEAKENING) [µ =
:{(∀x.h x 6=V[[M]])}] (**))), (R EXCHANGE)[E ′= : {h x=V[[M]]}] ( (R EX-

CHANGE)[E ′ =∅] ((R BOUND WEAKENING) [{s : state | [[C1]]}<: {s : state |
(h x = V[[M]])∧ [[C1]]}] ((R SUB REFINE) ((R SUB REFL), (R DERIVE)), (R
WEAKENING) [µ = :{(h x = V[[M]])}] (***)))))). ut

1.8.1 Safety

We define [[R]] by [[let x = R in B]] , let y = [[R]] in let (x,s′) = y in Ec[[B]]s′ and
[[[]]] , []. When S is the multiset {|C1, . . . ,Cn|}, we write [[S]] , {|[[C1]], . . . , [[Cn]]|} and
[[assume S]], assume [[C1]] � · · · � assume [[Cn]] � ().

Lemma 7. If [[assume S]] � Ec[[A]]s{V[[M]]/s} is statically safe, then (A,M,S) has not
failed.
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Proof. The configuration (A,M,S) has failed iff A = R[assert (s)C] and we can-
not derive S `C{M/s}. If A =R[assert (s)C] then B, Ec[[A]]s{V[[M]]/s}= [[R]][let =
assert C{V[[M]]/s} in ((),s)]. If [[assume S]] � B is statically safe, then [[S]] `C{V[[M]]/s}.
Thus [[S]] and C{V[[M]]/s} are first-order, so S and C{M/s} are first-order. By Corol-
lary 1, [[S]] `C{V[[M]]/s}. ut

Lemma 8. If (A0,N0,S0)→ (A1,N1,S1) then [[assume S0]] � Ec[[A0]]s{V[[N0]]/s}→∗
[[assume S1]] � Ec[[A1]]s{V[[N1]]/s}

Proof. The proof is by induction on the derivation of the transition. Let Mr
0 ,

Ec[[A0]]s{V[[N0]]/s} and Mr
1 , Ec[[A1]]s{V[[N1]]/s}. When S0 = S1 and Mr

0 →∗ Mr
1 then

the statement of the lemma follows by the use of (R RED FORK 2) at every reduc-
tion. We group the transitions into three groups.

For the reductions of the core calculus, we have S0 = S1, so we need only show
that Mr

0→∗ Mr
1. We also have N0 = N1, and we let N , V[[N0]](= V[[N1]]).

(RED LET) Here A0 = let x = M in A and A1 = A{M/x}. Then Mr
0 = let y =

(V[[M]],N) in let (x,s) = y in Ec[[A]]s.
By (R RED LET VAL), Mr

0 → M′ with M′ , let (x,s) = (V[[M]],N) in Ec[[A]]s.
By (R RED SPLIT), M′ → M′′ with M′′ , Ec[[A]]s{V[[M]]/x}{N/s}. By Lemma 6,
Ec[[A]]s{V[[M]]/x}= Ec[[A{M/x}]]s, so M′′ = Mr

1.
(RED FUN) Here A0 = (fun x → A) M and A1 = A{M/x}. Then Mr

0 = let f =
(fun x→ fun s→ Ec[[A]]s) V[[M]] in f N.
By (R RED LET)((R RED FUN)), we have Mr

0→M′ with M′ , let f = fun s→
Ec[[A]]s{V[[M]]/x} in f N. By Lemma 6, Ec[[A]]s{V[[M]]/x}=Ec[[A{M/x}]]s. By (R RED
LET VAL), M′ → M′′ with M′′ , fun s→ Ec[[A{M/x}]]s N. By (R RED FUN),
M′′→ Ec[[A{M/x}]]s{N/s}= Mr

1.
(RED EQ) Here A0 = (M1 = M2), A1 = true, and M1 = M2 = M for some M.

Then Mr
0 = let b = (V[[M]] = V[[M]]) in (b,N).

By (R RED LET)((R RED EQ)), Mr
0→M′ with M′ , let b = true in (b,N). By

(R RED LET VAL), M′→ (true,N) = Mr
1.

(RED NEQ) Here A0 = (M1 = M2), A1 = true, and M1 6= M2. Then Mr
0 = let b =

(V[[M1]] = V[[M2]]) in (b,N).
By injectivity of V[[]], V[[M1]] 6= V[[M2]]. Thus, by (R RED LET)((R RED EQ)),
Mr

0 → M′ with M′ , let b = false in (b,N). By (R RED LET VAL), M′ →
(false,N) = Mr

1.
(RED SPLIT) Here A0 = let (x,y) = (M1,M2) in A and A1 = A{M1/x}{M2/y}.

Then, Mr
0 = let (x,y) = (V[[M1]],V[[M2]]) in Ec[[A]]s{N/s}.

By (R RED SPLIT) Mr
0→M′ with M′ , Ec[[A]]s{N/s}{V[[M1]]/x}{V[[M2]]/y}. Since s

is fresh and N is closed, we can commute the substitutions and use Lemma 6 to
get M′ = Mr

1.
(RED MATCH) Here A0 = match (h M) with h x→ A else B and A1 = A{M/x}.

Then, Mr
0 = match (h V[[M]]) with h x→ Ec[[A]]s{N/s} else Ec[[B]]s{N/s}.

By (R RED MATCH) Mr
0→M′ with M′ , Ec[[A]]s{N/s}{V[[M]]/x}. Since s is fresh

and N is closed, we can commute the substitutions and use Lemma 6 to get
M′ = Mr

1.
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(RED MISMATCH) Here A0 = match (h′ M) with h x→ A else B, h 6= h′ and
A1 = B. Then, Mr

0 =match (h′ V[[M]]) with h x→ Ec[[A]]s{N/s} else Ec[[B]]s{N/s}.
By (R RED MATCH) Mr

0→ Ec[[B]]s{N/s}= Mr
1.

The second group is the reductions involving the state.

(RED ASSUME) Here A0 = assume (s)C, S1 = S0 ∪ {|C{N0/s}|}, N0 = N1 and
A1 = (). We let N , V[[N0]]. Then Mr

0 = let = assume [[C]]{N/s} in ((),N). By
Lemma 6, [[C]]{N/s}= [[C{N0/s}]].
By (HEAT ASSUME ()), (HEAT FORK LET) and (HEAT TRANS), we have Mr

0V
assume [[C{N0/s}]] � let = () in ((),N).
By (R RED LET VAL), let = () in ((),N)→ ((),N) = Mr

1. By (R RED FORK

2), Mr
0V→M′ with M′ , assume [[C{N0/s}]] �Mr

1.
By repeated use of (HEAT TRANS), (HEAT FORK COMM), (HEAT FORK AS-
SOC), (HEAT FORK 1) and (HEAT FORK 2), [[assume S0]] �M′V [[assume S1]] �
Mr

1.
Finally, [[assume S0]] �Mr

0→ [[assume S1]] �Mr
1 by (R RED FORK 2) and (R RED

HEAT).
(RED ASSERT) Here A0 = assert (s)C, S1 = S0, N0 = N1 and A1 = (). We let

N , V[[N0]] and S, S0. Then Mr
0 = let = assert [[C]]{N/s} in ((),N).

By (R RED LET) ((R RED ASSERT)), Mr
0→M′ with M′ , let = () in ((),N).

By (R RED LET VAL), M′→ ((),N) = Mr
1.

(RED GET) Here A0 = get(), N0 = N1, S0 = S1 and A1 = N1, and we have Mr
0 =

(V[[N0]],V[[N0]]) = Mr
1.

(RED SET) Here A0 = set(N1), S0 = S1 and A1 = (). Here Mr
0 = ((),V[[N1]]) =Mr

1.

The third group only consists of the contextual rule.

(RED CTX) By rewriting the derivation of the reduction, we need only consider
the case of R = let x = [ ] in B. Assume that (A,N0,S0) −→ (A′,N1,S1). By
induction there is k such that [[assume S0]] � Ec[[A]]s{V[[N0]]/s} →k [[assume S1]] �
Ec[[A′]]s{V[[N1]]/s}.
If k = 0, the leaf rule of the reduction was (RED GET) or (RED SET), so S0 = S1
and Mr

0 = Mr
1, and we are done.

Otherwise,

[[assume S0]] �Mr
0 =

[[assume S0]] � let y = Ec[[A]]s{V[[N0]]/s} in let (x,s′) = y in Ec[[B]]s′V

let y = [[assume S0]] � Ec[[A]]s{V[[N0]]/s} in let (x,s′) = y in Ec[[B]]s′→k

let y = [[assume S1]] � Ec[[A′]]s{V[[N1]]/s} in let (x,s′) = y in Ec[[B]]s′V

[[assume S1]] �Mr
1.

Using (R RED HEAT), we then get [[assume S0]] �Mr
0→k [[assume S1]] �Mr

1. ut

Corollary 2. If E[[A]]V[[M]] is safe then (A,M,∅) is safe.
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Theorem 3 (Safety, Theorem 1). If ∅ ` A : {(s)C} : T {(s′)True}, ∅ `C{M/s} and
∅ `M : state then the configuration (A,M,∅) is safe.

Proof. By Theorem 2 and Corollary 2, it suffices to prove ∅ ` E[[A]] V[[M]] : U
for some U . By Proposition 4, we have ∅ ` E[[A]] : Πs : {s : T[[state]] | [[C]]}. Σ :
T. {s′ : T[[state]] | True} (*) and ∅ `M : T[[state]]. By (R VAL REFINE) ∅ `M : {s :
T[[state]] | [[C]]} (**). Finally, by (R EXP APPL) (*, **) ∅ ` E[[A]] V[[M]] : U with
U , Σ : T. {s′ : T[[state]] | True}. ut

1.8.2 Generalized Instantiation

The translation from RIF to RCF does not depend on the particular state type or
API functions. In order to execute a RIF program, we need to instantiate both. In the
paper, we have only used two state-manipulating functions: get() and set(·), where
the state type is a type in RIF. We generalize this notion as follows: An instance is
given by

• An RCF type T , writing state, T ; and
• API function names (i.e., variables) g1, . . . ,gn with RIF types Πxi : Ti. Fi; and
• an RCF implementation N such that

∅ ` N : T[[Πx1 : T1. F1]]∗ . . .∗T[[Πxn : Tn. Fn]] ; and
• a RIF (initial) environment

E0 , g1 : Πxi : Ti. Fi, . . . ,gn : Πxn : Tn. Fn ; and
• predicate symbols p1, . . . , pm.

As an example, given state type T[[T ]] we can implement get() , fun s→ (s,s)
and set, fun m→ fun s→ ((),m) at the appropriate types.

Given a generalized instance of RIF as above, we define the configuration
(A,M,S) to be safe if and only if the RCF expression assume S; let (g1, . . . ,gn) =
N in E[[A]] M is safe.

Theorem 4 (Safety for RIF).
If E0 ` A : {(s)C} : T {(s′)True} (in RIF) and
∅ ` let (g1, . . . ,gn) = N in M : {s : state | [[C]]} (in RCF) then
the configuration (A,M,True) is safe.

Proof. By Theorem 2, it suffices to prove ∅ ` assume True; let (g1, . . . ,gn) =
N in E[[A]] M : U for some U .

By assumption E0 ` A : {(s)C} : T {(s′)True}. By Proposition 4(8) [[E0]] ` E[[A]] :
Πs : {s : state | [[C]]}. Σ : T. {s′ : state | True} (*).

By assumption ∅ `M : {s : state | [[C]]} (**), so by (R EXP APPL) (*, (R WEAK-
ENING) (**)) [[E0]] ` E[[A]] M : U with U , Σ : T. {s′ : state | True}.

By definition [[E0]] = x1 : T[[Πx1 : T1. F1]], . . . ,xn : T[[Πxn : Tn. Fn]]. By assump-
tion ∅ ` N : T[[Πx1 : T1. F1]] ∗T[[Πxn : Tn. Fn]]. This yields ∅ ` let (g1, . . . ,gn) =
N in E[[A]] M : U . By (R EXP LET), (R EXP ASSUME) and (R WEAKENING), we
get ∅ ` assume True; let (g1, . . . ,gn) = N in E[[A]] M : U . ut
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